NO146078B - DEVICE OR BRAND STAKE - Google Patents

DEVICE OR BRAND STAKE Download PDF

Info

Publication number
NO146078B
NO146078B NO793555A NO793555A NO146078B NO 146078 B NO146078 B NO 146078B NO 793555 A NO793555 A NO 793555A NO 793555 A NO793555 A NO 793555A NO 146078 B NO146078 B NO 146078B
Authority
NO
Norway
Prior art keywords
rifamycin
stake
brand
methanol
water
Prior art date
Application number
NO793555A
Other languages
Norwegian (no)
Other versions
NO793555L (en
NO146078C (en
Inventor
A Mareno Storeide
Alf Bernt Andreassen
Original Assignee
A Mareno Storeide
Alf Bernt Andreassen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Mareno Storeide, Alf Bernt Andreassen filed Critical A Mareno Storeide
Priority to NO793555A priority Critical patent/NO146078C/en
Publication of NO793555L publication Critical patent/NO793555L/en
Publication of NO146078B publication Critical patent/NO146078B/en
Publication of NO146078C publication Critical patent/NO146078C/en

Links

Landscapes

  • Special Spraying Apparatus (AREA)

Description

Fremgangsmåte til fremstilling av rifamycin O. Process for the production of rifamycin O.

Foreliggende oppfinnelse angår en fremgangsmåte til fremstilling av rifamycin O. The present invention relates to a method for the production of rifamycin O.

I patentene nr. 103 127 og 103 128 er det beskrevet fremstilling av antibiotikum rifamycin ved dyrkning av en stamme av Str. mediterranei. Rifamycin består av flere komponenter med høy antibiotisk virkning. En av disse komponenter, rifamycin B, utgjør utgangsforbindelsen for fremstilling av antibiotikum ifølge foreliggende oppfinnelse. Patents no. 103 127 and 103 128 describe the production of the antibiotic rifamycin by cultivating a strain of Str. mediterranei. Rifamycin consists of several components with a high antibiotic effect. One of these components, rifamycin B, constitutes the starting compound for the production of the antibiotic according to the present invention.

Rifamycin B er bestandig i lengere Rifamycin B is persistent for longer

tid i krystallinsk form, men omleirer seg når det oppbevares som sådant, eller i form av et salt oppløst i vann eller i luf-ten. Det er kjent at mange antibiotika, når de er oppløst eller suspendert i vann, raskt spaltes under dannelse av stoffer som ikke har noen praktisk interesse. Det-te gjelder imidlertid ikke for rifamycin B, som omdanner seg til videre antibiotiske stoffer med høyere virkning enn rifamycin B. Skjønt reaksjonsmekanismen for denne omdannelse ikke er fullstendig time in crystalline form, but redeposits when stored as such, or in the form of a salt dissolved in water or in the air. It is known that many antibiotics, when dissolved or suspended in water, rapidly decompose to form substances of no practical interest. However, this does not apply to rifamycin B, which is converted into further antibiotic substances with a higher effect than rifamycin B. Although the reaction mechanism for this conversion is not complete

klarlagt, antar man at den består i en ok-sydasjon som er forårsaket av den atmos-færiske luft. Utfører man oksydasjonen under kontrollerte betingelser, dvs. ved omtrent nøytral pH-verdi i et oppløs-ningsmiddel, slik som en vandig lavere alifatisk alkohol med f. eks. hydrogenperoksyd eller salpetersyrling, oppstår rifamycin O, som etter tilsetning av sterke syrer gradvis går over i rifamycin S. clarified, it is assumed that it consists of an ok-sydation which is caused by the atmospheric air. The oxidation is carried out under controlled conditions, i.e. at an approximately neutral pH value in a solvent, such as an aqueous lower aliphatic alcohol with e.g. hydrogen peroxide or nitric acid, rifamycin O is formed, which after the addition of strong acids gradually turns into rifamycin S.

Isoleringen av rifamycin O lettes når The isolation of rifamycin O is facilitated when

man utfører oksydasjonen i fravær av rifamycin O-oppløsende oppløsningsmldler, slik som aceton. Rifamycin O faller da ut så snart det tilsettes vandig mineral-syreoppløsning. De utfelte krystaller oppsamles og tørkes. the oxidation is carried out in the absence of rifamycin O-dissolving solvents, such as acetone. Rifamycin O then precipitates as soon as an aqueous mineral-acid solution is added. The precipitated crystals are collected and dried.

