NO141371B - MCRALY TYPE COATING ALLOY. - Google Patents

MCRALY TYPE COATING ALLOY. Download PDF

Info

Publication number
NO141371B
NO141371B NO75752355A NO752355A NO141371B NO 141371 B NO141371 B NO 141371B NO 75752355 A NO75752355 A NO 75752355A NO 752355 A NO752355 A NO 752355A NO 141371 B NO141371 B NO 141371B
Authority
NO
Norway
Prior art keywords
alloy
coating
platinum
weight percent
rhodium
Prior art date
Application number
NO75752355A
Other languages
Norwegian (no)
Other versions
NO752355L (en
NO141371C (en
Inventor
Edward Josehp Felten
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of NO752355L publication Critical patent/NO752355L/no
Publication of NO141371B publication Critical patent/NO141371B/en
Publication of NO141371C publication Critical patent/NO141371C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Den foreliggende oppfinnelse vedrører en belegglegering The present invention relates to a coating alloy

av MCrAlY-typen med økt varmkorrosjonsbestandighet for belegging av gjenstander av nikkel- og koboltlegeringer, inneholdende 8-30 vektprosent krom, 5-15 vektprosent aluminium, 0-1 vektprosent reaktivt metall i form av yttrium, scandium, thorium eller et annet sjeldent jordmetall og resten, bortsatt fra forurensninger, nikkel, kobolt eller nikkel-kobolt. of the MCrAlY type with increased hot corrosion resistance for coating objects made of nickel and cobalt alloys, containing 8-30 weight percent chromium, 5-15 weight percent aluminum, 0-1 weight percent reactive metal in the form of yttrium, scandium, thorium or another rare earth metal and the rest, excluding impurities, nickel, cobalt or nickel-cobalt.

Det er kjent at superlegeringer i moderne jetmotorer er utsatt for oksydasjonserosjon og varmkorrosjon ved meget høye temperaturer og at det er vanlig praksis å overtrekke super-legeringene med et belegg som er forskjellig fra og som har større oksydasjonserosjons- og korrosjonsbestandighet enn den underliggende legering. It is known that superalloys in modern jet engines are subject to oxidation erosion and hot corrosion at very high temperatures and that it is common practice to coat the superalloys with a coating that is different from and has greater oxidation erosion and corrosion resistance than the underlying alloy.

Generelt er det to hovedtyper belegg: 1) aluminidbelegg, såsom de som er beskrevet i et av US-patentskriftene 3.102.044, 3.677.789 og 3.692.554, hvor det dannes aluminider ved reaksjon med eller diffusjon av et belegg på den underliggende flate, og 2) belegg såsom de av MCrAlY-typen, f.eks. NiCrAlY beskrevet i US-patentskrift 3.754.903, CoCrAlY beskrevet i US-patentskrift 3.676.085, NiCoCrAlY beskrevet i US-patentskrift 3.928.026 samt FeCrAlY beskrevet i US-patentskrift 3.542.530. Særlig anvendbare MCrAlY-overtrekk er de som hovedsakelig består av ca. 8-3 0 vektprosent krom, 5-15 vektprosent aluminium, opptil 1 vektprosent reaktivt metall i form av yttrium, scandium, thorium eller lanthan eller et annet sjeldent jordmetall, mens resten består av nikkel, kobolt eller nikkel-kobolt, fortrinnsvis på-ført i en tykkelse på ca. 0,012-0,015 cm. In general, there are two main types of coatings: 1) aluminide coatings, such as those described in one of US patents 3,102,044, 3,677,789 and 3,692,554, where aluminides are formed by reaction with or diffusion of a coating onto the underlying surface , and 2) coatings such as those of the MCrAlY type, e.g. NiCrAlY described in US patent 3,754,903, CoCrAlY described in US patent 3,676,085, NiCoCrAlY described in US patent 3,928,026 and FeCrAlY described in US patent 3,542,530. Particularly applicable MCrAlY coatings are those which mainly consist of approx. 8-30% by weight chromium, 5-15% by weight aluminium, up to 1% by weight reactive metal in the form of yttrium, scandium, thorium or lanthanum or another rare earth metal, while the rest consists of nickel, cobalt or nickel-cobalt, preferably applied in a thickness of approx. 0.012-0.015 cm.

