NO144101B - SODIUM-FREE MINERAL FLUID FOR USE BY WELDING OF ALUMINUM AND ITS ALLOYES, AND FOR USE IN ELECTRO-SlagOf Melting - Google Patents
SODIUM-FREE MINERAL FLUID FOR USE BY WELDING OF ALUMINUM AND ITS ALLOYES, AND FOR USE IN ELECTRO-SlagOf Melting Download PDFInfo
- Publication number
- NO144101B NO144101B NO761829A NO761829A NO144101B NO 144101 B NO144101 B NO 144101B NO 761829 A NO761829 A NO 761829A NO 761829 A NO761829 A NO 761829A NO 144101 B NO144101 B NO 144101B
- Authority
- NO
- Norway
- Prior art keywords
- welding
- sodium
- aluminum
- weight
- melting
- Prior art date
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims description 7
- 239000011707 mineral Substances 0.000 title claims description 7
- 238000002844 melting Methods 0.000 title claims description 3
- 230000008018 melting Effects 0.000 title claims description 3
- 239000012530 fluid Substances 0.000 title 1
- 238000003466 welding Methods 0.000 claims description 39
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 12
- 230000004907 flux Effects 0.000 claims description 12
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- GANNOFFDYMSBSZ-UHFFFAOYSA-N [AlH3].[Mg] Chemical compound [AlH3].[Mg] GANNOFFDYMSBSZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 239000011734 sodium Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 230000004927 fusion Effects 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- YVIMHTIMVIIXBQ-UHFFFAOYSA-N [SnH3][Al] Chemical compound [SnH3][Al] YVIMHTIMVIIXBQ-UHFFFAOYSA-N 0.000 description 1
- -1 aluminium-magnesium-manganese Chemical compound 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K25/00—Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Nonmetallic Welding Materials (AREA)
- Secondary Cells (AREA)
Description
Oppfinnelsen vedrører natriumfritt mineralsk flussmiddel til bruk ved sveising av aluminium og dets leger-' inger, spesielt aluminium-magnesium-legering samt til bruk ved elektroslaggovnsmelting. The invention relates to sodium-free mineral flux for use in welding aluminum and its alloys, especially aluminium-magnesium alloy and for use in electric slag furnace melting.
Aluminium-magnesium-legeringer, spesielt den ikke-herdbare aluminiumlegering AlMg 4,5 Mn, anvendes i økende grad i beholder-, skips- og kjøretøybygning. Den nevnte legering har f.eks. gode sveiseegenskaper ved høy fasthet og utmerker seg i forhold til stålmaterialer ved liten vekt, Aluminum-magnesium alloys, especially the non-hardenable aluminum alloy AlMg 4.5 Mn, are increasingly used in container, ship and vehicle construction. The aforementioned alloy has e.g. good welding properties at high strength and excels in relation to steel materials at low weight,
gode seighetsegenskaper ved lavere temperaturer og høy korrosjonsbestandighet. good toughness properties at lower temperatures and high corrosion resistance.
