NO142462B - PROCEDURE FOR TESTING THE RESISTANCE TO BATH COMPONENTS OF NON-OXYXIBLE HEAT-INJURING LINING MATERIALS FOR ALUMINUM ELECTRICAL CELLS - Google Patents

PROCEDURE FOR TESTING THE RESISTANCE TO BATH COMPONENTS OF NON-OXYXIBLE HEAT-INJURING LINING MATERIALS FOR ALUMINUM ELECTRICAL CELLS Download PDF

Info

Publication number
NO142462B
NO142462B NO2687/71A NO268771A NO142462B NO 142462 B NO142462 B NO 142462B NO 2687/71 A NO2687/71 A NO 2687/71A NO 268771 A NO268771 A NO 268771A NO 142462 B NO142462 B NO 142462B
Authority
NO
Norway
Prior art keywords
heat
resistance
testing
procedure
bath components
Prior art date
Application number
NO2687/71A
Other languages
Norwegian (no)
Other versions
NO142462C (en
Inventor
Sebastian Huwyler
Wolfgang Schmidt-Hatting
Original Assignee
Alusuisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse filed Critical Alusuisse
Publication of NO142462B publication Critical patent/NO142462B/en
Publication of NO142462C publication Critical patent/NO142462C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

For utvinning av aluminium ved elektrolyse av aluminiumoksyd (A120 , leirjord) løses dette i en fluoridsmelte. Elektrolysen utføres ved en temperatur på ca. 940 til 975 oC. Aluminium, som skilles ut ved katoden, samler seg under fluoridsmelten på bunnen av cellen. Anoder av amorft karbon stikker ned i smeiten. Ved anodene dannes det under elektrolysen oksygen som for- For the extraction of aluminum by electrolysis of aluminum oxide (A120, clay soil), this is dissolved in a fluoride melt. The electrolysis is carried out at a temperature of approx. 940 to 975 oC. Aluminum, which is separated at the cathode, collects under the fluoride melt at the bottom of the cell. Anodes of amorphous carbon stick into the forge. During the electrolysis, oxygen is formed at the anodes, which

binder seg med karbonet i anodene til CO og CO 2. binds with the carbon in the anodes to CO and CO 2.

Prinsippet for en aluminium-elektrolyse-celle går frem av figuren, som viser et snitt i lengderetningen. Fluoridsmelten 10, (elektrolytten), befinner seg i et stålkar 12 som er foret med karbon 11, og utstyrt med en termisk isolasjon 13 av varme-bestandig, varmedemmende foringsmaterial. Det katodisk utskilte' aluminium 14 ligger på bunnen 15 av cellen. Overflaten 16 av flytende aluminium utgjør katoden. I karbonbekledningen 11 The principle of an aluminum electrolysis cell is shown in the figure, which shows a section in the longitudinal direction. The fluoride melt 10, (electrolyte), is located in a steel vessel 12 which is lined with carbon 11, and equipped with a thermal insulation 13 of heat-resistant, heat-insulating lining material. The cathodically separated aluminum 14 lies on the bottom 15 of the cell. The surface 16 of liquid aluminum constitutes the cathode. In the carbon cladding 11

er det lagt inn katodestaver 17 av jern, som fører strømmen ut fra bunnen av cellen. I fluoridsmelten 10 stikker det ovenfra ned anoder 18 av amorft karbon som fører likestrømmen til elektrolytten. Anodene er fast forbundet med anodebjelkene 21, ved hjelp av strømlederstangen 19 og låseanordningen 20. Elektrolytten 10 er dekket av en skorpe 22 av størknet smelts iron cathode rods 17 have been inserted, which lead the current out from the bottom of the cell. In the fluoride melt 10, anodes 18 of amorphous carbon stick out from above and carry the direct current to the electrolyte. The anodes are firmly connected to the anode beams 21, by means of the conductor rod 19 and the locking device 20. The electrolyte 10 is covered by a crust 22 of solidified melt