I motsetning til overtrekkene frembringes aluminidbeleggene typisk ved å la aluminium reagere med den deoksyderte overflate av gjenstanden som skal beskyttes. Aluminidlaget dannes som en barrieresone med varierende bestanddelskonsentrasjon avhengig av forbruket av bestanddelene i underlaget. Dette aluminidlaget på sin side oksyderes til dannelse av det inerte barriereoksyd. Ifølge US-patentskrifter 3.677.789 og 3.692.554 påføres det et separat lag av metall tilhørende platinagruppen før aluminium-diffusjonsbehandlingen. Men som følge av den komplekse natur til de fleste kjente legeringer og idet beleggsammensetningen på disse delvis kommer fra bestanddelene i de underliggende legeringer er det vanskelig å regulere beleggets sammensetning slik at det dannes et egnet barriereoksyd. I tillegg ligger det i diffusjonsteknikken at det dannete belegg er uhomogent, og når det gjelder innhold av f.eks. metaller tilhørende platinagruppen, fremkommer det en høy konsentrasjon av metallet tilhørende platinagruppen på overflaten. En slik gradient er selvfølgelig ufordelaktig idet beleggets effektivitet avtar under bruk når dets sammensetning forandres. In contrast to the coatings, the aluminide coatings are typically produced by allowing aluminum to react with the deoxidized surface of the object to be protected. The aluminide layer is formed as a barrier zone with varying component concentration depending on the consumption of the components in the substrate. This aluminide layer, in turn, is oxidized to form the inert barrier oxide. According to US patents 3,677,789 and 3,692,554, a separate layer of metal belonging to the platinum group is applied before the aluminum diffusion treatment. However, due to the complex nature of most known alloys and as the coating composition on these partly comes from the constituents of the underlying alloys, it is difficult to regulate the composition of the coating so that a suitable barrier oxide is formed. In addition, it is inherent in the diffusion technique that the coating formed is inhomogeneous, and when it comes to content of e.g. metals belonging to the platinum group, a high concentration of the metal belonging to the platinum group appears on the surface. Such a gradient is of course disadvantageous as the coating's effectiveness decreases during use when its composition changes.

Selv om noen kjente beleggsammensetninger har representert forbedringer i forhold til tidligere legeringssammensetninger har det fortsatt vært behov for ytterligere forbedringer, særlig f.eks. når det gjelder varmkorrosjonsbestandighet. Although some known coating compositions have represented improvements in relation to previous alloy compositions, there has still been a need for further improvements, especially e.g. in terms of hot corrosion resistance.

Legeringen ifølge oppfinnelsen er kjennetegnet ved at den for økning av varmkorrosjonsbestandigheten er tilsatt 3-12 vektprosent av et edelt metall i form av platina eller rhodium som legeririgsbestanddel. The alloy according to the invention is characterized by the fact that, to increase the hot corrosion resistance, 3-12 percent by weight of a precious metal in the form of platinum or rhodium has been added as an alloy component.

Anvendelsen av det edle metall som en legeringsbestanddel resulterer i en stort sett jevn dispergering av dette i legeringen og homogeniteten som er kjennetegnene for overtrekks-beleggene av MCrAlY-typen bibeholdes således. The use of the noble metal as an alloy component results in a largely uniform dispersion of this in the alloy and the homogeneity which is the characteristic of the MCrAlY-type coating is thus maintained.

Ifølge en foretrukket sammensetning er det reaktive metall yttrium og det edle metall 5-10 vektprosent platina. I en annen sammensetning er det reaktive metall yttrium og det edle metall 5 vektprosent rhodium. According to a preferred composition, the reactive metal is yttrium and the noble metal is 5-10 weight percent platinum. In another composition, the reactive metal is yttrium and the noble metal is 5% by weight rhodium.

Oppfinnelsen vil bli nærmere beskrevet i den etterfølgende detaljerte beskrivelse under henvisning til de medfølgende teg-ninger, hvori: Fig. 1 er et diagram som viser sulfidiseringsegenskapene for ulike NiCrAl-legeringer ved 1000°C. Fig. 2 og 3 er diagrammer som viser oksydasjonsegenskapene for ulike NiCrAl-legeringer ved henholdsvis 1100 og 1200°C i luft. Fig. 4 er et diagram som viser varmkorrosjonsegenskapene for ulike CoCrAlY- og NiCrAlY-legeringer ved 955°C og 2,0 mg.cm<-2 >Na2S04. Fig. 5 er et diagram som viser varmkorrosjonsegenskapene for NiCrAlY-legeringer ved 955°C og 0,5 mg.cm <2>Na^O^. The invention will be described in more detail in the following detailed description with reference to the accompanying drawings, in which: Fig. 1 is a diagram showing the sulphidation properties of various NiCrAl alloys at 1000°C. Figs 2 and 3 are diagrams showing the oxidation properties of various NiCrAl alloys at 1100 and 1200°C respectively in air. Fig. 4 is a diagram showing the hot corrosion properties of various CoCrAlY and NiCrAlY alloys at 955°C and 2.0 mg.cm<-2 >Na2SO4. Fig. 5 is a diagram showing the hot corrosion properties of NiCrAlY alloys at 955°C and 0.5 mg.cm <2>Na^O^.

