NO139131B - PROCEDURE FOR PREPARING A CATALYST MIXTURE FOR USE IN POLYMERIZATION OF OLEFINES. - Google Patents

PROCEDURE FOR PREPARING A CATALYST MIXTURE FOR USE IN POLYMERIZATION OF OLEFINES. Download PDF

Info

Publication number
NO139131B
NO139131B NO395970A NO395970A NO139131B NO 139131 B NO139131 B NO 139131B NO 395970 A NO395970 A NO 395970A NO 395970 A NO395970 A NO 395970A NO 139131 B NO139131 B NO 139131B
Authority
NO
Norway
Prior art keywords
titanium trichloride
aromatic
compound
mixture
aliphatic
Prior art date
Application number
NO395970A
Other languages
Norwegian (no)
Other versions
NO139131C (en
Inventor
Shigeru Wada
Hidesaburo Oi
Norio Matsuzawa
Hiroshi Nishimura
Juntaro Sasaki
Original Assignee
Mitsui Petrochemical Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5105470A external-priority patent/JPS491947B1/ja
Priority claimed from JP5593770A external-priority patent/JPS5421319B1/ja
Priority claimed from JP5593670A external-priority patent/JPS5421318B1/ja
Priority claimed from JP6230170A external-priority patent/JPS4917159B1/ja
Priority claimed from JP6230370A external-priority patent/JPS4917160B1/ja
Priority claimed from JP6230270A external-priority patent/JPS4915719B1/ja
Application filed by Mitsui Petrochemical Ind filed Critical Mitsui Petrochemical Ind
Publication of NO139131B publication Critical patent/NO139131B/en
Publication of NO139131C publication Critical patent/NO139131C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte av den art som er angitt i kravets ingress. The present invention relates to a method of the type stated in the preamble of the claim.

Ziegler-Natta-katalysatorer har vært velkjente som katalysatorer ved fremstilling av stereospesifikke polymerer av a-olefiner, som f.eks. propylen, 1-buten, 4-metyl-l-penten eller styren. Ziegler-Natta catalysts have been well known as catalysts in the preparation of stereospecific polymers of α-olefins, such as e.g. propylene, 1-butene, 4-methyl-1-pentene or styrene.

Den mest typiske av slike katalysatorer består av titanhalogenid og et trietylaluminium- eller dietylaluminiumhalogenid. Det er også velkjent at ved å polymerisere oc-olefiner i nærvær av slike katalysator-systemer, kan man få stereospesifikke polymerer. Av titanhalogenidet anvendes nå titantriklorid-sammensetninger, som fremstilles ved (a) reduksjon av titantetraklorid med metallisk aluminium, fulgt av en pulverisering . i torr tilstand for å aktivere den, (b) reduksjon av titantetraklorid med hydrogen eller metallisk titan, fulgt av en pulverisering, eller (c) reduksjon av titantetraklorid ved hjelp av en organoaluminium-forbindelse. The most typical of such catalysts consists of titanium halide and a triethylaluminum or diethylaluminum halide. It is also well known that by polymerizing oc-olefins in the presence of such catalyst systems, stereospecific polymers can be obtained. Of the titanium halide, titanium trichloride compositions are now used, which are prepared by (a) reduction of titanium tetrachloride with metallic aluminum, followed by pulverization. in the dry state to activate it, (b) reduction of titanium tetrachloride with hydrogen or metallic titanium, followed by a pulverization, or (c) reduction of titanium tetrachloride by means of an organoaluminum compound.

Imidlertid vil en stereospesi fikk polymerisering av oc-olefiner, mfd en på denne måten fremstilt titantriklorid-forbindelse og en organoaluminium-forbindelse resultere i dannelsen av store mengder av en amorf polymer på grunn av at disse katalysatorer oppviser en utilstrekkelig polymerisasjons-aktivitet. Fremstillingen av stereospesifikke polymerer av a-olefiner, som f i. eks. polypropylen, inneholder derfor et separeringstrinn for de amorfe polymer-forbindelsene. However, a stereospecies polymerization of oc-olefins, such as a thus prepared titanium trichloride compound and an organoaluminum compound, will result in the formation of large amounts of an amorphous polymer because these catalysts exhibit insufficient polymerization activity. The production of stereospecific polymers of α-olefins, such as e.g. polypropylene, therefore contains a separation step for the amorphous polymer compounds.

Ved den industrielle produksjon av typiske a-olefin-polymerer, som f.eks. polypropylen, poly-l-buten, eller poly-4-metyl-1-penten, er den okende mengden dannet polymer pr. mengde-enhet katalysator og minimaliseringen av mengden amorft polymer et av de meget viktige problemene. Med den okende mengden dannet polymer pr. mengde-enhet katalysator kan den anvendte mengden katalysator.minskes, og den gjenværende mengde katalysator i polymeren kan lettere fjernes. Følgelig vil den i produktet forekommende uorganiske forbindelsen kunne reduseres, og produktets kvalitet kan forbedres med hensyn til forekomsten av rust, farge, "fiske-oye", vaerbestandig-het, gjennomsiktighet og isolerende egenskaper. Dette mulig-gjor også en forenkling av katalysatorens fremstillings-trinn, fjerningen av aske, separasjonstrinnet for amorf polymer etc. De to siste nevnte trinnene kan til og med utelates, og dette resulterer i en minskning av anlegnings-omkostningene og omkostningene ved produksjonen av polymerene. In the industrial production of typical α-olefin polymers, such as e.g. polypropylene, poly-1-butene, or poly-4-methyl-1-pentene, the increasing amount of polymer formed per quantity-unit catalyst and the minimization of the amount of amorphous polymer one of the very important problems. With the increasing amount of polymer formed per unit amount of catalyst, the amount of catalyst used can be reduced, and the remaining amount of catalyst in the polymer can be removed more easily. Consequently, the inorganic compound present in the product can be reduced, and the quality of the product can be improved with regard to the occurrence of rust, colour, "fish-eye", weather resistance, transparency and insulating properties. This also enables a simplification of the catalyst manufacturing step, the removal of ash, the separation step for amorphous polymer, etc. The two last mentioned steps can even be omitted, and this results in a reduction of the installation costs and the costs of the production of the polymers .

Den ikke-krystallinske polymer, som dannes ved polymerisasjon av oc-olefiner, kompliserer ikke bare produksjonen men er overhodet til ingen nytte. Disse polymerene kasseres og er en av årsakene til den hoye prisen på det stereospesifikke polymer-produktet. Under disse omstendigheter har det derfor vært onskelig å utvikle katalysatorer med hoy aktivitet og som er i stand til å gi et hoyt utbytte av stereospesifikke polymerer. The non-crystalline polymer, which is formed by the polymerization of oc-olefins, not only complicates production but is of no use at all. These polymers are discarded and are one of the reasons for the high price of the stereospecific polymer product. Under these circumstances, it has therefore been desirable to develop catalysts with high activity and which are able to give a high yield of stereospecific polymers.

Generelt har en titantriklorid-forbindelse, som er fremstilt Generally has a titanium trichloride compound, which is prepared

ved å redusere titantetraklorid med hydrogen, titanmetall. by reducing titanium tetrachloride with hydrogen, titanium metal.

eller aluminium-metall, lav aktivitet med hensyn til cx-olefiner, or aluminium-metal, low activity with respect to cx-olefins,

og resulterer i polymerer med en utilfredsstillende krystallstruktur. For å oke aktiviteten av slike katalysatorer, er det blitt foreslått å pulverisere en titantriklorid-forbindelse ved hjelp av en vibrasjons-molle eller en torr kule-molle (britisk patentskrift 850.910 og U.S. patentskrift 3.032.510). and results in polymers with an unsatisfactory crystal structure. To increase the activity of such catalysts, it has been proposed to pulverize a titanium trichloride compound by means of a vibrating mill or a dry ball mill (British Patent 850,910 and U.S. Patent 3,032,510).

Ifolge det her foreslåtte kan polymerisasjons-aktiviteten According to what is proposed here, the polymerization activity can

okes ved en pulveriseringsbehandling, men polymerets krystall-karakter har en tendens til å minske. Som et resultat av dette vil den aktiverte katalysatoren forverres med hensyn til de stereospesifikke egenskapene, og en storre mengde amorft polymer vi1 dannes. is increased by a pulverization treatment, but the crystal character of the polymer tends to decrease. As a result, the activated catalyst will deteriorate with respect to the stereospecific properties, and a larger amount of amorphous polymer will be formed.