Rifamycin O er et lysegult krystallinsk stoff som spaltes ved 160° C og ikke smel-ter under 300° C. [a] 2° = 71,5° (c = 1 i dioksan). Det er uoppløselig i vann og fortynnete mineralsyrer. I alkalihydrok-syder oppløses det gradvis med sterk rød-fiolett farve. I metanol, etanol og etyl-acetat er det bare litt oppløselig, men derimot temmelig godt oppløselig i aceton. Rifamycin O gir positiv ferriklorid-, Feh-ling- og Tollens-reaksjoner. Det reagerer svakt surt. Den potentiometriske bestem-melse i vandig metanol ga to svakt sure grupper (pK, 1/2, 7,7, pK2 1/2, 10,75). Rifamycin O is a pale yellow crystalline substance which decomposes at 160° C and does not melt below 300° C. [a] 2° = 71.5° (c = 1 in dioxane). It is insoluble in water and dilute mineral acids. In alkali hydroxides it gradually dissolves with a strong red-violet colour. In methanol, ethanol and ethyl acetate it is only slightly soluble, but on the other hand fairly well soluble in acetone. Rifamycin O gives positive ferric chloride, Fehling and Tollens reactions. It reacts slightly sour. The potentiometric determination in aqueous methanol gave two weakly acidic groups (pK, 1/2, 7.7, pK2 1/2, 10.75).

Det ultrafiolette absorpsjonsspektrum av rifamycin O i metanol viser maksima ved 226 imi (E \ fm= 365). 273 m|.i The ultraviolet absorption spectrum of rifamycin O in methanol shows maxima at 226 nm (E \ fm = 365). 273 m|.i

(<E>lcm = 440> og 370 m^ (<E>l<c>m = 60)>(<E>lcm = 440> and 370 m^ (<E>l<c>m = 60)>

sammenlign fig. 1. compare fig. 1.

Det infrarøde absorpsjonsspektrum viser følgende maksima: 3380, 3100, 2925 (mineralolje), 2850 (mineralolje), 1822, 1728, 1682, 1660, 1635, 1605, 1513, 1465 (mineralolje), 1418, 1382 (mineralolje), 1347, 1310, 1257, 1212, 1187, 1174, 1137, 1120, 1100, 1084, 1072, 1025, 980, 952, 925, 910, 896, 846, 820, 793, 783, 757, 725, 680 cm-<1>, sammenlign fig. 2. The infrared absorption spectrum shows the following maxima: 3380, 3100, 2925 (mineral oil), 2850 (mineral oil), 1822, 1728, 1682, 1660, 1635, 1605, 1513, 1465 (mineral oil), 1418, 1382 (mineral oil), 1347, 1310 , 1257, 1212, 1187, 1174, 1137, 1120, 1100, 1084, 1072, 1025, 980, 952, 925, 910, 896, 846, 820, 793, 783. compare fig. 2.

Maksimum ved 1822 cm-<1> er karakte-ristisk og dets gradvise forsvinning kan betraktes som grad for omdannelse av rifamycin O til rifamycin S. The maximum at 1822 cm-<1> is characteristic and its gradual disappearance can be regarded as the degree of conversion of rifamycin O to rifamycin S.

Elementæranalysen ga følgende ver-dier: C pst. 62,53, H pst.: 6,64, N pst. 1,74, O pst. 29,37, OCH3 pst. 4,23, COCH;1 pst. 5,59. Derav kunne følgende bruttoformiel utledes: The elemental analysis gave the following values: C % 62.53, H %: 6.64, N % 1.74, O % 29.37, OCH3 % 4.23, COCH;1 % 5, 59. The following gross formula could be derived from this:

Ved behandling med eddiksyreanhydrid i pyridin, gir rifamycin © et monoacetyl-derivat med smeltepunkt ,203—205° C. Ved behandling med ascorfoinsyre går rifamycin O i godt utbytte igjen over i rifamycin B. When treated with acetic anhydride in pyridine, rifamycin © gives a monoacetyl derivative with a melting point of 203-205° C. When treated with ascorfoic acid, rifamycin O converts again to rifamycin B in good yield.

Rifamycin Cs høye antibakterielle virkning fremgår av følgende tabell. Tal-lene angir den minste hemmende kon-sentrasjon i y/cm<3> like overfor en rekke patogene organismer. Rifamycin C's high antibacterial effect is shown in the following table. The numbers indicate the minimum inhibitory concentration in y/cm<3> against a number of pathogenic organisms.

Følgende eksempler forklarer frem-gangsmåten ifølge oppfinnelsen. The following examples explain the method according to the invention.

Eksempel 1. Example 1.

En oppløsning av 10 g rifamycin B i 2000 cm3 metanol tilsettes 3000 cm3 vann og 100 cm' av en 40 pst.'ig hydrogenper-oksydoppløsning. Etter 30 min. oppvarm-ning til 45—50° C avkjøles blandingen til 0° C. De utskilte krystaller oppsamles og tørkes i vakuum ved 40° C. Utbytte 6,5 g rifamycin O. A solution of 10 g of rifamycin B in 2000 cm3 of methanol is added to 3000 cm3 of water and 100 cm3 of a 40% hydrogen peroxide solution. After 30 min. heating to 45-50° C, the mixture is cooled to 0° C. The separated crystals are collected and dried in vacuum at 40° C. Yield 6.5 g of rifamycin O.

Eksempel 2. Example 2.