Legeringene ifølge oppfinnelsen oppviser særlig god varmkorrosjonsbestandighet og anses for å være særlig anvendbare som belegg på moderne superlegeringer. Legeringene ifølge oppfinnelsen er korrosjonsbestandige i seg selv, og deres beskyttende virkning er ikke avhengig av en reaksjon med det underliggende materiale. I tillegg er disse legeringer homogene helt igjennom og vil således utøve deres beskyttende virkning mer kontinuerlig og jevnt enn aluminidbeleggene gjør. The alloys according to the invention show particularly good hot corrosion resistance and are considered to be particularly useful as coatings on modern superalloys. The alloys according to the invention are corrosion resistant in themselves, and their protective effect does not depend on a reaction with the underlying material. In addition, these alloys are homogeneous throughout and will thus exert their protective effect more continuously and evenly than the aluminide coatings do.

I en foretrukket legering anvendes det 0,5 vektprosent yttrium og 5-10 vektprosent platina. In a preferred alloy, 0.5% by weight of yttrium and 5-10% by weight of platinum are used.

Det var overraskende å finne at tilsetning som legerings-bestanddeler av nærmere angitte mengder platina eller rhodium til beleggene av MCrAlY-typen ikke bare ville øke sterkt sul-fidiseringsbestandigheten, men også selv uten nærvær av de reaktive metaller (Y, Sc, Th, La eller de andre sjeldne jordmetaller) som vanligvis frembringer oksydadhesjon til underlaget, ville frembringe ytterligere oksydadhesjon. It was surprising to find that the addition as alloying constituents of specified amounts of platinum or rhodium to the MCrAlY-type coatings would not only greatly increase the sulphidation resistance, but also even without the presence of the reactive metals (Y, Sc, Th, La or the other rare earth metals) that normally produce oxide adhesion to the substrate would produce additional oxide adhesion.

Når det gjelder fremgangsmåtene hvorved legeringen kan på-føres som et belegg på overflaten som skal beskyttes utelukker nærværet av platina eller rhodium i belegglegeringen som følge av platinas eller rhodiums lave damptrykk generelt bruken av dampbeleggingsteknikk. Andre teknikker er imidlertid effektive for å oppnå det riktige sammensatte belegg. Det er f.eks. iakttatt at beleggene kan avsettes ved hjelp av en teknikk som om-fatter samtidig dampavsetning av MCrAlY og spruteavsetning av platina eller rhodium. Som et alternativ kan beleggene frembringes ved hjelp av plasmasprøyte-teknikk. As regards the methods by which the alloy can be applied as a coating to the surface to be protected, the presence of platinum or rhodium in the coating alloy, as a result of platinum's or rhodium's low vapor pressure, generally precludes the use of vapor coating techniques. However, other techniques are effective in achieving the correct composite coating. It is e.g. observed that the coatings can be deposited using a technique which includes simultaneous vapor deposition of MCrAlY and spray deposition of platinum or rhodium. As an alternative, the coatings can be produced using the plasma spray technique.

Oppfinnelsen vil bli nærmere forklart ved hjelp av følgende eksempler: The invention will be explained in more detail using the following examples:

Eksempel 1 Example 1

Legeringer av Ni-8Cr-6Al med legeringstilsetninger av platina og rhodium ble fremstilt ved konvensjonell dråpestøpings-teknikk ved hjelp av lysbuesmelting. Prøvestykker med de sammensetninger som er angitt i diagrammet i fig. 1 hadde dimensjoner på 1 cm x 1 cm x 0,2 cm og ble underkastet varmkorrosjonsforsøk på følgende måte: Prøvestykkene av legeringene ble sprøytet med en vandig løsning av Na2SO^, tørket og veiet. Etter at det var oppnådd et belegg på 0,5 mg.cm Na2S04 ble de oksydert i 20 timer ved 1000°C i en 02 atmosfære i termisk balanse. Prøvestykkets vekt ble registrert kontinuerlig som en funksjon av tiden, og vektforandringene ble omdannet til vektøkning pr. overflate-arealenhet og er vist i fig. 1. Alloys of Ni-8Cr-6Al with alloying additions of platinum and rhodium were produced by conventional drop casting technique using arc melting. Test pieces with the compositions indicated in the diagram in fig. 1 had dimensions of 1 cm x 1 cm x 0.2 cm and was subjected to hot corrosion tests in the following manner: The specimens of the alloys were sprayed with an aqueous solution of Na 2 SO 4 , dried and weighed. After a coating of 0.5 mg.cm Na2SO4 had been obtained, they were oxidized for 20 hours at 1000°C in an O2 atmosphere in thermal balance. The weight of the sample was recorded continuously as a function of time, and the weight changes were converted into weight gain per unit surface area and is shown in fig. 1.