Et annet lignende forslag er å redusere titantetraklorid med et metall, som f.eks. aluminium i nærvær av et amin, eter eller keton, for derfor å danne en kompleks forbindelse med det dannede aluminiumkloridet, og derefter vaske det med et inert opplosningsmiddel, som f.eks. aminer eller etere, for fullstendig å kunne fjerne aluminiumkloridet (fransk patentskrift nr. 1.315.782). Med den foreslåtte fremgangsmåten har man villet forhindre dannelsen av en amorf polymer ved å fjerne aluminiumkloridet i titantriklorid-forbindelsen, som er en årsak til dannelsen av amorf polymer. På grunn av ugunstige reaksjonsbetingelser forårsaket av nærvær av aminer, etere eller ketoner, vil dessuten reaksjonen finne sted mellom det erholdte titantrikloridet og disse tilsatte forbindelser, og katalysatorens polymerisasjons-aktivitet og dens egenskap å kunne danne stereospesifikk polymer vil reduseres. Det er også vanlig at ydeevnen til en titantriklorid-katalysator, som er fremstilt under slike hårde; betingelser, er mindre enn for titantriklorid-forbindelsen som er aktivert ved pulverisering. En annen ulempe med forslaget er at katalysatorens ydeevne reduseres markant, hvis ikke det erholdte aluminiumtriklorid-komplekset fjernes fullstendig. Another similar proposal is to reduce titanium tetrachloride with a metal, such as aluminum in the presence of an amine, ether or ketone, so as to form a complex compound with the aluminum chloride formed, and then wash it with an inert solvent, such as amines or ethers, in order to be able to completely remove the aluminum chloride (French patent document no. 1,315,782). With the proposed method, the aim has been to prevent the formation of an amorphous polymer by removing the aluminum chloride in the titanium trichloride compound, which is a cause of the formation of amorphous polymer. Moreover, due to unfavorable reaction conditions caused by the presence of amines, ethers or ketones, the reaction will take place between the titanium trichloride obtained and these added compounds, and the polymerization activity of the catalyst and its ability to form stereospecific polymer will be reduced. It is also common that the performance of a titanium trichloride catalyst, which is prepared under such harsh conditions; conditions, is less than that of the titanium trichloride compound activated by pulverization. Another disadvantage of the proposal is that the performance of the catalyst is markedly reduced, if the aluminum trichloride complex obtained is not completely removed.

På den annen side fremgår det ay U.S. patentskrift 3.032.510On the other hand, it appears ay U.S. patent document 3,032,510

at titantetraklorid reduseres med metallisk aluminium i nærvær av et aromatisk hydrokarbon, som f.eks. benzen og toluen, that titanium tetrachloride is reduced with metallic aluminum in the presence of an aromatic hydrocarbon, such as benzene and toluene,

og det erholdte titantrikloridet pulveriseres og anvendes som en komponent i katalysatoren. Denne fremgangsmåten kan lede til en forbedret polymerisasjons-aktivitet, men har svakheter med hensyn til å forhindre dannelsen av en amorf polymer. and the titanium trichloride obtained is pulverized and used as a component of the catalyst. This method can lead to an improved polymerization activity, but has weaknesses in preventing the formation of an amorphous polymer.

Det er nå funnet at stereospesifikkeipolymerer av olefiner It has now been found that stereospecific polymers of olefins

kan fremstilles, uten dannelse av~_amorfe polymerer og med utmerket polymerisasjonsaktivitet, ved" å "anvende en katalysator som består av en organoaluminium-forbindelse og en titantriklorid-forbindelse, som er fremstilt ved å pulverisere titantriklorid-komponenten i nærvær av en viss hjelpe-komponent så meget at a- eller y-typene i rontgen-diffraksjons-spektrumet fra titantriklorid-krystallene ikke kan påvises, hvorefter can be prepared, without the formation of~_amorphous polymers and with excellent polymerization activity, by "using a catalyst consisting of an organoaluminum compound and a titanium trichloride compound, which is prepared by pulverizing the titanium trichloride component in the presence of a certain auxiliary component so much that the a or y types in the X-ray diffraction spectrum from the titanium trichloride crystals cannot be detected, after which

den erholdte titantriklorid-blandingen ekstraheres med et bestemt opplosningsmiddel. the titanium trichloride mixture obtained is extracted with a specific solvent.

Sii "i Say "i

n n

Fremgangsmåten ifolge oppfinnelsen har den fordelen at svært mange forbindelser kan anvendes som hjelpe-komponenter, og at også svært mange opplosningsmidier kan anvendes. Det er nesten ingen begrensning med hensyn til brukbarheten og valget av slike forbindelser. The method according to the invention has the advantage that a great many compounds can be used as auxiliary components, and that a great many dissolving media can also be used. There is almost no limitation regarding the usability and choice of such compounds.

Formålet med oppfinnelsen er å fremskaffe en fremgangsmåte The purpose of the invention is to provide a method

ved fremstilling av en katalysator som oppviser en markant forbedret polymerisasjons-aktivitet, og hvis anvendelse gir polyolefiner med forbedret krystallstruktur. in the production of a catalyst which exhibits a markedly improved polymerization activity, and the use of which gives polyolefins with an improved crystal structure.

Oppfinnelsen skal nærmere beskrives i det folgende. Fremgangsmåten ifolge oppfinnelsen avviker fra den ovennevnte, forst foreslåtte fremgangsmåten ved at ikke bare titantrikloid-komponenten pulveriseres, fra den andre foreslåtte fremgangsmåten ved at pulveriseringen foretaes i nærvær av et hjelpestoff så lenge inntil a- eller y-typen av titantrikloridets krystallform ikke lenger kan påvises i rontgen-diffraksjons-bildet, og også fra en tredje foreslått fremgangsmåte ved at titantrikloridet må pulveriseres i nærvær av et hjelpestoff, hvorefter det pulveriserte produktet ekstraheres med et opplosningsmiddel. ifølge oppfinnelsen er kombinasjonen av de tidligere nevnte betingelsene det viktigste, og utelatelse av noen av disse betingelser vil ikke skape de utmerkede forbedringer oppfinnelsen gjor gjeldende. Dette vil tydeligere fremgå av eksempler og sammenlignings-eksempler, The invention will be described in more detail below. The method according to the invention differs from the above-mentioned, first proposed method in that not only the titanium trichloride component is pulverized, from the second proposed method in that the pulverization is carried out in the presence of an auxiliary substance until the a- or y-type of the titanium trichloride crystal form can no longer be detected in the X-ray diffraction image, and also from a third proposed method in that the titanium trichloride must be pulverized in the presence of an auxiliary substance, after which the pulverized product is extracted with a solvent. according to the invention, the combination of the previously mentioned conditions is the most important, and the omission of any of these conditions will not create the excellent improvements claimed by the invention. This will be clearer from examples and comparative examples,

Oppfinnelsen er særpreget ved det som er angitt i kravets karak-teriserende del. The invention is characterized by what is stated in the characterizing part of the claim.

I den nærværende oppfinnelse fåes titantriklorid-forbindelsen ved å redusere titantetraklorid med metallisk aluminium efter en i faget velkjent fremgangsmåte. In the present invention, the titanium trichloride compound is obtained by reducing titanium tetrachloride with metallic aluminum according to a method well known in the art.

Ved fremstilling av katalysatoren ifølge oppfinnelsen, pulveriseres først titantrikloridet i nærvær av et hjelpestoff så meget at a- eller f-typen av titantrikloridets krystallform ikke lenger kan påvises i røntgen-diffraksjons-bildet. Målet med oppfinnelsen kan ikke oppnås når pulveriseringen foretas uten nærvær av hjelpestoffet. Det bør også legges merke til at målene med den nærværende oppfinnelse ikke kan oppnås når bare ekstrahering og vasking av titantriklorid med et oppløsningsmiddel foretas med utelatelse av pulveriseringstrinnet. When producing the catalyst according to the invention, the titanium trichloride is first pulverized in the presence of an auxiliary substance to such an extent that the a- or f-type of the titanium trichloride's crystal form can no longer be detected in the X-ray diffraction image. The aim of the invention cannot be achieved when the pulverization is carried out without the presence of the auxiliary substance. It should also be noted that the objectives of the present invention cannot be achieved when only the extraction and washing of titanium trichloride with a solvent is carried out, omitting the pulverization step.