Tykkveggede bygningsdeler ble tidligere sammen-sveiset i flere lag med foroppvarming av blikkene. Ved for-binding av f.eks. 80 mm tykk aluminiumblikk må det under tiden sammensveises inntil 40 lag. Herved øker feilhyppig-heten, omstendelig prøving, fremstillingstid og således bygningsdelenes fremstillingsomkostninger. Por å kunne fremstille mer økonomisk er det derimot å foretrekke anvendelsen av høyytelsessveisefremgangsmåter, hvor det ikke må forvarmes. Man tilstreber kontinuerlig å forbinde med hverandre tykke blikk i vertikal sveisestilling under anvendelse av høy sveisehastighet uten forvarming i butt- Thick-walled building parts were previously welded together in several layers with preheating of the sheets. When binding e.g. Up to 40 layers of 80 mm thick aluminum sheet must be welded together in the meantime. This increases the frequency of errors, extensive testing, manufacturing time and thus the manufacturing costs of the building components. In order to be able to produce more economically, however, it is preferable to use high-performance welding methods, where preheating is not required. Continuous efforts are made to connect thick sheets in a vertical welding position using high welding speed without preheating in the butt-
sveising i ett plan.. Dette lar seg oppnå ved elektro-slagg-sveisemetoden. Anvendelsen av elektroslaggsveisemetoden med tykke aluminiumblikk støter på forskjellige vanskelig- welding in one plane.. This can be achieved by the electro-slag welding method. The application of the electroslag welding method with thick aluminum sheets encounters various difficulties
heter, blant annet fremkommer stansninger i trådtransporten, tennvanskeligheter og en vanskelig badsikring på grunn av metall- og slaggbadets lave viskositet. Mens disse vanske-ligheter kan overvinnes ved egnede forholdsregler, frem- is called, among other things there are stoppages in the wire transport, ignition difficulties and a difficult bath fuse due to the low viscosity of the metal and slag bath. While these difficulties can be overcome by suitable precautions,
kommer ved aluminium-magnesium-legeringer og aluminium-magnesium-manganlegeringer dessuten et sveisegods med mindre fasthets- og seighetsegenskaper. In the case of aluminium-magnesium alloys and aluminium-magnesium-manganese alloys, a weldment with lower strength and toughness properties is also obtained.
En ytterligere vanskelighet ved elektroslaggsveising av aluminium og dets legeringer består i at ved det hittil anvendte pulvere kunne det ikke anvendes høyere sveisebuespenninger enn ca. 30 volt, da lysbuen dannes mellom blikkantene og trådelektrodene. Herved blir sveise-prosessen meget urolig og vanskeliggjør innstilling av opti-male sveisedata. A further difficulty in electroslag welding of aluminum and its alloys is that, with the powders used up to now, higher welding arc voltages than approx. 30 volts, as the arc forms between the tin edges and the wire electrodes. This makes the welding process very turbulent and makes it difficult to set optimal welding data.
Til grunn for oppfinnelsen ligger den oppgave ved hjelp av et mineralsk flussmiddel å muliggjøre sveising av aluminium og dets legeringer, spesielt aluminium-magnesium-legeringer på en slik måte at sveisegodset har samme fasthets- og seighetsegenskaper som grunnmaterialet, ved elektroslaggsveising er det tillatt med høye sveisespenninger. Hjelpemidlet kan også anvendes til elektroslaggovnsmelting. The invention is based on the task of using a mineral flux to make it possible to weld aluminum and its alloys, especially aluminium-magnesium alloys in such a way that the weld metal has the same strength and toughness properties as the base material, in electroslag welding it is permitted with high welding voltages. The aid can also be used for electric slag furnace smelting.
I henhold til oppfinnelsen oppnås dette ved anvendelse av et natriumfritt mineralsk flussmiddel. Et flussmiddel ifølge oppfinnelsen består ved anvendelse av kjemisk rene materialer av 5-6O vekt-? KC1, 5-6O vekt-? MgCl2, 5-60 vekt-? LiF og 1-30 vekt-? MgF2,.og eventuelt 0,001-2 vekt-? Bi og/eller 0,001-2 vekt-? K2TiFg. Spesielt for aluminiumlegeringen AlMg 4,5 Mn egner et flussmiddel seg som er sammensatt av 30 vekt-? HC1, 30 vekt-? MgCl2, 30 vekt-? LiF og 10 vekt-? MgF^• According to the invention, this is achieved by using a sodium-free mineral flux. A flux according to the invention consists, when using chemically pure materials, of 5-6O weight-? KC1, 5-6O wt-? MgCl2, 5-60 wt-? LiF and 1-30 weight-? MgF2,.and optionally 0.001-2 wt-? Bi and/or 0.001-2 wt-? K2TiFg. Especially for the aluminum alloy AlMg 4.5 Mn, a flux is suitable which is composed of 30 wt. HC1, 30 wt-? MgCl2, 30 wt-? LiF and 10 weight-? MgF^•
Ved anvendelse av forurensede tekniske mineraler, hvori natrium, jern, silisium, kalsium og andre kjemiske elementer kan være tilstede i mindre mengder, kan det oppnås en forbedring av fasthets- og seighetsegenskapene av Mg-Mn-legert støpestruktur ved en tilsetning av 0,001-2 vekt-? When using contaminated technical minerals, in which sodium, iron, silicon, calcium and other chemical elements may be present in smaller quantities, an improvement in the strength and toughness properties of Mg-Mn alloy casting structure can be achieved by adding 0.001-2 weight-?