og et leirjordlag 23 over skorpen. Avstanden d fra anode-undersiden 24 og ned til aluminiumoverflaten 16, også kalt interpolaravstanden, lar seg forandre ved hevning og senkning av anodebjelken 21 ved hjelp av et hevverk 25, som er montert på søyler 26. Som følge av angrepet fra det oksygen som er frigjort under elektrolysen forbrukes anoden på undersiden daglig med ca. 1,5 - 2 cm avhengig av celletypen. and a clay soil layer 23 above the crust. The distance d from the anode underside 24 down to the aluminum surface 16, also called the interpolar distance, can be changed by raising and lowering the anode beam 21 by means of a lifting mechanism 25, which is mounted on columns 26. As a result of the attack from the oxygen that is released during electrolysis, the anode on the underside is consumed daily by approx. 1.5 - 2 cm depending on the cell type.

Den termiske isolasjon 13 består som regel i rekkefølge The thermal insulation 13 usually consists in sequence

fra fluoridsmelten 10 til stålkaret 12 av et eller flere lag av høytemperatur-bestandige, varmedemmende materialer, og ytterligere lag av mindre temperaturbestandige og derfor godt varmedemmende isolasjonsmaterialer. from the fluoride melt 10 to the steel vessel 12 of one or more layers of high-temperature-resistant, heat-insulating materials, and further layers of less temperature-resistant and therefore good heat-insulating insulating materials.

I løpet av cellens driftstid trenger flytende og gassformede badkomponenter gjennom karbonlaget 11 og inn til disse varmedemmende foringslag. Mellom badkomponentene og disse varmedemmende isolasjonsmaterialer kan det oppstå kjemiske reaksjoner som angriper isolasjonsmaterialene. Dette angrep kan enten føre til oppløsning av isolasjonsmaterialene eller innskrump-ning eller volumutvidelse. Alt dette senker fastheten av den varmedemmende foring 13 og dermed levetiden for elektrolyse-cellen. Resultatet blir en tidlig og kostbar reparasjon, som fører til produksjonstans. Videre øker spenningsfallet i karbon-bunnen 11 sterkt og dette fører til et høyere spesifikt elektrisk energiforbruk (kWh/ kg Al). During the cell's operating time, liquid and gaseous bath components penetrate through the carbon layer 11 and into these heat-insulating lining layers. Chemical reactions can occur between the bath components and these heat-proof insulation materials, which attack the insulation materials. This attack can either lead to dissolution of the insulation materials or shrinkage or volume expansion. All this lowers the firmness of the heat-insulating lining 13 and thus the lifetime of the electrolysis cell. The result is an early and costly repair, which leads to a production stoppage. Furthermore, the voltage drop in the carbon base 11 increases strongly and this leads to a higher specific electrical energy consumption (kWh/kg Al).

De angitte vanskeligheter lar seg forminske eller helt unngå The indicated difficulties can be reduced or completely avoided

ved at det i den termiske isolasjon 13 brukes foringsmaterialer som er bestandige overfor badkomponentene. in that the thermal insulation 13 uses lining materials that are resistant to the bath components.

Før foringsmaterialene settes inn i cellen er det derfor nød-vendig å undersøke deres bestandighet overfor badkomponentene. Before the lining materials are inserted into the cell, it is therefore necessary to examine their resistance to the bath components.

Oppfinnelsen angår en fremgangsmåte for å prøve bestandigheten overfor badkomponentene av ikke-oksyderbare, varmedemmende foringsmaterialer. Denne metode gjør det mulig å bestemme bestandigheten overfor badkomponentene etter den laboratorie-test som skal beskrives nedenfor. De langtidsforandringer som foringsmaterialet i cellen gjennomgår under angrepet av badkomponentene blir bragt til uttrykk i laboratoriet på en enkel måte og i løpet av en meget kort tid. The invention relates to a method for testing the resistance to the bathroom components of non-oxidizable, heat-insulating lining materials. This method makes it possible to determine the resistance to the bath components after the laboratory test to be described below. The long-term changes that the lining material in the cell undergoes during the attack of the bath components are expressed in the laboratory in a simple way and within a very short time.