En meget stor gruppe av forbindelser anvendes som hjelpestoffer., som må være nærværende ved pulveriseringsbehandlingen av titantriklorid-f orbindelsen ifølge oppfinnelsen. Disse omfatter: organiske, oksygen-holdige forbindelser utvalgt fra gruppen bestående av alifatiske etere, aromatiske etere, alifatiske karboksylsyreestere, aromatiske karboksylsyreestere, alifatiske alkoholer, fenoler, alifatiske karboksylsyrer, aromatiske karboksylsyrer, alifatiske karboksylsyrehalogenider, aromatiske karboksylsyrehalogenider, alifatiske ketoner og aromatiske ketoner. A very large group of compounds are used as auxiliaries, which must be present during the pulverization treatment of the titanium trichloride compound according to the invention. These include: organic, oxygen-containing compounds selected from the group consisting of aliphatic ethers, aromatic ethers, aliphatic carboxylic acid esters, aromatic carboxylic acid esters, aliphatic alcohols, phenols, aliphatic carboxylic acids, aromatic carboxylic acids, aliphatic carboxylic acid halides, aromatic carboxylic acid halides, aliphatic ketones and aromatic ketones.

Som en organisk oksygenholdig forbindelse ifølge ovennevnte skal følgende eksempler nevnes: As an organic oxygen-containing compound according to the above, the following examples shall be mentioned:

Mettede alifatiske monoetere med 2-32 karbonatomer og med Saturated aliphatic monoethers with 2-32 carbon atoms and with

et alkylradikal, som f.eks. dimetyleter, dietyleter, di-n-propyleter, diisopropyleter,. di-n-butyleter, diisobutyleter, metyletyleter, metyl-n-butyleter, n-butyl-n-pentyleter, dioktyleter, isoamylcetyleter, dicetyleter, 2,2'-dibrom-dietyleter og 2,2<1->diklordietyleter; an alkyl radical, such as dimethyl ether, diethyl ether, di-n-propyl ether, diisopropyl ether,. di-n-butyl ether, diisobutyl ether, methyl ethyl ether, methyl-n-butyl ether, n-butyl-n-pentyl ether, dioctyl ether, isoamyl cetyl ether, dicetyl ether, 2,2'-dibromodiethyl ether and 2,2<1->dichlorodiethyl ether;

Alifatiske etere med 3-20 karbonatomer og med minst ett umettet, alifatisk hydrokarbonradikal, som f.eks. 2-metoksy-buten, metylmetakryleter, allyletyleter, allylbutyleter, 2-etoksypropen, 6-metoksy-l-heksen, etylvinyleter, metyl-vinyleter, l-metoksy-2-okten, undecenyletyleter og didece-nyleter; Aliphatic ethers with 3-20 carbon atoms and with at least one unsaturated, aliphatic hydrocarbon radical, such as e.g. 2-methoxybutene, methyl methacrylate, allyl ethyl ether, allyl butyl ether, 2-ethoxypropene, 6-methoxy-1-hexene, ethyl vinyl ether, methyl vinyl ether, 1-methoxy-2-octene, undecenyl ethyl ether and didecenyl ether;

aromatiske etere med 7-16 karbonatomer og med et mettet alkyl- eller arylradikal, som f.eks. anisol, fenetol, isopro-pylfenyleter, tolylmetyleter, difenyleter, ditolyleter, di-metoksybenzen, 1-etoksy-naftalen og 1-fenoksynaftalen; aromatic ethers with 7-16 carbon atoms and with a saturated alkyl or aryl radical, such as e.g. anisole, phenetol, isopropylphenyl ether, tolyl methyl ether, diphenyl ether, ditolyl ether, dimethoxybenzene, 1-ethoxynaphthalene and 1-phenoxynaphthalene;

monoetere og dietere med 7-16 karbonatomer, som er halogenert og som inneholder minst et aromatiskt radikal, som f.eks. klor-anisol, bromanisol, 4,4'-dibromfenyleter, 2,4-dikloranisol, 3,5-dibromanisol, 2,6-dijodanisol, 2,35-trikloranisol og bromfenetol; monoethers and diethers with 7-16 carbon atoms, which are halogenated and which contain at least one aromatic radical, such as e.g. chloroanisole, bromoanisole, 4,4'-dibromophenyl ether, 2,4-dichloroanisole, 3,5-dibromoanisole, 2,6-diiodanisole, 2,35-trichloroanisole and bromophenetol;

mettede alifatiske monokarboksylsyre-mettet-alkyl-estere med en alifatisk monokarboksylsyre-rest-gruppe med 1-21 karbonatomer og et mettet alkylradikal med 1-16 karbonatomer, som f.eks. metylformat, etylformat, butylformat, etylacetat, n-butylacetat, sek^butylacetat, oktylacetat, butyl-butyrat, metylkaproat, amylkaprylat, etyllaurat, metylpalmitat, etyl-stearat og cetylpalmitat; saturated aliphatic monocarboxylic acid saturated alkyl esters with an aliphatic monocarboxylic acid residue group of 1-21 carbon atoms and a saturated alkyl radical of 1-16 carbon atoms, such as e.g. methyl formate, ethyl formate, butyl formate, ethyl acetate, n-butyl acetate, sec-butyl acetate, octyl acetate, butyl butyrate, methyl caproate, amyl caprylate, ethyl laurate, methyl palmitate, ethyl stearate and cetyl palmitate;

mettet alifatisk monokarboksylsyre-umettet-alkylestere med en mettet alifatisk monokarboksylsyre-rest-gruppe på 1 - 8 karbonatomer, og et umettet alkylradikal med 2-12 karbonatomer, som f.eks. vinylacetat, allylacetat, propenylacetat, undecenyl-acetat og heksenylpropionat; saturated aliphatic monocarboxylic acid-unsaturated alkyl esters with a saturated aliphatic monocarboxylic acid residue group of 1-8 carbon atoms, and an unsaturated alkyl radical with 2-12 carbon atoms, such as e.g. vinyl acetate, allyl acetate, propenyl acetate, undecenyl acetate and hexenyl propionate;

umettede alifatiske monokarboksylsyre-alkyl-estere med en umettet, alifatisk monokarboksylsyre-rest-gruppe på 2 - 12 karbonatomer, og et mettet eller umettet alkylredikal med 1 - 10 karbonatomer, som f.eks. metylakrylat, n-amylakrylat, n-decylakrylat, etylkrotonat, metylisokrotonat. metylmetakrylat, n-butylmetakrylat, metylundecylenat, metyl-3-metyl-tetradecenat-(13), fenylakrylat og vinylundecylenat; unsaturated aliphatic monocarboxylic acid alkyl esters with an unsaturated, aliphatic monocarboxylic acid residue group of 2 - 12 carbon atoms, and a saturated or unsaturated alkyl radical with 1 - 10 carbon atoms, such as e.g. methyl acrylate, n-amyl acrylate, n-decyl acrylate, ethyl crotonate, methyl isocrotonate. methyl methacrylate, n-butyl methacrylate, methyl undecylenate, methyl 3-methyl-tetradeceneate-(13), phenyl acrylate and vinyl undecylenate;

aromatiske monokarboksylsyre-mettet-alkylestere med en aromatisk monokarboksylsyre-rest-gruppe på 7 - 18 karbonatomer og et alkylradikal med 1-20 karbonatomer, som f.eks. metylbenzoat, etylbenzoat, butylbenzoat, n-propylbenzoat, isopropyl- aromatic monocarboxylic acid saturated alkyl esters with an aromatic monocarboxylic acid residue group of 7-18 carbon atoms and an alkyl radical of 1-20 carbon atoms, such as e.g. methyl benzoate, ethyl benzoate, butyl benzoate, n-propyl benzoate, isopropyl