Det fremgår at tilsetningen av 2,5 vektprosent Pt ikke bed-ret egenskapene til Ni-8Cr-6Al-legeringen i dette forsøk. Men en vesentlig forbedring ble oppnådd når det blir tilsatt 5 eller 10 vektprosent Pt. Prøvestykker av Ni-8Cr-6Al-5Rh-legeringen tilsvarte omtrent 10 Pt-legeringen. It appears that the addition of 2.5% by weight of Pt did not improve the properties of the Ni-8Cr-6Al alloy in this experiment. But a significant improvement was achieved when 5 or 10 percent by weight Pt is added. Specimens of the Ni-8Cr-6Al-5Rh alloy were approximately equivalent to the 10 Pt alloy.

Eksempel 2 Example 2

Prøvestykker ble fremstilt som ifølge eksempel 1 med de sammensetninger som er vist i fig. 2 og 3. Prøvestykkene ble utsatt for cykliske oksydasjonsforsøk ved høy temperatur, og overraskende viste det seg at de som inneholdt platina eller rhodium hadde bedre oksydadhesjon for aluminiumoksydet som ble dannet på legeringene. Det fremgår at legeringene med 5 eller 10 vektprosent Pt er bedre enn legeringen med 2,5 vektprosent Pt som på sin side er betydelig bedre enn den umodifiserte legering. Oksydadhesjon på en Ni-8Cr-6Al-5Rh-legering ved 1200°C ble funnet å være like god som for Ni-8Cr-6Al-10Pt-legeringen ved samme temperatur. Test pieces were prepared as according to example 1 with the compositions shown in fig. 2 and 3. The test pieces were exposed to cyclic oxidation tests at high temperature, and surprisingly it turned out that those containing platinum or rhodium had better oxide adhesion for the aluminum oxide that was formed on the alloys. It appears that the alloys with 5 or 10 weight percent Pt are better than the alloy with 2.5 weight percent Pt, which in turn is significantly better than the unmodified alloy. Oxide adhesion on a Ni-8Cr-6Al-5Rh alloy at 1200°C was found to be as good as that of the Ni-8Cr-6Al-10Pt alloy at the same temperature.

Eksempel 3 Example 3

Det ble fremstilt legeringsprøvestykker med dimensjoner Alloy test pieces with dimensions were produced

på 1 cm x 0,8 cm x 0,1-0,2 cm og sammensetninger Ni-17Cr-12Al-0,5Y, Ni-17Cr-12Al-5Rh-0,5Y, Ni-17Cr-12Al-10Pt-0,5Y, Co-17Cr-11A1-0,5Y, Co-17Cr-llAl-5Rh-0,5Y samt Co-17Cr-llAl-10Pt-0,5Y. Prøvestykkene ble målt og veiet og deretter belagt med 0,5- of 1 cm x 0.8 cm x 0.1-0.2 cm and compositions Ni-17Cr-12Al-0.5Y, Ni-17Cr-12Al-5Rh-0.5Y, Ni-17Cr-12Al-10Pt-0 ,5Y, Co-17Cr-11A1-0.5Y, Co-17Cr-11Al-5Rh-0.5Y and Co-17Cr-11Al-10Pt-0.5Y. The test pieces were measured and weighed and then coated with 0.5-