Det særegne ved fremgangsmåten i henhold til oppfinnelsen består i at det fremstilles prøvestykker av foringsmaterialet, hvorav noen forblir ubehandlet, noen pakkes inn i kryolitt og holdes ved 500+lO°C i minst 24 timer, og noen pakkes inn i kryolittpulver og holdes ved 800+20°C i minst 24 timer, hvoretter koldtrykk-fastheten (trykkfasthet ved romtemperatur), den tilsynelatende tetthet og dimensjoner av de behandlete prøve-legemer sammenliknes ved de tilsvarende verdier for de prøve-stykker som ikke er varmebehandlet. The peculiarity of the method according to the invention is that test pieces of the lining material are produced, some of which remain untreated, some are packed in cryolite and kept at 500+10°C for at least 24 hours, and some are packed in cryolite powder and kept at 800 +20°C for at least 24 hours, after which the cold compressive strength (compressive strength at room temperature), the apparent density and dimensions of the treated test specimens are compared with the corresponding values for the test pieces that have not been heat treated.

For undersøkelsen skjæres prøvestykker ut av de foringsmaterialer som skal prøves. Det velges fortrinnsvis en størrelse på ca. 35 x 35 x 65 mm, som har vist seg gunstig. Andre størrelser kan selvfølgelig også benyttes. I disse prøvene blir deretter den tilsynelatende tetthet og koldtrykk-fasthet målt. For the examination, test pieces are cut out of the lining materials to be tested. A size of approx. 35 x 35 x 65 mm, which has proven beneficial. Other sizes can of course also be used. In these samples, the apparent density and cold compressive strength are then measured.

Ytterligere prøvestykker oppvaremes ved 800+20°C i minst 24 Additional test pieces are heated at 800+20°C for at least 24

timer og deretter bestemmes koldtrykk-fastheten. Et fall i koldtrykk-fastheten etter foretatt oppvarming tyder allerede på en svekkelse av strukturen ved ren temperaturinnvirkning. hours and then the cold compressive strength is determined. A drop in the cold compressive strength after heating already indicates a weakening of the structure by mere temperature influence.

Andre prøvestykker ble pakket inn i kryolittpulver, fortrinnsvis i en grafittgryte, og oppvarmes i minst 24 timer ved 500+20°C, avkjølt, renset for kryolitt som hadde festet seg til og prøvet med hensyn til skrumping eller volumøkning. Det ble også undersøkt om det samtidig var inntrådt en vektendring. Materialer som egner seg godt for innbygging i elektrolyse-cellen, må hverken ha noen nevneverdig stor innskruming, volumøking eller vektforandring. Undersøkelsen ble supplert ved bestemmelsen av koldtrykk-fastheten av de prøvestykker som var oppvarmet i kryolitt. For brukbare materialer må trykkfastheten av de prøvestykker som var oppvarmet i kryolitt, ikke være nevneverdig forskjellig fra trykkfastheten av dem som ikke var oppvarmet i kryolitt. Det kan imidlertid forekomme at det oppstår en høyere trykkfasthet etter temperatur-inn-virkning med eller uten kryolitt, noe som skyldes en uønsket sprødannelse av materialet. En nedsatt trykkfasthet beviser på den annen side at det har vært angrep av kryolitt. Slike materialer, som ved undersøkelsen viste vesentlig forandrete verdier, er ikke egnet som foringsmaterial for aluminium-elektrolysecellene. Materialer, som består prøven uten nevneverdig forandring, er derimot egnet for innsetting i celledeler ved lavere temperatur, dvs. på ca. 500°C og lavere. Other test pieces were packed in cryolite powder, preferably in a graphite pot, and heated for at least 24 hours at 500+20°C, cooled, cleaned of adhered cryolite and tested for shrinkage or volume expansion. It was also investigated whether a change in weight had occurred at the same time. Materials that are suitable for incorporation into the electrolysis cell must not have any significant curvature, increase in volume or change in weight. The investigation was supplemented by the determination of the cold compressive strength of the test pieces that had been heated in cryolite. For usable materials, the compressive strength of the test pieces that were heated in cryolite must not be significantly different from the compressive strength of those that were not heated in cryolite. However, it may occur that a higher compressive strength occurs after temperature exposure with or without cryolite, which is due to an unwanted brittleness of the material. A reduced compressive strength, on the other hand, proves that there has been attack by cryolite. Such materials, which during the investigation showed significantly changed values, are not suitable as lining material for the aluminum electrolysis cells. Materials, which pass the test without significant change, are, on the other hand, suitable for insertion into cell parts at a lower temperature, i.e. at approx. 500°C and below.