1 1

benzoat, sek.-butylbenzoat, neopentylbenzoat, etyl-o-, m-, p-toluylater, butyl-o-, m-, p-toluylater, etyl-o-, m-, p-brombenzoater, etyl-p-, m-, p-klorbenzoater, etyl-1,2-naftoat og butyl-1,2-naftoat 5 benzoate, sec-butyl benzoate, neopentyl benzoate, ethyl-o-, m-, p-toluylates, butyl-o-, m-, p-toluylates, ethyl-o-, m-, p-bromobenzoates, ethyl-p-, m-, p-chlorobenzoates, ethyl 1,2-naphthoate and butyl 1,2-naphthoate 5

mettede alifatiske monoalkoholer med 1-18 karbonatomer, som f.eks. metanol, etanol, n-propanol, isopropanol, n-butanol, isobutanol, sek.-butanol, tert.-butanol, 1-pentanol, isoamyl-alkohol, neopentylalkohol, 3-pentanol, 3-metyl-butanol-2, heksanol, oktanol, 1aurylalkohol, cinnamylalkohol, fenyletanol, cetylalkohol, etoksyetanol, 2-klorpropanol, 2-brompropanol, 3-klorpropanol, etoksybutanol og 4-klorbutanol5saturated aliphatic monoalcohols with 1-18 carbon atoms, such as e.g. methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec.-butanol, tert.-butanol, 1-pentanol, isoamyl alcohol, neopentyl alcohol, 3-pentanol, 3-methyl-butanol-2, hexanol, octanol, 1-auryl alcohol, cinnamyl alcohol, phenylethanol, cetyl alcohol, ethoxyethanol, 2-chloropropanol, 2-bromopropanol, 3-chloropropanol, ethoxybutanol and 4-chlorobutanol5

monohydroksy-og dihydroksy-fenoler med 6-16 karbonatomer, som f.eks. fenol, o-, m-, p-kresol, tymol, o-klorfenol, o-bromfenol, p-klorfenol, p-bromfenol, tribromfenol, catechol, resorcinol, guaiacol, eugenol, isoeugenol, o-allylfenol, l-,2-naftol og antranol; monohydroxy- and dihydroxy-phenols with 6-16 carbon atoms, such as e.g. phenol, o-, m-, p-cresol, thymol, o-chlorophenol, o-bromophenol, p-chlorophenol, p-bromophenol, tribromophenol, catechol, resorcinol, guaiacol, eugenol, isoeugenol, o-allylphenol, l-,2 -naphthol and anthranol;

mettede alifatiske ketoner med 3 - 20 karbonatomer, som f.eks. aceton, metyletylketon, metylpropylketon, metylisobutylketon, metyltert.-butyl-keton, etylbutylketon, dibutylketon, metyl-amylketon, etylamylketon, 2^klorbutylketon, etyl-2-klorbutyl-keton og 2-etoksyetylmetylketon; saturated aliphatic ketones with 3 - 20 carbon atoms, such as e.g. acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl tert-butyl ketone, ethyl butyl ketone, dibutyl ketone, methyl amyl ketone, ethyl amyl ketone, 2-chlorobutyl ketone, ethyl 2-chlorobutyl ketone and 2-ethoxyethyl methyl ketone;

mettede alifatiske diketoner med 4-12 karbonatomer, som f.eks. acetylaceton, diacetyl- og acetonylaceton5saturated aliphatic diketones with 4-12 carbon atoms, such as e.g. acetylacetone, diacetyl and acetonylacetone5

aromatiske monoketoner med 7-18 karbonatomer, som f.eks. acetofenon, etylfenylketon, benzofenon, dypnon, cinnamylmetyl-keton, cinnamyletylketon, n-butylfenylketon, tert.-butylfenylketon, propylfenylketon, antrakinon, antron, 2-acetyl-neftalen, naftokinon, benzokinon og fluorenon^aromatic monoketones with 7-18 carbon atoms, such as e.g. acetophenone, ethylphenylketone, benzophenone, dipnone, cinnamylmethyl ketone, cinnamylethylketone, n-butylphenylketone, tert-butylphenylketone, propylphenylketone, anthraquinone, anthrone, 2-acetyl-naphthalene, naphthoquinone, benzoquinone and fluorenone^

Aromatiske monokarboksylsyrer med 7-18 karbonatomer, som f.eks. benzosyre, o-, m-, p-toluylsyrer, o-, m-, p-klor-benzosyrer, o-, m-, p-brombenzosyrer og 1-,2-naftalsyrer; Aromatic monocarboxylic acids with 7-18 carbon atoms, such as e.g. benzoic acid, o-, m-, p-toluylic acids, o-, m-, p-chlorobenzoic acids, o-, m-, p-bromobenzoic acids and 1-,2-naphthalic acids;

mettede alifatiske monokarboksylsyrer med 1-20 karbonatomer, saturated aliphatic monocarboxylic acids with 1-20 carbon atoms,

som f.eks. maursyre, eddiksyre, propionsyre, valeriansyre, ok-tylsyre, undecylsyre og stearinsyre; like for example. formic acid, acetic acid, propionic acid, valeric acid, octyl acid, undecyl acid and stearic acid;

aromatiske karboksylsyre-halogenider med 7-15 karbonatomer, aromatic carboxylic acid halides with 7-15 carbon atoms,

som f.eks. benzosyreklorid, 0-, m-, p-toluylsyreklorider, o-, m-, p-klorbenzosyreklorider og 1-,2-naftosyreklorider. like for example. benzoic acid chloride, o-, m-, p-toluylic acid chlorides, o-, m-, p-chlorobenzoic acid chlorides and 1-,2-naphthoic acid chlorides.

Det er kjent at hvis man tilsetter noe av de ovennevnte organiske oksygen-holdige forbindelsene som aktivator til reaksjonssystemet når polymerisering finner sted, kan katalysatorens polymer i ser .i ras-aktivitet forbedres med 10 - 30 %, og den erholdte polymerens krystallinske orientering kan også forbedres. Forbedringene med hensyn til polymerisasjonsaktivitet og polymerens krystallinske orientering, er langt overlegen sammenlignet med det som oppnås ved hjelp av konvensjonelle metoder. It is known that if one adds any of the above-mentioned organic oxygen-containing compounds as an activator to the reaction system when polymerization takes place, the polymer in ser.i ras activity of the catalyst can be improved by 10 - 30%, and the crystalline orientation of the polymer obtained can also improve. The improvements in polymerization activity and polymer crystalline orientation are far superior compared to what is achieved by conventional methods.

Mengden av den ovennevnte hjelpe-bestanddelen kan vanligvis iføl-ge oppfinnelsen velges i et område som tilsvarer 0,005 til 0,40 mol pr. mol i blandingen forekommende titantriklor-komponent, According to the invention, the amount of the above-mentioned auxiliary component can usually be selected in a range corresponding to 0.005 to 0.40 mol per moles of titanium trichlor component present in the mixture,

og som fås ved reduksjon av titantetraklorid med metallisk aluminium. For små mengder gjør det vanskelig å oppnå formålet med oppfinnelsen, og for store mengder vil av og til vanskeliggjøre pulveriseringen. and which is obtained by reducing titanium tetrachloride with metallic aluminium. Too small amounts make it difficult to achieve the purpose of the invention, and too large amounts will sometimes make pulverization difficult.

Den foretrukkede mengde av hjelpebestanddel pr. mol titantriklorid-komponent er 0,01 til 0,3 mol, og spesielt 0,01 til 0,1 mol når det gjelder alkoholer, karboksylsyrer, karboksylsyre-halogenider og ketoner, 0,01 til 0,2 mol når det gjelder etere og estere, 0,01 til 0,2 mol når det gjelder fenoler. The preferred amount of excipient per mol titanium trichloride component is 0.01 to 0.3 mol, and in particular 0.01 to 0.1 mol in the case of alcohols, carboxylic acids, carboxylic acid halides and ketones, 0.01 to 0.2 mol in the case of ethers and esters, 0.01 to 0.2 moles in the case of phenols.

Av organiske oksygen-forbindelser foretrekkes etere, karboksyl-etere og ketoner, og derefter foretrekkes alkoholer, og karboksylsyrehalogenider.. Of organic oxygen compounds, ethers, carboxyl ethers and ketones are preferred, followed by alcohols and carboxylic acid halides.

I nærværende forbindelse kan en hvilken som helst metode for pulverisering av titantriklorid, som fås ved reduksjon av titantetraklorid med metallisk aluminium, anvendes forsåvidt den til-later en pulverisering av titantriklorid-blandingen inntil a-eller "y-typen ikke lenger kan påvises ved røntgen-dif f raks jons-analyse av titantriklorid-krystallen. En slik fysikalsk eller mekanisk pulverisering kan utføres ved hjelp av kulemølle-pulverisering, vibratormølle-pulverisering og slagmølle-pulverisering. In the present connection, any method of pulverizing titanium trichloride, which is obtained by reducing titanium tetrachloride with metallic aluminum, may be used provided it permits a pulverization of the titanium trichloride mixture until the a or "y" type can no longer be detected by X-ray - diffract ion analysis of the titanium trichloride crystal Such physical or mechanical pulverization can be carried out by means of ball mill pulverization, vibrator mill pulverization and impact mill pulverization.

Pulveriseringen kan utføres ved romtemperatur, men, hvis Ønsket, kan den utføres ved lavere eller høyere temperaturer, f.eks. -20°C til +100°C. Pulveriseringen kan utføres i en atmosfære med inert gass, som f.eks. nitrogengass, og, hvis ønsket, kan andre inerte gasser som argon eller helium anvendes. The pulverization can be carried out at room temperature, but, if desired, it can be carried out at lower or higher temperatures, e.g. -20°C to +100°C. The pulverization can be carried out in an atmosphere with inert gas, such as e.g. nitrogen gas, and, if desired, other inert gases such as argon or helium may be used.