Bi, samt 0,001-2 vekt-? K2TiFg. Det er foretrukket en støkiometrisk tilsetning av Bi på 0,01-0,1 vekt-?, referert til de i mineralene inneholdte Na-forurensninger. Bi, as well as 0.001-2 wt-? K2TiFg. A stoichiometric addition of Bi of 0.01-0.1 wt-?, referred to the Na impurities contained in the minerals, is preferred.
Fremgangsmåten ifølge oppfinnelsen lar seg spesielt fordelaktig anvende ved elektroslaggsveising og ved elektroslaggomsmelting. Det ifølge oppfinnelsen natriumfrie smeltesveisepulver har en kornforfinende, avgassende og rensende virkning. Også ved høy spenningsbelastning fremkommer et rolig prosessforløp. The method according to the invention can be particularly advantageously used in electroslag welding and in electroslag smelting. The sodium-free fusion welding powder according to the invention has a grain-refining, degassing and cleaning effect. Even with high voltage loads, a calm process occurs.
Ved muligheten for anvendelse av relativt høye sveisespenninger og ved saltsmeltens gunstige fysikalske egenskaper muliggjøres ved elektroslaggsveising badsikring ved hjelp av spesielle vannavkjølte kobberglidesko, mens det i dette tilfelle ved natriumholdige smeltesveisepulvere på grunn av de mindre innstillbare sveisespenningsverdier i sammenheng med den høyere varmeledningsevne av aluminium-blikket danner seg bindefeil. Due to the possibility of using relatively high welding voltages and due to the favorable physical properties of the salt melt, bath protection is made possible in electroslag welding by means of special water-cooled copper sliding shoes, while in this case with sodium-containing fusion welding powders due to the less adjustable welding voltage values in connection with the higher thermal conductivity of the aluminum sheet bonding defects are formed.
Disse vannavkjølte kobberglidesko har til sikker smeltebadavstøtning en lengde på minst 150-300 mm. Skoens bredde må være dimensjonert således at sømflanken minst om-fatter 30-100 mm ved siden av sveisespalten. Fortrinnsvis består en kobberglidesko av en svarende til sømforhøyningen innsporet vannavkjølt midtdel med ca. 5-10 mm brede glide-kanter, hvorpå de bredere sideglideflater er fastgjort. These water-cooled copper sliding shoes have a length of at least 150-300 mm for safe melt bath rejection. The width of the shoe must be dimensioned so that the seam flank at least covers 30-100 mm next to the welding gap. Preferably, a copper sliding shoe consists of a grooved water-cooled middle part corresponding to the seam elevation with approx. 5-10 mm wide sliding edges, on which the wider side sliding surfaces are attached.
Ved hjelp av indre spor mellom midtdelen og sidedelen av glideskoen kan glideskoens kjølevirkning begrenses i området av blikkoverflaten sammenlignet til sveisesømområdet. By means of internal grooves between the middle part and the side part of the sliding shoe, the cooling effect of the sliding shoe can be limited in the area of the tin surface compared to the welding seam area.