2,0 mg/cm 2 Na2S04. De ble deretter underkastet opptil 14 cykler som hver bestod i oksydasjon i luft i 20 timer ved 955°C, av-kjøling til romtemperatur, vasking og veiing igjen. Dette ble gjentatt til det oppstod svikt. Resultatene som ble oppnådd i ett sett forsøk ved 955°C under anvendelse av 2 mg/cm<2> salt er vist i fig. 4. Selv om CoCrAlY i grunnen er mer bestandig mot varmkorrosjon enn NiCrAlY, fremgår det at tilsetning av enten Pt eller Rh til enten CoCrAlY eller NiCrAlY sterkt bedrer deres varmkorrosjonsbestandighet. 2.0 mg/cm 2 Na 2 SO 4 . They were then subjected to up to 14 cycles each consisting of oxidation in air for 20 hours at 955°C, cooling to room temperature, washing and weighing again. This was repeated until failure occurred. The results obtained in one set of experiments at 955°C using 2 mg/cm<2> salt are shown in fig. 4. Although CoCrAlY is basically more resistant to hot corrosion than NiCrAlY, it appears that the addition of either Pt or Rh to either CoCrAlY or NiCrAlY greatly improves their hot corrosion resistance.

Eksempel 4 Example 4

Erosjonsstenger av Ni-17Cr-12Al-0,5Y, Ni-17Cr-12Al-5Rh-0,5Y, Ni-17Cr-12Al-5Pt-0,5Y samt Ni-17Cr-12Al-10Pt-0,5Y ble vurdert i en cyklisk varmkorrosjonsbrenner-rigg ved 955°C hvor det ble anvendt 35 ppm sjøsalt tilsatt til brennstoffet før forbrenningen. Alvorlige angrep på typen av både NiCrAlY-grunnsammensetningen og den rhodium-modifiserte sammensetning oppstod etter 110 timer. Varmsonesvikter ble iakttatt etter mellom 300 og 4 00 timer for begge disse stenger, idet det rhodium-modifiserte prøvestykke klarte seg litt lenger enn grunnsammensetningen. Selv om den rhodium-modifiserte sammensetning oppviste litt forbedring sammenliknet med grunnlegeringen i dette forsøk var typen av dens svikt uvanlig og gjorde disse resultater noe usikre og ikke overbevisende. Derimot viste de platina-modifiserte sammensetninger seg å være mye mer resistent overfor varmkorrosjon enn grunnsammensetningen. For disse sammensetninger var det intet tegn til svikt etter opptil 675 timer da forsøkene ble avsluttet. Erosion bars of Ni-17Cr-12Al-0.5Y, Ni-17Cr-12Al-5Rh-0.5Y, Ni-17Cr-12Al-5Pt-0.5Y and Ni-17Cr-12Al-10Pt-0.5Y were evaluated in a cyclic hot corrosion burner rig at 955°C where 35 ppm sea salt added to the fuel before combustion was used. Severe attack on the type of both the NiCrAlY base composition and the rhodium-modified composition occurred after 110 hours. Hot zone failures were observed after between 300 and 400 hours for both of these bars, with the rhodium-modified specimen surviving slightly longer than the basic composition. Although the rhodium-modified composition showed some improvement over the base alloy in this test, the nature of its failure was unusual and made these results somewhat uncertain and inconclusive. In contrast, the platinum-modified compositions proved to be much more resistant to hot corrosion than the base composition. For these compositions there was no sign of failure after up to 675 hours when the tests were terminated.

Claims (3)

1. Belegglegering av MCrAlY-typen med økt varmkorrosjonsbestandighet for belegging av gjenstander av nikkel- og koboltlegeringer, inneholdende 8-30 vektprosent krom, 5-15 vektprosent aluminium, 0-1 vektprosent reaktivt metall i form av yttrium, scandium, thorium eller et annet sjeldent jordmetall og resten, bortsett fra forurensninger, nikkel, kobolt eller nikkel-kobolt, karakterisert ved at den for økning av varmkorrosjonsbestandigheten er tilsatt 3-12 vektprosent av et edelt metall i form av platina eller rhodium som legeringsbestanddel.1. Coating alloy of the MCrAlY type with increased hot corrosion resistance for coating objects of nickel and cobalt alloys, containing 8-30 weight percent chromium, 5-15 weight percent aluminum, 0-1 weight percent reactive metal in the form of yttrium, scandium, thorium or another rare earth metal and the rest, apart from impurities, nickel, cobalt or nickel-cobalt, characterized in that, to increase the hot corrosion resistance, 3-12 weight percent of a precious metal in the form of platinum or rhodium has been added as an alloy component. 2. Belegglegering i samsvar med krav 1, karakterisert ved at det edle metall er 5-10 prosent platina.2. Coating alloy in accordance with claim 1, characterized in that the precious metal is 5-10 percent platinum. 3. Belegglegering i samsvar med krav 1, karakterisert ved at det edle metall er 5 prosent rhodium.3. Coating alloy in accordance with claim 1, characterized in that the precious metal is 5 percent rhodium.
NO75752355A 1974-07-10 1975-06-30 MCRALY TYPE COATING. NO141371C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US487074A US3918139A (en) 1974-07-10 1974-07-10 MCrAlY type coating alloy