Før pulveriserings-behandlingen kan titantriklorid-blandingen ekstraheres med et løsningsmiddel som senere skal beskrives, fulgt av en pulveriseringsbehandling i nærvær av hjelpestoffene. Before the pulverization treatment, the titanium trichloride mixture can be extracted with a solvent to be described later, followed by a pulverization treatment in the presence of the auxiliaries.

Den pulveriserte titantriklorid-blandingen blir derefter gjen-stand for ekstrahering og vasking. Vaskevæsken ■. som anvendes utgjøres av (i) et mettet alifatisk hydrokarbon med 3-20 karbonatomer, et alicyklisk hydrokarbon med 3-18 karbonatomer, et cykloalifatisk hydrokarbonhalogenid med 3-10 karbonatomer, et aromatisk hydrokarbon med 6^ 20 karbonatomer, en halogenbenzen, trikloreten eller karbondisulfid, eller (ii) en blanding av minst én forbindelse (i) og en eller flere av (a) organiske oksygenholdige forbindelser, som utgjøres av en alifatisk eter, aromatisk eter, alifatisk karboksylsyreester, aromatisk karboksylsyreester, alifatisk alkohol, fenol, alifatisk karboksylsyre, aromatisk karboksylsyre, aromatisk karboksylsyrehalogenid, alifatisk keton eller aromatisk keton, (b) en organisk, nitrogenholdig forbindelse som utgjøres av et alifatisk, aromatisk eller heterocyklisk amin, et aromatisk nitril, et aromatisk isocyanat eller en aromatisk azo-forbindelse eller (c) en organisk siliciumholdig forbindelse som utgjøres av et organo-halogensilan, et uforgrenet siloksan, eller en silazan, idet mengden av (i) er større enn mengden av (a), (b) eller (c), The powdered titanium trichloride mixture is then subjected to extraction and washing. The washing liquid ■. used is constituted by (i) a saturated aliphatic hydrocarbon of 3-20 carbon atoms, an alicyclic hydrocarbon of 3-18 carbon atoms, a cycloaliphatic hydrocarbon halide of 3-10 carbon atoms, an aromatic hydrocarbon of 6-20 carbon atoms, a halobenzene, trichloroethene or carbon disulfide , or (ii) a mixture of at least one compound (i) and one or more of (a) organic oxygen-containing compounds, which are constituted by an aliphatic ether, aromatic ether, aliphatic carboxylic acid ester, aromatic carboxylic acid ester, aliphatic alcohol, phenol, aliphatic carboxylic acid, aromatic carboxylic acid, aromatic carboxylic acid halide, aliphatic ketone or aromatic ketone, (b) an organic nitrogen-containing compound consisting of an aliphatic, aromatic or heterocyclic amine, an aromatic nitrile, an aromatic isocyanate or an aromatic azo compound or (c) an organic silicon-containing compound consisting of an organo-halosilane, an unbranched siloxane, or a silazane, the amount that of (i) is greater than the amount of (a), (b) or (c),

idet det anvendes en mengde av vaskevæsken som er 1-100 vektdeler pr. del av den pulveriserte titanholdige blanding, og når en blanding anvendes som vaskevæske inneholder denne 0,005-10,0 vektdeler av forbindelsen (a), (b) eller (c) pr. del av den pulveriserte titantrikloridblanding. in that an amount of the washing liquid is used which is 1-100 parts by weight per part of the powdered titanium-containing mixture, and when a mixture is used as a washing liquid this contains 0.005-10.0 parts by weight of the compound (a), (b) or (c) per part of the powdered titanium trichloride mixture.

Den på denne måten behandlede titantriklorid-blandingen fra-skilles vaskevæsken, og den brukes som katalysator-komponent. En slik behandling kan utføres ved hjelp av en satsvis vaskeme-tode, ekstrahering med et Soxhlet-ekstraksjonsapparat eller ved hjelp av en kontinuerlig motstrøms-vasking. Ved samtlige metoder bør vaskevæsken separeres i den utstrekning det er mulig fra den behandlede titantriklorid-blandingen. The titanium trichloride mixture treated in this way is separated from the washing liquid, and it is used as a catalyst component. Such treatment can be carried out by means of a batch washing method, extraction with a Soxhlet extraction apparatus or by means of a continuous countercurrent washing. In all methods, the washing liquid should be separated as far as possible from the treated titanium trichloride mixture.

Hvis det anvendes et blandet løsningsmiddel, som inneholder et av de tidligere nevnte organiske oksygenholdige forbindelser, If a mixed solvent containing one of the previously mentioned organic oxygen-containing compounds is used,

er mengden, av de anvendte oksygenholdige forbindelser fra 0,005 til 10,0 vekts-deler pr. del titantrikloridblanding, for etere fortrinnsvis 0,01 til 10,0 deler, for ketoner og estere 0,01 til 5,0 deler, for alkoholer 0,005 til 0,3 deler, for fenoler 0,005 til 0,2 deler, og for karboksylsyrehalogenider og karboksylsyrer fra 0,005.til 0,5 deler. is the amount of the oxygen-containing compounds used from 0.005 to 10.0 parts by weight per part titanium trichloride mixture, for ethers preferably 0.01 to 10.0 parts, for ketones and esters 0.01 to 5.0 parts, for alcohols 0.005 to 0.3 parts, for phenols 0.005 to 0.2 parts, and for carboxylic acid halides and carboxylic acids from 0.005 to 0.5 parts.

Hvis blande-løsningen inneholder den organiske nitrogenholdige forbindelsen (b), er mengden av den organiske nitrogenholdige forbindelsen vanligvis 0,005 til 0,5 vekts-deler pr. del titantriklorid-blanding, for heterocykliske aminer og aromatiske tertiære aminer fortrinnsvis 0,01 til 0,5 mol-deler, for tertiære aminer 0,01 til 0,3 moldeler, isocyanater, azoforbindel-ser og nitriler og for sekundære aminer 0,005 til 0,2 moldeler. If the mixing solution contains the organic nitrogen-containing compound (b), the amount of the organic nitrogen-containing compound is usually 0.005 to 0.5 parts by weight per part titanium trichloride mixture, for heterocyclic amines and aromatic tertiary amines preferably 0.01 to 0.5 mole parts, for tertiary amines 0.01 to 0.3 mole parts, isocyanates, azo compounds and nitriles and for secondary amines 0.005 to 0 ,2 mold parts.

Hvis det blandede løsningsmidlet inneholder den organiske si-lisiumholdige forbindelsen er det foretrukkede området beregnet på vektsdeler i forhold til titantriklorid-blandingen 0,05 til 10 vektsdeler organohalogensilaner, 0,05 til 5,0 vektsdeler organoalkoksysilaner, aryloksysilaner og organo--polysiloksaner, 0,02 til 2,0 vektsdeler organosilanol-karboksylsyreestere og organosilazaner og 0,02 til 1,0 vekts-del organoisocyanatsilaner (alternativt betegnet organo-silisiumisocyanat). Den foretrukkede mengden av organosilanoler er 0,02 til 1,0 vektsdeler og 0,02 til 2,0 vektsdeler organo-silaner. If the mixed solvent contains the organosilicon-containing compound, the preferred range calculated in terms of parts by weight relative to the titanium trichloride mixture is 0.05 to 10 parts by weight organohalosilanes, 0.05 to 5.0 parts by weight organoalkoxysilanes, aryloxysilanes and organo-polysiloxanes, 0 .02 to 2.0 parts by weight of organosilanol carboxylic acid esters and organosilazanes and 0.02 to 1.0 parts by weight of organoisocyanate silanes (alternatively termed organosilicon isoisocyanate). The preferred amount of organosilanols is 0.02 to 1.0 parts by weight and 0.02 to 2.0 parts by weight of organosilanes.

Katalysatoren fremstilt ifølge oppfinnelsen består av The catalyst produced according to the invention consists of

en organoaluminium-forbindelse og en titantriklorid-blanding, som fås ved den tidligere nevnte fremgangsmåten. Av organoaluminium-f orbindelser kan de brukes som er kjent som komponenter i Ziegler-Natta-katalysator-typen. an organoaluminum compound and a titanium trichloride mixture, which is obtained by the previously mentioned method. Of organoaluminum compounds, those known as components of the Ziegler-Natta catalyst type can be used.