Ytterligere anvendelsesmuligheter fremkommer Further application possibilities emerge
ved underpulversveising, når det natriumfrie pulver inne-holder vanlige gassdannere, lysbuestabilisatorer og fyll-stoffer. På samme måte kan fremgangsmåten ifølge oppfinnelsen anvendes ved gassveising av magnesiumholdig aluminiumblikk, idet det natriumfrie flussmiddel tjener som flussmiddel. Ved elektrosveising av magnesiumholdige aluminiumblikk kan det natriumfrie flussmiddel tilføres over elektro-deomhyllingen eller som fylling i små rørelektroder. På prinsipielt samme måte som ved elektroslaggsveising kan flussmiddel ifølge oppfinnelsen også anvendes til foredling av aluminiumsmelter. in submerged arc welding, when the sodium-free powder contains common gas generators, arc stabilizers and fillers. In the same way, the method according to the invention can be used for gas welding magnesium-containing aluminum tin, with the sodium-free flux serving as flux. When electrowelding magnesium-containing aluminum tins, the sodium-free flux can be added over the electrode sheath or as a filling in small tube electrodes. In principle the same way as in electroslag welding, the flux according to the invention can also be used for refining aluminum melt.
Det nedenfor omtalte utførelseseksempel viser den spesielle egenskap av oppfinnelsen for elektroslagg-sveis ing. The embodiment example discussed below shows the special feature of the invention for electroslag welding.
Det sammensveises 45 mm tykke aluminiumplater 45 mm thick aluminum sheets are welded together
av kvalitet AlMg 4,5 Mn med dimensjonene 500x330 mm i butt-sveis. Spaltbredden utgjorde 60 mm. To trådelektroder med 4,4 mm diameter av AlMg 4,5 Mn ble med to parallelt anordnede sveisehoder i liten avstand fra blikkantene.som skal sammensveises, pendlende tilført slaggbadet. Med et elektrisk oppvarmet transportbånd foregikk en kontinuerlig tilførsel av smeltesveisepulver og av strømløs sveisetilsetning fra en elektrisk oppvarmet forrådsbeholder. of quality AlMg 4.5 Mn with dimensions 500x330 mm butt-welded. The gap width was 60 mm. Two wire electrodes with a diameter of 4.4 mm of AlMg 4.5 Mn were fed into the slag bath in a oscillating manner with two welding heads arranged in parallel at a small distance from the tin edges to be welded together. With an electrically heated conveyor belt, a continuous supply of fusion welding powder and electroless welding additive took place from an electrically heated storage container.
Materialet for sveisetilsetningen var likeledes AlMg 4,5 Mn The material for the welding additive was likewise AlMg 4.5 Mn
1 form av trådkorn (4,4 mm diameter, 2 mm langt) eller pulver (kornstørrelse under 1 mm). Fremmatningen av elektrodetråden var koblet med transportbåndets hastighet. Kornstørrelsen av smeltesveisepulveret var mindre enn 3 mm. Ifølge oppfinn- 1 form of wire grain (4.4 mm diameter, 2 mm long) or powder (grain size less than 1 mm). The advance of the electrode wire was coupled with the speed of the conveyor belt. The grain size of the fusion welding powder was less than 3 mm. According to inven-
elsen var det sammensatt av 30 vekt-? KC1, 30 vekt-? MgCl2, else it was composed of 30 weight-? KC1, 30 weight-? MgCl2,
30 vekt-? LiF og 10 vekt-? MgF2- Da dette pulver er sterkt hygroskopisk, ble det før forsøkets begynnelse tørket ca. 2 timer ved 130°C. Smeltebadsikringen foregikk med vannav-kjølte kobberglidesko. For å unngå forstyrrelser i trådtransporten ble det anvendt sveisehoder av kobberrør, hvori det var innpasset et stålrør. Det fremkom en sveisefor- 30 weight-? LiF and 10 weight-? MgF2- As this powder is highly hygroscopic, before the start of the experiment it was dried approx. 2 hours at 130°C. The melt bath protection took place with water-nav-cooled copper sliding shoes. In order to avoid disturbances in the wire transport, welding heads made of copper pipes were used, in which a steel pipe was fitted. A welding process appeared
bindelse som i sine fasthets- og seighetsegenskaper til- bond which in its firmness and toughness properties to
svarte grunnmaterialet. Sidebøyeprøver med en dordiameter d = 5 x s - ga bøyevinkel på 180° uten riss. Prøve med d - 3 x s førte ved en bøyevinkel på l80°C på strekksiden til enkelte fine, ca. 1-2 mm lange riss, hvis dybde var under 0,5 mm. black base material. Lateral bending tests with a mandrel diameter d = 5 x s - gave a bending angle of 180° without cracks. Test with d - 3 x s led at a bending angle of l80°C on the tensile side to some fine, approx. 1-2 mm long cracks, the depth of which was less than 0.5 mm.