Publications (3)

Publication Number Publication Date
NO752355L NO752355L (en) 1976-01-13
NO141371B true NO141371B (en) 1979-11-19
NO141371C NO141371C (en) 1980-02-27

Family

ID=23934299

Family Applications (1)

Application Number Title Priority Date Filing Date
NO75752355A NO141371C (en) 1974-07-10 1975-06-30 MCRALY TYPE COATING.

Country Status (13)

Country Link
US (1) US3918139A (en)
JP (1) JPS5842255B2 (en)
BR (1) BR7504327A (en)
CA (1) CA1158075A (en)
CH (1) CH606455A5 (en)
DE (1) DE2530197C2 (en)
FR (1) FR2277902A1 (en)
GB (1) GB1500780A (en)
IL (1) IL47407A (en)
IN (1) IN144076B (en)
IT (1) IT1039467B (en)
NO (1) NO141371C (en)
SE (1) SE410477B (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520630A (en) * 1974-07-08 1978-08-09 Johnson Matthey Co Ltd Platinum group metal-containing alloys
US4018569A (en) * 1975-02-13 1977-04-19 General Electric Company Metal of improved environmental resistance
US3976436A (en) * 1975-02-13 1976-08-24 General Electric Company Metal of improved environmental resistance
US3993454A (en) * 1975-06-23 1976-11-23 United Technologies Corporation Alumina forming coatings containing hafnium for high temperature applications
US4029477A (en) * 1975-10-29 1977-06-14 General Electric Company Coated Ni-Cr base dispersion-modified alloy article
US4156582A (en) * 1976-12-13 1979-05-29 General Electric Company Liquid cooled gas turbine buckets
US4162349A (en) * 1977-05-24 1979-07-24 United Technologies Corporation Fabrication of Co-Cr-Al-Y feed stock
US4101715A (en) * 1977-06-09 1978-07-18 General Electric Company High integrity CoCrAl(Y) coated nickel-base superalloys
USRE30995E (en) * 1977-06-09 1982-07-13 General Electric Company High integrity CoCrAl(Y) coated nickel-base superalloys
US4123595A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article
US4123594A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article of improved environmental resistance
WO1979000343A1 (en) * 1977-12-05 1979-06-14 Secr Defence Improvements in or relating to nickel-,cobalt-,and iron based alloys
SE452633B (en) * 1978-03-03 1987-12-07 Johnson Matthey Co Ltd Nickel base alloy with gamma primer matrix
US4261742A (en) * 1978-09-25 1981-04-14 Johnson, Matthey & Co., Limited Platinum group metal-containing alloys
US4339509A (en) * 1979-05-29 1982-07-13 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
US4313760A (en) * 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
US4346137A (en) * 1979-12-19 1982-08-24 United Technologies Corporation High temperature fatigue oxidation resistant coating on superalloy substrate
CA1209827A (en) * 1981-08-05 1986-08-19 David S. Duvall Overlay coatings with high yttrium contents
US4419416A (en) * 1981-08-05 1983-12-06 United Technologies Corporation Overlay coatings for superalloys
US4615865A (en) * 1981-08-05 1986-10-07 United Technologies Corporation Overlay coatings with high yttrium contents
US4514469A (en) * 1981-09-10 1985-04-30 United Technologies Corporation Peened overlay coatings
US4465654A (en) * 1982-03-02 1984-08-14 Uop Inc. Process for use of a noble metal and rare earth metal catalyst
US4410454A (en) * 1982-03-02 1983-10-18 Uop Inc. Noble metal and rare earth metal catalyst
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
US4578115A (en) * 1984-04-05 1986-03-25 Metco Inc. Aluminum and cobalt coated thermal spray powder
US4711665A (en) * 1985-07-26 1987-12-08 Pennsylvania Research Corporation Oxidation resistant alloy
US4897315A (en) * 1985-10-15 1990-01-30 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
US4910092A (en) * 1986-09-03 1990-03-20 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
GB8711698D0 (en) * 1987-05-18 1987-06-24 Secr Defence Coated titanium articles(i)
US5277936A (en) * 1987-11-19 1994-01-11 United Technologies Corporation Oxide containing MCrAlY-type overlay coatings
US4980244A (en) * 1988-07-01 1990-12-25 General Electric Company Protective alloy coatings comprising Cr-Al-Ru containing one or more of Y, Fe, Ni and Co
US4933239A (en) * 1989-03-06 1990-06-12 United Technologies Corporation Aluminide coating for superalloys
US4904546A (en) * 1989-04-03 1990-02-27 General Electric Company Material system for high temperature jet engine operation