Eksempler på slike organoaluminium-forbindelser omfatter, Examples of such organoaluminum compounds include,

f.eks. trialkylaluminium, dialkylaluminiumhalogenider, dialkyl-aluminiumalkoksyder, alkylaluminiumalkoksyhalogenider, alkylaluminiumdihalogenider, reaksjonsprodukter av disse med elektron-donator-forbindelser, eller reaksjonsprodukter av disse med alkalimetall-halogenider eller alkalimetallkompleks-fluorider av transisjonsmetaller. Eksempler på elektron-donator-forbindelser er f.eks. beskrevet i U.S. patent nr. 3.081.287, 3.116.274 og 3.230.208. e.g. trialkylaluminum, dialkylaluminum halides, dialkylaluminum alkoxides, alkylaluminum alkoxyhalides, alkylaluminum dihalides, reaction products of these with electron-donor compounds, or reaction products of these with alkali metal halides or alkali metal complex fluorides of transition metals. Examples of electron-donor compounds are e.g. described in the U.S. Patent Nos. 3,081,287, 3,116,274 and 3,230,208.

Olefinmonomerer som kan polymeriseres ved hjelp av den fremstilte katalysatoren er propylen, 1-buten, 4-metyl-1^-penten, styren, 1-penten, 3-metyl-l-buten, og trimetylvinylsilan. Katalysatoren kan også anvendes for ko-polymerisasjon av etylen med propylen, etylen med 1-buten, etylen med 1-heksen, eller propylen med styren. Den kan også brukes ved homopolymerisasjon av etylen. Olefin monomers which can be polymerized with the aid of the prepared catalyst are propylene, 1-butene, 4-methyl-1^-pentene, styrene, 1-pentene, 3-methyl-1-butene, and trimethylvinylsilane. The catalyst can also be used for co-polymerisation of ethylene with propylene, ethylene with 1-butene, ethylene with 1-hexene, or propylene with styrene. It can also be used in the homopolymerisation of ethylene.

Polymerisasjonen av olefiner, under anvendelse av katalysatoren, kan utføres efter en eller annen kjent metode under like så kjente betingelser. Polymeriseringen kan f .eks. utfores ved en temperatur mellom 20 og 100 °C og et trykk fra normal, atmosfæretrykk til 100 kg/cm . Polymeriseringen kan utfores i et inert losningsmiddel eller uten et inert løsningsmiddel, hvorved det flytende monomeret i enkelte tilfelle utgjor losningsmidlet. Dette gjelder såvel satsvis som kontinuerlig fremgangsmåte. The polymerization of olefins, using the catalyst, can be carried out according to one or another known method under equally known conditions. The polymerization can e.g. is carried out at a temperature between 20 and 100 °C and a pressure from normal, atmospheric pressure to 100 kg/cm . The polymerization can be carried out in an inert solvent or without an inert solvent, whereby the liquid monomer in some cases forms the solvent. This applies to both batch and continuous methods.

Ved polymeriseringen av olefiner In the polymerization of olefins

kan hydrogen anvendes som et molekylvekts- can hydrogen be used as a molecular weight

regulerende middel for olefinpolymerer. Efter avsluttet polymerisering blir katalysatoren vanligvis deaktivert med lavere alkoholer, som f.eks. metanol, etanol, butanol og isopropanol, og dette skjer på samme måte som ved Ziegler-Natta-type-polymerisering av olefiner. Hvis utbyttet av polymerer pr. mengdeenhet katalysator er stor, kan den tidligere nevnte de-aktiverings-behandlingen sloyfes, og katalysatoren behover bare komme i kontakt med luft eller vanndamp. regulatory agent for olefin polymers. After completion of polymerization, the catalyst is usually deactivated with lower alcohols, such as e.g. methanol, ethanol, butanol and isopropanol, and this happens in the same way as in the Ziegler-Natta type polymerization of olefins. If the yield of polymers per unit quantity of catalyst is large, the previously mentioned deactivation treatment can be omitted, and the catalyst only needs to come into contact with air or water vapour.

Oppfinnelsen skal i det folgende nærmere beskrives ved hjelp In the following, the invention will be described in more detail with help

av eksempler og sammenligningseksempler. of examples and comparative examples.

Eksemplene 1 til 2, kontroll- og sammenlignings- eksemplene Examples 1 to 2, the control and comparison examples

1 til 8 1 to 8

Titantetraklorid (1,400 gram) fikk reagere 20 -timer med 27,0 g aluminium-metall-pulver i nærvær av 18,0 g aluminiumklorid i en rustfri stålautoklav ved 200°C. Ureagert titantetraklorid og fritt aluminiumklorid ble fjernet fra den erholdte titantriklorid-f orbindelsen ved destillasjon ved atmosfæretrykk. Titanium tetrachloride (1.400 grams) was allowed to react for 20 hours with 27.0 g of aluminum metal powder in the presence of 18.0 g of aluminum chloride in a stainless steel autoclave at 200°C. Unreacted titanium tetrachloride and free aluminum chloride were removed from the obtained titanium trichloride compound by distillation at atmospheric pressure.

Det gjenværende faste stoffet ble oppvarmet 5 timer ved 200°C The remaining solid was heated for 5 hours at 200°C

ved et til 0,2 mmHg redusert trykk for å fjerne gjenværende titantetraklorid. Man erholdt 570 g titantriklorid-forbindelse. hvis farge var svakt rodaktig-fiolett. at a pressure reduced to 0.2 mmHg to remove residual titanium tetrachloride. 570 g of titanium trichloride compound were obtained. whose color was faintly reddish-violet.

30 g av denne titantriklorid-forbindelsen og en hjelpestoff-komponent (oksygen-holdig organisk forbindelse), som vises i tabell I-a, tilsattes en sylindrisk rustfri stålbeholder med en innvendig kapasitet på 800 ml. Dette ble malt 24 timer ved en omdreining på 140 omdr/min. i nitrogenatmosfære og i nærvær av 100 rustfrie stålkuler, som hadde en diameter på 16 mm, inntil a-, og y-typen av. titantriklorid-forbindelsens rontgen-diffraksjons-monster ikke lenger kunne bestemmes. Den pulveriserte forbindelsen ble ekstrahert og vasket 24 timer med losningen ifolge tabell I-a ved hjelp av et Soxhlet-ekstraksjons-apparat og med et glassfittsr for dannelse av titantriklorid-forbindelsen, som senere skal anvendes som en komponent i katalysatoren. 30 g of this titanium trichloride compound and an auxiliary component (oxygen-containing organic compound), shown in Table I-a, were added to a cylindrical stainless steel container with an internal capacity of 800 ml. This was ground for 24 hours at a speed of 140 rpm. in a nitrogen atmosphere and in the presence of 100 stainless steel balls, which had a diameter of 16 mm, up to the a-, and y-type of. the titanium trichloride compound's X-ray diffraction pattern could no longer be determined. The powdered compound was extracted and washed for 24 hours with the solution according to Table I-a using a Soxhlet extraction apparatus and with a glass fitting to form the titanium trichloride compound, which will later be used as a component of the catalyst.

En 500 ml separasjons-glass-flaske forsynt med en omrorer, et termometer, et innblåsningsror av propylen og et utblåsningsror ble fylt med 250 ml ren parafin ("kerosene"), og nitrogen fikk stromme gjennom en time under omroring. Den oven erholdte titantriklorid-forbindelsen (2,0 g) og lo millimol dietylaluminiumklorid ble tilsatt i nevnte rekkefolge under nitrogen-atmosfære, og temperaturen ble okt til 70 oC. Derefter ble det tilfort propylen og polymerisasjon ble foretatt 2 timer under atmosfæretrykk. Efter avsluttet polymerisasjon, ble propylen erstattet med nitrogengass, og temperaturen ble senket. Metanol (100 ml) ble tilsatt for å deaktivere katalysatoren. Polymer-slurryen ble filtrert, og det erholdte faste pulveret ble vasket på en filterplate flere ganger med metanol. Det ble derefter torket A 500 ml separatory glass bottle fitted with a stirrer, a thermometer, a propylene blow-in tube and a blow-out tube was filled with 250 ml of pure kerosene ("kerosene") and nitrogen was allowed to flow through for one hour under agitation. The above-obtained titanium trichloride compound (2.0 g) and 10 millimoles of diethylaluminum chloride were added in the aforementioned order under a nitrogen atmosphere, and the temperature was raised to 70°C. Propylene was then added and polymerization was carried out for 2 hours under atmospheric pressure. After completion of polymerization, propylene was replaced with nitrogen gas, and the temperature was lowered. Methanol (100 mL) was added to deactivate the catalyst. The polymer slurry was filtered, and the solid powder obtained was washed on a filter plate several times with methanol. It was then dried