Til sammenligning ble det under ellers like be-tingelser gjennomført forsøk med et vanlig natriumholdig smeltesveisepulver (sammensetning: 50 vekt-? NaCl, 25 For comparison, under otherwise identical conditions, tests were carried out with a normal sodium-containing fusion welding powder (composition: 50% NaCl by weight, 25
vekt-? NaF og 25 vekt-? LiF). weight-? NaF and 25 wt-? LiF).
Det fremkom et grovkornet riss ved fritt sveise- A coarse-grained crack appeared during free welding
gods uten innesluttede partikler ved ikke-metalliske forurensninger og med dårlige fasthets- og seighetsegenskaper. goods without trapped particles due to non-metallic contamination and with poor strength and toughness properties.
Dessuten viste det seg at det natriumholdige sveisepulver er meget mer spenningsfølsomt enn det natrium- Furthermore, it turned out that the sodium-containing welding powder is much more voltage-sensitive than the sodium-
frie sveisepulver som anvendes ifølge oppfinnelsen. Sveisespenninger over 30 volt måtte praktisk talt utelukkes. free welding powders used according to the invention. Welding voltages above 30 volts had to be practically excluded.
Dessuten viste det seg at den forholdsvis enkle badsikring Moreover, it turned out that the relatively simple bath protection
med vannavkjølte kobberglidesko var ugjennomførbar, da disse glidesko bevirket sterke sammenbindingsfeil. Bad- with water-cooled copper sliding shoes was impracticable, as these sliding shoes caused strong bonding errors. Bath-
sikringen måtte foretas med karbonmatter og profilerte trykkplater av grafitt. the protection had to be done with carbon mats and profiled graphite pressure plates.
Grunnen for rissdannelse ved anvendelse av et natriumholdig pulver ses deri at natriumet befinner seg i aluminium-magnesium-legeringen og ansamler seg på korngrense"The reason for cracking when using a sodium-containing powder is seen in the fact that the sodium is in the aluminum-magnesium alloy and accumulates at grain boundaries"
resp. dendritt-overflaten av støpefugen og således svekker sammenholdet av de enkelte i og for seg duktile korn. respectively the dendrite surface of the casting joint and thus weakens the cohesion of the individual inherently ductile grains.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19752524374 DE2524374A1 (en) | 1975-06-02 | 1975-06-02 | WELDING OF ALUMINUM - MAGNESIUM ALLOYS |
Publications (3)
Publication Number | Publication Date |
---|---|
NO761829L NO761829L (en) | 1976-12-03 |
NO144101B true NO144101B (en) | 1981-03-16 |
NO144101C NO144101C (en) | 1981-06-24 |
Family
ID=5948020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO761829A NO144101C (en) | 1975-06-02 | 1976-05-28 | SODIUM-FREE MINERAL FLUID FOR USE BY WELDING OF ALUMINUM AND ITS ALLOYES, AND FOR USE IN ELECTRO-SlagOf Melting |
Country Status (8)
Country | Link |
---|---|
BE (1) | BE842496A (en) |
DE (1) | DE2524374A1 (en) |
FR (1) | FR2313168A1 (en) |
GB (1) | GB1544248A (en) |
IT (1) | IT1060745B (en) |
NL (1) | NL7605766A (en) |
NO (1) | NO144101C (en) |
SE (1) | SE7606105L (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102091862B (en) * | 2011-03-29 | 2013-04-24 | 东南大学 | Magnesium alloy electroslag welding process |
-
1975
- 1975-06-02 DE DE19752524374 patent/DE2524374A1/en not_active Withdrawn