En oppløsning av 10 g rifamycin B i 2000 cm<3> metanol tilsettes først en opp-løsning av 50 g natriuminitrit i 250 cm3' vann og deretter den støkiometriske meng-de 10 pst.ig saltsyre inntil reaksjonen er svakt sur. (pH-verdi ca. 4,0). Under syre-tilsetningen faller rifamycin O ut. Etter avkjøling til 0° C oppsamles bunnfallet og tørkes. Utbytte 9 g rifamycin O. Ved om-krystallisasjon fra metanol fås 8,5 g rent rifamycin O. A solution of 10 g of rifamycin B in 2000 cm3 of methanol is first added to a solution of 50 g of sodium nitrite in 250 cm3 of water and then the stoichiometric amount of 10% hydrochloric acid until the reaction is slightly acidic. (pH value approx. 4.0). During the acid addition, rifamycin O precipitates out. After cooling to 0° C, the precipitate is collected and dried. Yield 9 g of rifamycin O. Recrystallization from methanol yields 8.5 g of pure rifamycin O.

Claims (1)

Fremgangsmåte til fremstilling av rifamycin O, karakterisert ved at man oksyderer en opløsning av rifamycin B i en blanding av vann og en lavere alifatisk alkohol med hydrogenperoksyd eller m>ed salpetersyrling.Process for the production of rifamycin O, characterized in that a solution of rifamycin B is oxidized in a mixture of water and a lower aliphatic alcohol with hydrogen peroxide or with nitric acid.
NO793555A 1979-11-05 1979-11-05 DEVICE OR BRAND STAKE NO146078C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO793555A NO146078C (en) 1979-11-05 1979-11-05 DEVICE OR BRAND STAKE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO793555A NO146078C (en) 1979-11-05 1979-11-05 DEVICE OR BRAND STAKE

Publications (3)

Publication Number Publication Date
NO793555L NO793555L (en) 1981-05-06
NO146078B true NO146078B (en) 1982-04-19
NO146078C NO146078C (en) 1982-07-28

Family

ID=19885135

Family Applications (1)

Application Number Title Priority Date Filing Date
NO793555A NO146078C (en) 1979-11-05 1979-11-05 DEVICE OR BRAND STAKE

Country Status (1)

Country Link
NO (1) NO146078C (en)

Also Published As

Publication number Publication date
NO793555L (en) 1981-05-06
NO146078C (en) 1982-07-28

Similar Documents

Publication Publication Date Title
NO136947B (en) BREDB} NDSRUNDSTR} LEANTENNE.
Takashima et al. A New Toxic Substance, Teleocidin, Produced by Streptomyces: Part III. Production, Isolation and Chemical Characterization of Teleocidin BPart IV. Degradative Studies of Hydroteleocidin B and Teleocidic Anhydride
CH646697A5 (en) PROCESS FOR PREPARING 7-PIPERAZINYL-QUINOLINE-carboxylic acid DERIVATIVES.
DE1917874B2 (en) 14-halo-daunomycins, processes for their preparation and their use for the preparation of adriamycin
NO146078B (en) DEVICE OR BRAND STAKE
US4061676A (en) Recovery of doxycycline and products thereof
Awasthi et al. Flavonoids of Madhuca butyracea nut-shell
US4319046A (en) Preparation of 1,2 diaminobenzene by high pressure acid hydrolysis of benzemidazolone
DK150684B (en) METHOD FOR PREPARING ANTHOCYANES BY REDUCING THE SIMILAR FLAVONOID GYCOSIDES
Singleton et al. Chemical characterization of the mold product decumbin
US3301753A (en) Antibiotic
Essery et al. Penicillin sulfoxides
Wolfrom et al. Methyl 2-Deoxy-2-sulfoamino-β-D-glucopyranoside Trisulfate and the Preparation of Tri-O-acetyl-2-amino-2deoxy-α-D-glucopyranosyl Bromide.
Rao C-73: a metabolic product of Streptomyces albulus
GB1230199A (en)
US3647655A (en) Process for the preparation of lumilysergic acid derivatives
KR910009816B1 (en) Process for preparing of pyridine derivated
Yamada et al. The Structure of Aureothin. XI. On the Structure of Some of the Isoaureothin Derivatives
Baxter et al. 76. Application of the Hofmann reaction to the synthesis of heterocyclic compounds. Part IV. The synthesis of 9-d-xylopyranosidoxanthine
KR910006983B1 (en) Process for the preparation of pyridine derivatives
SUZUKI et al. Chemical Structure of Piericidin A Part IV Structural Confirmation for Pyridine Ring in Piericidin A through Synthesis
Bailey et al. 480. The synthesis of 1: 2-dihydro-1-oxo-5′-phenylfurano-(2′: 3′-3: 4) iso quinoline
HU176218B (en) Process for preparing apovincamine from vincamine or epivincamine
DE1918316C3 (en) Mitomycindenvates and process for their preparation
JPS5716882A (en) Production of benzo-heteroring derivative