2 ganger ved 70°C og et redusert trykk på 50 mmHg ble anvendt 2 times at 70°C and a reduced pressure of 50 mmHg was used

for å fremstille en fast propylen-polymer. Resultatene vises i tabell I-a. Denne tabellen viser også de erholdte resultatene fra kontrollforsokene, hvorved propylen ble polymerisert på to produce a solid propylene polymer. The results are shown in Table I-a. This table also shows the results obtained from the control experiments, whereby propylene was polymerized on

samme måte som vist i eksempel 1, med unntagelse av at titantrikloridforbindelsen ikke var pulverisert. Tabellen viser: sammenligningseksempel 1, hvor propylen ble polymerisert på samme måte som vist i eksempel 1, med unntagelse for den pulveriserte titantrikloridforbindelsen som ble anvendt uten nærvær av hjelpestoff -komponent en; sammenligningseksempel 2 hvor propylen ble polymerisert på samme måte som vist i eksempel 1, med unntagelse av at ekstraksjons- og vaske-behandlingen av titantriklorid-forbindelsen som her ble slbyfet; sammenligningseksempel 3 hvorved den samme fremgangsmåten ble anvendt som i eksempel 1, med unntagelse av at titantriklorid-forbindelsen ble anvendt i sammenligningseksempel 1, og som her ble ekstrahert og vasket in the same manner as shown in Example 1, except that the titanium trichloride compound was not powdered. The table shows: comparative example 1, where propylene was polymerized in the same way as shown in example 1, with the exception of the powdered titanium trichloride compound which was used without the presence of auxiliary component one; comparative example 2 where propylene was polymerized in the same manner as shown in example 1, with the exception that the extraction and washing treatment of the titanium trichloride compound here was omitted; comparative example 3 whereby the same method was used as in example 1, with the exception that the titanium trichloride compound was used in comparative example 1, and which was here extracted and washed

på samme måte som i eksempel 1, og den erholdte titantriklorid-forbindelsen ble anvendt; sammenligningseksempel 4, hvor den samme fremgangsmåten som i eksempel 1 ble anvendt, med unntagelse in the same manner as in Example 1, and the obtained titanium trichloride compound was used; comparative example 4, where the same method as in example 1 was used, with an exception

av at titantriklorid-forbindelsen her forst ble ekstrahert og vasket med et losningsmiddel og derefter pulverisert uten nærvær av hjelpestoff-komponenten; sammenligningseksempel 5, hvor den samme fremgangsmåten som i eksempel 1 ble anvendt, of the fact that the titanium trichloride compound here was first extracted and washed with a solvent and then pulverized without the presence of the auxiliary component; comparative example 5, where the same method as in example 1 was used,

med unntagelse av at det her ble anvendt en titantriklorid-forbindelse, som ble erholdt ved ekstrahering og vasking med den samme som i sammenligningseksempel 4 anvendte titantriklorid-forbindelsen ved hjelp av et losningsmiddel; sammenligningseksempel 6, hvor fremgangsmåten var den samme som i eksempel 1, med unntagelse' av at den anvendte titantriklorid-forbindelsen ble fremstilt ved å redusere titantetraklorid med aluminium-metall i nærvær av en hjelpestoff-komponent (oksygenholdig organisk forbindelse) og uten pulverisering, og som videre ble ekstrahert og vasket med et losningsmiddel på samme måte som vist i eksempel 1; sammenligningseksempel 7, hvor den samme fremgangsmåten som i eksempel 1 ble anvendt, med unntagelse av at det ble anvendt et titantriklorid, som var fremstilt ved reduksjon av titantetraklorid med aluminiummetall, i nærvær av en hjelpestoff-komponent (oksygenholdig organisk forbindelse), pulverisering av titantriklorid-forbindelsen og utelatelse av ekstrahering og vasking; og sammenligningseksempel 8 hvor den samme fremgangsmåten som i eksempel 1 ble anvendt, med unntagelse av at den anvendte titantriklorid-forbindelsen ble fremstilt ved reduksjon av titantetraklorid med hydrogen. with the exception that a titanium trichloride compound was used here, which was obtained by extraction and washing with the same titanium trichloride compound used in comparative example 4 by means of a solvent; comparative example 6, where the procedure was the same as in example 1, with the exception that the titanium trichloride compound used was prepared by reducing titanium tetrachloride with aluminum metal in the presence of an auxiliary component (oxygen-containing organic compound) and without pulverization, and which was further extracted and washed with a solvent in the same manner as shown in Example 1; comparative example 7, where the same method as in example 1 was used, with the exception that a titanium trichloride was used, which was prepared by reducing titanium tetrachloride with aluminum metal, in the presence of an auxiliary component (oxygen-containing organic compound), pulverization of titanium trichloride -the connection and omission of extraction and washing; and comparative example 8 where the same method as in example 1 was used, with the exception that the titanium trichloride compound used was produced by reducing titanium tetrachloride with hydrogen.

I beskrivelsens samtlige tabeller betegner T. I. "total iso-taktisitet", hvilket uttrykker vekts-% polymer som er tungt loselig i en spesiell ekstraksjons-lbsning (vanligvis heptan) og beregnet på vekten av den totale mengden dannet polymer (den delen av polymeren som er lett loselig i polymeri-serings-losningen veies efter fordampningen av losningsmidlet, og denne mengden inngår i den totale polymer-mengden). På den annen side indikerer partiell iso-taktisitet den vekts-%-delen av en polymer som er tungt loselig i en spesiell ekstraksjons-losning, og som beregnes på basis av polymervekten minus vekten av den delen som er lett loselig i polymerisasjons-losningen. In all the tables of the specification, T.I. denotes "total iso-tacticity", which expresses the weight % of polymer that is sparingly soluble in a particular extraction solution (usually heptane) and calculated on the weight of the total amount of polymer formed (the part of the polymer that is easily soluble in the polymerization solution is weighed after the evaporation of the solvent, and this amount is included in the total amount of polymer). On the other hand, partial isotacticity indicates the weight % portion of a polymer that is sparingly soluble in a particular extraction solution, and is calculated on the basis of the polymer weight minus the weight of the portion that is readily soluble in the polymerization solution.

Av denne grunn er vanligvis den totale iso-taktisiteten mindre enn den partielle isotaktisiteten. T. T. er en forkortelse for tilsynelatende tetthet. Polymerens vekt er uttrykt i gram og dens tilsynelatende volum i cm^. For this reason, the total isotacticity is usually less than the partial isotacticity. T.T. is an abbreviation for apparent density. The weight of the polymer is expressed in grams and its apparent volume in cm^.

Eksempel 3 og sammenligninqseksemplene 9- 17 Example 3 and comparative examples 9-17

30 g av en svakt rodaktig-fiolett titantriklorid-forbindelse, som var fremstilt ifolge eksempel 1, og hver av hjelpestoff-komponentene ifolge tabell I-b,c ble behandlet i en kulemolle på samme måte som. beskrevet i eksempel 1. 15 g av det pulveriserte produktet som ble erholdt ble ekstrahert og vasket med et losningsmiddel som vist i tabell I-b,c i 24 timer under tilbakelop ved anvendelse av et Soxhlet-ekstraksjonsapparat som var utstyrt med et glassfilter i en atmosfære av nitrogen på samme måte som beskrevet i eksempel 1. Olefiner ble polymerisert ved anvendelse av titantriklorid-sammensetningen som ble erholdt og faste polyolefiner ble fremstilt. Resultatene vises i tabell I-b,c. 30 g of a slightly reddish-violet titanium trichloride compound, which was prepared according to Example 1, and each of the auxiliary components according to Table I-b,c were treated in a ball mold in the same way as. described in Example 1. 15 g of the powdered product obtained was extracted and washed with a solvent as shown in Table I-b,c for 24 hours under reflux using a Soxhlet extraction apparatus equipped with a glass filter in an atmosphere of nitrogen in the same manner as described in Example 1. Olefins were polymerized using the titanium trichloride composition obtained and solid polyolefins were prepared. The results are shown in Table I-b,c.