-
1976
- 1976-05-28 NO NO761829A patent/NO144101C/en unknown
- 1976-05-28 NL NL7605766A patent/NL7605766A/en not_active Application Discontinuation
- 1976-05-31 IT IT23784/76A patent/IT1060745B/en active
- 1976-05-31 SE SE7606105A patent/SE7606105L/en not_active Application Discontinuation
- 1976-06-02 BE BE167560A patent/BE842496A/en not_active IP Right Cessation
- 1976-06-02 GB GB22773/76A patent/GB1544248A/en not_active Expired
- 1976-06-02 FR FR7616710A patent/FR2313168A1/en active Granted
Also Published As
Publication number | Publication date |
---|---|
GB1544248A (en) | 1979-04-19 |
DE2524374A1 (en) | 1976-12-23 |
NL7605766A (en) | 1976-12-06 |
BE842496A (en) | 1976-10-01 |
IT1060745B (en) | 1982-08-20 |
NO761829L (en) | 1976-12-03 |
FR2313168B1 (en) | 1982-05-07 |
NO144101C (en) | 1981-06-24 |
SE7606105L (en) | 1976-12-03 |
FR2313168A1 (en) | 1976-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Devireddy et al. | Analysis of the influence of friction stir processing on gas tungsten arc welding of 2024 aluminum alloy weld zone | |
Ilangovan et al. | Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints | |
CN102554418A (en) | Microbeam tungsten argon arc welding method for magnesium alloy thin-walled tube | |
JP2013226577A (en) | Flux cored wire for gas shielded arc welding of crude oil tank steel | |
US3296412A (en) | Vertical welding of aluminum | |
BRPI0614208A2 (en) | Welding / brazing or brazing methods of workpieces and backfilling or notches in sheet metal treatment and body construction, and wire | |
Deyev | Surface phenomena in fusion welding processes | |
JP2013226578A (en) | Flux cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel | |
CN106077912A (en) | A kind of complex brass clad steel plate is not associated with district's repair method | |
CN102794542A (en) | Vibrating wire-feeding surfacing method | |
Rahni et al. | Effect of filler metal on microstructure and mechanical properties of manganese–aluminum bronze repair welds | |
Kulkarni et al. | Effect of backing plate material diffusivity on microstructure, mechanical properties of friction stir welded joints: a review | |
Kumaran et al. | Development of pulsed cold metal transfer and gas metal arc welding techniques on high-strength aerospace-grade AA7475-T761 | |
US5062903A (en) | Welding process and mixture of reactants for use in such process | |
Sarmast-Ghahfarokhi et al. | Investigating the microstructural evolution and interfacial morphology of laser-and arc-brazed ZnAlMg coated steel | |
NO144101B (en) | SODIUM-FREE MINERAL FLUID FOR USE BY WELDING OF ALUMINUM AND ITS ALLOYES, AND FOR USE IN ELECTRO-SlagOf Melting | |
US3636301A (en) | Flux for welding light alloys | |
CN114393343A (en) | Aluminum alloy welding consumable and method of metallurgical bonding | |
US2239018A (en) | Welding method and flux for the same | |
US2399356A (en) | Method of welding plates | |
US2357125A (en) | Light metal flux | |
Kumar et al. | A Comparison of welding techniques of aluminium alloys, A literature review | |
Akhonin et al. | Argon-arc welding of titanium and its alloys using fluxes | |
JPS58377A (en) | Deep penetration arc welding method for thick walled steel materials by multiple electrodes | |
SU583903A1 (en) | Welding flux |