US5759380A (en) * 1989-04-04 1998-06-02 General Electric Company Method of preparing oxidation resistant coatings
DE3918380A1 (en) * 1989-06-06 1990-12-20 Starck Hermann C Fa HIGH-TEMPERATURE COMPOSITE MATERIAL, METHOD FOR THE PRODUCTION AND USE THEREOF
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
DE69514156T2 (en) * 1994-06-24 2000-06-29 Praxair Technology Inc Process for the production of a coating based on MCrAlY with finely divided oxides
US6458473B1 (en) 1997-01-21 2002-10-01 General Electric Company Diffusion aluminide bond coat for a thermal barrier coating system and method therefor
FR2787472B1 (en) * 1998-12-16 2001-03-09 Onera (Off Nat Aerospatiale) PROCESS FOR PRODUCING A METAL ALLOY POWDER OF THE MCRALY TYPE AND COATINGS OBTAINED THEREWITH
FR2787471B1 (en) * 1998-12-16 2001-03-09 Onera (Off Nat Aerospatiale) PROCESS FOR FORMING A METAL ALLOY COATING OF MCRALY TYPE
DE19941228B4 (en) * 1999-08-30 2009-12-31 Alstom Iron aluminide coating and its use
US6284324B1 (en) 2000-04-21 2001-09-04 Eastman Chemical Company Coal gasification burner shield coating
US6582534B2 (en) * 2001-10-24 2003-06-24 General Electric Company High-temperature alloy and articles made therefrom
JP2003147464A (en) 2001-11-02 2003-05-21 Tocalo Co Ltd Member with high-temperature strength
US6634860B2 (en) * 2001-12-20 2003-10-21 General Electric Company Foil formed structure for turbine airfoil tip
EP1327702A1 (en) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd Mcraiy bond coating and method of depositing said mcraiy bond coating
US7273662B2 (en) * 2003-05-16 2007-09-25 Iowa State University Research Foundation, Inc. High-temperature coatings with Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions
EP1784517B1 (en) * 2004-08-18 2009-06-10 Iowa State University Research Foundation, Inc. HIGH-TEMPERATURE COATINGS AND BULK -Ni+ '-Ni3Al ALLOYS MODIFIED WITH PT GROUP METALS HAVING HOT-CORROSION RESISTANCE
US7229701B2 (en) * 2004-08-26 2007-06-12 Honeywell International, Inc. Chromium and active elements modified platinum aluminide coatings
US7531217B2 (en) * 2004-12-15 2009-05-12 Iowa State University Research Foundation, Inc. Methods for making high-temperature coatings having Pt metal modified γ-Ni +γ′-Ni3Al alloy compositions and a reactive element
NL1028629C2 (en) * 2005-03-24 2006-10-02 Netherlands Inst For Metals Re Coating layer, substrate provided with a coating layer and method for applying a corrosion-resistant coating layer.
ATE506460T1 (en) * 2005-12-28 2011-05-15 Ansaldo Energia Spa ALLOY COMPOSITION FOR PRODUCING PROTECTIVE COATINGS, USE THEREOF, METHOD OF APPLICATION THEREOF AND SUPER ALLOY ITEMS COATED WITH THIS COMPOSITION
US7931759B2 (en) * 2007-01-09 2011-04-26 General Electric Company Metal alloy compositions and articles comprising the same
US7727318B2 (en) * 2007-01-09 2010-06-01 General Electric Company Metal alloy compositions and articles comprising the same
US7846243B2 (en) * 2007-01-09 2010-12-07 General Electric Company Metal alloy compositions and articles comprising the same
US7879459B2 (en) * 2007-06-27 2011-02-01 United Technologies Corporation Metallic alloy composition and protective coating
US8920937B2 (en) * 2007-08-05 2014-12-30 United Technologies Corporation Zirconium modified protective coating
US8821654B2 (en) * 2008-07-15 2014-09-02 Iowa State University Research Foundation, Inc. Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions for high temperature degradation resistant structural alloys
US20100028712A1 (en) * 2008-07-31 2010-02-04 Iowa State University Research Foundation, Inc. y'-Ni3Al MATRIX PHASE Ni-BASED ALLOY AND COATING COMPOSITIONS MODIFIED BY REACTIVE ELEMENT CO-ADDITIONS AND Si
US20130115072A1 (en) * 2011-11-09 2013-05-09 General Electric Company Alloys for bond coatings and articles incorporating the same
EP3071732B1 (en) 2013-11-19 2019-11-13 United Technologies Corporation Article having variable composition coating
JP2017521552A (en) * 2014-05-15 2017-08-03 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Method of manufacturing turbomachine component, turbomachine component, and turbomachine
CN104443272A (en) * 2014-12-02 2015-03-25 常熟市常连船舶设备有限公司 Explosion-proof hatch cover