Samme prøve ble utført i kryolitt, med ved en temperatur på 800+20°C (varighet minst 24 timer). Kriteriene for bedømmelsen er de samme som etter oppvarming til 500+10°C. Materialer som også står over denne påkjenning uten nevneverdig forandring, egner seg for anvendelse i aluminium-elektrolyseceller uten begrensning, dersom deres absolutt-verdier for fasthet og termisk ledeevne tillater det. The same test was carried out in cryolite, with at a temperature of 800+20°C (duration at least 24 hours). The criteria for the assessment are the same as after heating to 500+10°C. Materials that also withstand this stress without appreciable change are suitable for use in aluminum electrolysis cells without limitation, if their absolute values for strength and thermal conductivity allow it.

Det er funnet at materialer som har vist seg gode ved disse prøver, også viser seg driftsikre i elektrolysecellene. Det lar seg derfor gjøre å nedsette den risiko som alltid vil være tilstede ved innsetting av nye tidligere ikke brukte materialer. It has been found that materials that have proven good in these tests also prove reliable in the electrolysis cells. It is therefore possible to reduce the risk that will always be present when introducing new previously unused materials.

Den forlengelse av cellens levetid, som oppnås ved hjelp av The extension of the cell's life, which is achieved with the help of

de prøvede materialer, medfører en betraktelig senkning av utgiftene ved fremstilling av aluminium. the tested materials, results in a considerable reduction of the costs in the production of aluminium.

Claims (1)

Fremgangsmåte for prøving av bestandigheten overfor bad-kompo-nenter av ikke-oksyderbare varmedemmende foringsmaterialer for aluminium-elektrolyseceller,Procedure for testing the resistance to bath components of non-oxidizable heat-insulating lining materials for aluminum electrolysis cells, karakterisert ved at prøvestykker av materialet pakkes inn i kryolitt og noen av dem holdes ved 500+10°C, andre ved 800+20°C i minst 24 timer, hvoretter koldtrykk-fasthet, tilsynelatende tetthet og dimensjoner måles og sammenlignes med tilsvarende verdier for prøvestykker som ikke er varmebehandlet.characterized in that test pieces of the material are wrapped in cryolite and some of them are kept at 500+10°C, others at 800+20°C for at least 24 hours, after which cold compressive strength, apparent density and dimensions are measured and compared with corresponding values for test pieces that have not been heat treated.
NO2687/71A 1970-07-17 1971-07-14 PROCEDURE FOR TESTING THE RESISTANCE TO BATH COMPONENTS OF NON-OXYXIBLE HEAT-INJURING LINING MATERIALS FOR ALUMINUM ELECTRICAL CELLS NO142462C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1090770A CH557886A (en) 1970-07-17 1970-07-17 PROCEDURE FOR TESTING THE CRYOLITE RESISTANCE OF THERMAL-INSULATING LINING MATERIALS FOR ALUMINUM ELECTROLYSIS CELLS.

Publications (2)

Publication Number Publication Date
NO142462B true NO142462B (en) 1980-05-12
NO142462C NO142462C (en) 1980-09-03

Family

ID=4368074

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2687/71A NO142462C (en) 1970-07-17 1971-07-14 PROCEDURE FOR TESTING THE RESISTANCE TO BATH COMPONENTS OF NON-OXYXIBLE HEAT-INJURING LINING MATERIALS FOR ALUMINUM ELECTRICAL CELLS

Country Status (13)

Country Link
US (1) US3688559A (en)
JP (1) JPS5627823B1 (en)
AT (1) AT309091B (en)
AU (1) AU461233B2 (en)
BE (1) BE770044A (en)
CA (1) CA928101A (en)
CH (1) CH557886A (en)
DE (1) DE2133847C3 (en)
FR (1) FR2101751A5 (en)
GB (1) GB1349779A (en)
NL (1) NL152358B (en)
NO (1) NO142462C (en)
ZA (1) ZA714495B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604845C2 (en) * 1986-02-15 1995-08-24 Egon Evertz Procedure for determining the behavior of refractory materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3261699A (en) * 1966-07-19 Table ii
US3457158A (en) * 1964-10-02 1969-07-22 Reynolds Metals Co Cell lining system

Also Published As

Publication number Publication date
US3688559A (en) 1972-09-05
NO142462C (en) 1980-09-03
AU3132971A (en) 1973-01-18
ZA714495B (en) 1972-03-29
GB1349779A (en) 1974-04-10
FR2101751A5 (en) 1972-03-31
AU461233B2 (en) 1975-05-22
DE2133847C3 (en) 1974-11-21
BE770044A (en) 1971-11-16
NL152358B (en) 1977-02-15
NL7108820A (en) 1972-01-19
JPS5627823B1 (en) 1981-06-27
DE2133847A1 (en) 1972-01-20
DE2133847B2 (en) 1974-04-18
CH557886A (en) 1975-01-15
AT309091B (en) 1973-08-10
CA928101A (en) 1973-06-12

Similar Documents

Publication Publication Date Title
Beck A non-consumable metal anode for production of aluminum with low-temperature fluoride melts
US7731824B2 (en) Measuring duct offgas temperatures to improve electrolytic cell energy efficiency
Simnad et al. Ionic nature of liquid iron-silicate slags
US4247381A (en) Facility for conducting electrical power to electrodes
US20080067060A1 (en) Cermet inert anode assembly heat radiation shield
US4354918A (en) Anode stud coatings for electrolytic cells
NO142462B (en) PROCEDURE FOR TESTING THE RESISTANCE TO BATH COMPONENTS OF NON-OXYXIBLE HEAT-INJURING LINING MATERIALS FOR ALUMINUM ELECTRICAL CELLS
EP2066587A1 (en) A method of producing substoichiometric oxides of titanium by reduction with hydrogen
LAI et al. Results from 100 h electrolysis testing of NiFe2O4 based cermet as inert anode in aluminum reduction
US4428847A (en) Anode stud coatings for electrolytic cells
US20050040047A1 (en) Use of infrared imaging to reduce energy consumption and fluoride comsumption
NO129154B (en)
NO803793L (en) ANODE FOR MELT ELECTROLYCLE CELLS.
Pietrzyk et al. Testing of Aluminium Carbide Formation in Hall-Heroult Electrolytic Cell
Vecchio-Sadus et al. Tin Dioxide-Based Ceramics as Inert Anodes for Aluminium Smelting: A Laboratory Study
Zarubitskii et al. Investigating the life of some materials in lead chloride melts
Woolley et al. Electrowinning Magnesium Metal from MgCl2-NdOCl Melt Using Solid-Oxide Oxygen-Ion-Conducting Membrane Technology
Zdaniewski Effect of Segregated Cr on Degradation of (Ti, Cr) B 2 Exposed to Liquid Aluminum
Windisch Jr et al. Development of a standard bench-scale cell for electrochemical studies on inert anodes. Inert Anode/Cathode Program
Liu et al. Mechanical properties of carbon cathodes during aluminium electrolysis
Merkov et al. Investigation into the impregnation of baked anodes of aluminum electrolyzers
Rance et al. Direct contact electrochemical dissolution of nuclear fuel cladding
WO2012027809A1 (en) Low-carbon steel composition for the purpose of electrical conduction in electrolytic reduction cells and the like
Simakov et al. Tests for resistance to cryolite: methods and comparative evaluation
Steward et al. Refractory Castables for Alumina Reduction Cells