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399058A (en) * 1963-11-07 1968-08-27 Garrett Corp Sulfidation and oxidation resistant cobalt-base alloy
US3589894A (en) * 1968-05-31 1971-06-29 Garrett Corp Sulfidation resistant cobalt-base alloy
US3754902A (en) * 1968-06-05 1973-08-28 United Aircraft Corp Nickel base superalloy resistant to oxidation erosion
US3649225A (en) * 1969-11-17 1972-03-14 United Aircraft Corp Composite coating for the superalloys
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys

Also Published As

Publication number Publication date
US3918139A (en) 1975-11-11
CA1158075A (en) 1983-12-06
GB1500780A (en) 1978-02-08
SE410477B (en) 1979-10-15
FR2277902A1 (en) 1976-02-06
FR2277902B1 (en) 1978-07-28
DE2530197C2 (en) 1983-02-03
NO752355L (en) 1976-01-13
IN144076B (en) 1978-03-18
AU8156075A (en) 1976-12-02
IL47407A (en) 1977-08-31
NO141371C (en) 1980-02-27
SE7507095L (en) 1976-01-12
JPS5842255B2 (en) 1983-09-19
IT1039467B (en) 1979-12-10
BR7504327A (en) 1976-07-06
CH606455A5 (en) 1978-10-31
IL47407A0 (en) 1975-08-31
JPS5130530A (en) 1976-03-15
DE2530197A1 (en) 1976-01-29

Similar Documents

Publication Publication Date Title
NO141371B (en) MCRALY TYPE COATING ALLOY.
Leyens et al. Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals
US4933239A (en) Aluminide coating for superalloys
Schulz et al. Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems
US6306524B1 (en) Diffusion barrier layer
US3754903A (en) High temperature oxidation resistant coating alloy
CA1045421A (en) High temperature nicocraly coatings
CA1173670A (en) Nickel/cobalt-chromium-base alloys for gas turbine engine components
EP1784517B1 (en) HIGH-TEMPERATURE COATINGS AND BULK -Ni+ &#39;-Ni3Al ALLOYS MODIFIED WITH PT GROUP METALS HAVING HOT-CORROSION RESISTANCE
US9382605B2 (en) Economic oxidation and fatigue resistant metallic coating
US7527877B2 (en) Platinum group bond coat modified for diffusion control
US6458473B1 (en) Diffusion aluminide bond coat for a thermal barrier coating system and method therefor
US20080003129A1 (en) High-temperature coatings with pt metal modified gamma-ni +gamma&#39;-ni3al alloy compositions
Lowrie et al. Composite coatings of CoCrAlY plus platinum
JP2008144275A (en) Coating system containing rhodium aluminide-based layers
McCarron et al. Environmental Resistance of Pure and Alloyed γ′ Ni3Al and β-NiAl
US6190471B1 (en) Fabrication of superalloy articles having hafnium- or zirconium-enriched protective layer
EP1008672A1 (en) Platinum modified diffusion aluminide bond coat for a thermal barrier coating system
Wu et al. Hot corrosion behavior of Pt-Ir modified aluminide coatings on the nickel-base single crystal superalloy TMS-82+
EP0096810B2 (en) Coated superalloy gas turbine components
Wu et al. Role of iridium in hot corrosion resistance of Pt-Ir modified aluminide coatings with Na2SO4-NaCl salt at 1173 K
Van Roode et al. Evaluation of the hot corrosion protection of coatings for turbine hot section components
Leyens et al. Effect of Composition on the Hot Corrosion Resistance of NiAl and (Ni, Pt) Al
Das et al. The cyclic oxidation performance of aluminide and Pt-aluminide coatings on cast Ni-based superalloy CM-247
Liang et al. Thermal stability of phases in a NiCoCrAlY coating alloy