Tabell I-b og tabell I-c viser også resultatene som ble ernoldt i sammenligningseksempel 9, hvori polymerisasjonen av olefinet ble utfort på samme måte som beskrevet i eksempel 3, med unntagelse av at ekstraksjonen og vaskingen av titantriklorid-sammensetningen ikke ble utfort; sammenligningseksemplene 10 og 11 som viser at titantrikloridsammensetningen efter pulverisering skal ekstraheres og vaskes; sammenligningseksempel 12 som viser at kommersielt tilgjengelig titantriklorid-sammensetning (TiCl^AA, stauffer Chemical Company) er ubrukbar; sammenligningseksempel 13, i hvilket propylen ble polymerisert på samme måte som beskrevet eksempel 3, med unntagelse av at titantriklorid som erholdes ved reduksjon av titantetraklorid med hydrogen ble anvendt. Eksemplene 4 - 35, sammenligningsekseroplene 18 - 47 Fremgangsmåten ifølge eksempel 1 ble gjentatt med unntagelse av at mengdene og klassene av hjelpekomponentene som består av oksygenholdige organiske forbindelser og ekstraksjonsløsningene ble variert. Resultatene vises i Tabell 1-c. Sammenligningseksemplene 42 - 47 viser at trikloretylen alene er anvendbart som ekstraksjons- og vaske-middel blant halogenerte hydrokar-boner. Table I-b and Table I-c also show the results obtained in Comparative Example 9, in which the polymerization of the olefin was carried out in the same manner as described in Example 3, with the exception that the extraction and washing of the titanium trichloride composition was not carried out; comparative examples 10 and 11 showing that the titanium trichloride composition after pulverization should be extracted and washed; comparative example 12 showing that commercially available titanium trichloride composition (TiCl₂AA, Stauffer Chemical Company) is unusable; comparative example 13, in which propylene was polymerized in the same way as described in example 3, with the exception that titanium trichloride obtained by reducing titanium tetrachloride with hydrogen was used. Examples 4-35, Comparative Examples 18-47 The procedure of Example 1 was repeated with the exception that the amounts and classes of the auxiliary components consisting of oxygen-containing organic compounds and the extraction solutions were varied. The results are shown in Table 1-c. Comparative examples 42 - 47 show that trichlorethylene alone is usable as an extraction and washing agent among halogenated hydrocarbons.

E ksemplene 36- 41 og sammenligningseksemplene 48- 58 Examples 36-41 and comparative examples 48-58

En 800 ml sylindrisk beholder av rustfritt stål ble fylt med 120 g ikke-pulverisert titantriklorid-forbindelse, som var fremstilt på samme måte som beskrevet i eksempel 1, eller en blanding av titantriklorid-forbindelse og forskjellige hjelpestoff-komponenter, og materialet ble pulverisert 24 timer, uten noen spesiell oppvarming eller avkjøling, ved hjelp av en vibrator-mølle i nærvær av 850 rustfrie stålkuler, som hver hadde en diameter på 10 mm. Den pulveriserte blandingen (30,0 g) ble ekstrahert og vasket med forskjellig blandede oppløsningsmidler under omrøring. Titantriklorid-forbindelsen ble gjenvunnet ved filtrering fra blande-løsningen, og den ble vasket tre ganger med ren toluen, for derved å fjerne gjenværende blande-løsning. Det ble derefter tørket i vakuum for dannelse av en modifisert titantriklorid-f orbindelse . An 800 ml cylindrical stainless steel container was filled with 120 g of non-pulverized titanium trichloride compound, which was prepared in the same manner as described in Example 1, or a mixture of titanium trichloride compound and various excipient components, and the material was pulverized 24 hours, without any special heating or cooling, using a vibrator mill in the presence of 850 stainless steel balls, each of which had a diameter of 10 mm. The powdered mixture (30.0 g) was extracted and washed with various mixed solvents while stirring. The titanium trichloride compound was recovered by filtration from the mixing solution, and it was washed three times with pure toluene, thereby removing the residual mixing solution. It was then dried in vacuo to form a modified titanium trichloride compound.

Resultatene vises i tabell II sammen med visse resultater for sammenlignende forsøk. The results are shown in Table II together with certain comparative test results.

Eksempel 42 Example 42

En 500 ml separabel flaske som var utstyrt med omrører, propylen-blåserør, termometer og utblåsningsrør ble tilført 210 ml renset kerosen, og efter at systemet fullstendig er erstattet med nitrogen ble 10 mmol etylaluminiumetoksyklorid innført. Derefter ble 2,0 g titantriklorid-sammensetning fra eksempel 3 tilsatt og temperaturen ble økt til 70°C. Etter at temperaturen var hevet til 70°C ble propylen blåst under atmosfærisk trykk i en mengde som er litt større enn det som ble absorbert. Efter reaksjon i en time ble propylengass endret til nitrogengass, og efter avkjø-ling ble 100 ml metanol tilsatt for å separere den faste polymeren ved filtrering. A 500 ml separable bottle equipped with a stirrer, propylene blowpipe, thermometer and blow-off pipe was charged with 210 ml of purified kerosene, and after the system was completely replaced with nitrogen, 10 mmol of ethyl aluminum ethoxychloride was introduced. Then 2.0 g of titanium trichloride composition from Example 3 was added and the temperature was increased to 70°C. After the temperature was raised to 70°C, propylene was blown under atmospheric pressure in an amount slightly greater than that absorbed. After reaction for one hour, propylene gas was changed to nitrogen gas, and after cooling, 100 ml of methanol was added to separate the solid polymer by filtration.

Utbyttet av polypropylen som således ble erholdt var 66,6 g, krystalliniteten var 86,0% og den spesifikke vekten var 0,299. The yield of polypropylene thus obtained was 66.6 g, the crystallinity was 86.0% and the specific gravity was 0.299.

Sammenligningseksempel 59 Comparative example 59

Også når propylen ble polymerisert på samme måte som nevnt ovenfor, men ved anvendelse av titantriklorid-sammensetning ved utelatelse av ekstraksjon av toluen, fikk man et utbytte av totalt polypropylen på 50,2 g og fortrinnsvis med en krystallinitet på 83,4% og en spesifikk vekt på 0,275. Also when propylene was polymerized in the same manner as mentioned above, but using titanium trichloride composition while omitting the extraction of toluene, a yield of total polypropylene of 50.2 g was obtained and preferably with a crystallinity of 83.4% and a specific gravity of 0.275.

EKSEMPEL 43 EXAMPLE 43

En 800 ml sylindrisk stålkule-mølle ble tilført 30 g av den upul-veriserte titantrikloridsammensetningen som var fremstilt i eksempel 1 og 2,4 g fenetol i en atmosfære av nitrogen sammen med 100 stålkuler som hver har en diameter på 16 mm, og pulveriseringen ble utført i 24 timer ved romtemperatur. Den resulterende blandingen av titantriklorid-sammensetningen og fenetol ble ført inn i et Soxhlet-ekstraksjons-apparat ved hjelp av et glassfilter og i en nitrogenatmosfære. Her ble blandingen ekstrahert og vasket med toluen 24 timer. Efter avsluttet ekstraksjon og vasking ble overskudd av toluen fjernet ved destillasjon under redusert trykk ved 70°C, hvorved en tørr titantrikloridforbindel-se ble dannet. An 800 ml cylindrical steel ball mill was charged with 30 g of the unpulverized titanium trichloride composition prepared in Example 1 and 2.4 g of phenetol in an atmosphere of nitrogen together with 100 steel balls each having a diameter of 16 mm, and the pulverization was carried out for 24 hours at room temperature. The resulting mixture of the titanium trichloride composition and phenetol was introduced into a Soxhlet extraction apparatus by means of a glass filter and under a nitrogen atmosphere. Here the mixture was extracted and washed with toluene for 24 hours. After completion of extraction and washing, excess toluene was removed by distillation under reduced pressure at 70°C, whereby a dry titanium trichloride compound was formed.

En 5-liter fire-halsig flaske, som var forsynt med en omrorer, A 5-liter four-necked bottle, which was fitted with a stirrer,

en åpning for plassering av et termometer, et innblåsningsror for nitrogen og et utblåsningsror, ble fylt med 3,8 liter ren parafin ("kerosene") og 120 g kaliumtitanfluorid, og under omroring ble en tilfredsstillende strom av nitrogen ledet gjennom flasken. Derefter ble etylaluminiumdiklorid an opening for the placement of a thermometer, a nitrogen inlet pipe, and an exhaust pipe, were filled with 3.8 liters of pure kerosene ("kerosene") and 120 g of potassium titanium fluoride, and with agitation a satisfactory stream of nitrogen was passed through the bottle. Then became ethylaluminum dichloride

(245 g) tilsatt, og disse komponenter fikk reagere 6 timer (245 g) added, and these components were allowed to react for 6 hours

ved 60°C. Produktet ble avkjolt til romtemperatur og fikk derefter stå stille. Den overst flytende losningen ble gjenvunnet. Konsentrasjonen av organoaluminium-forbindelsen var 0,237 mol/liter, beregnet som aluminium i den overst flytende losningen. at 60°C. The product was cooled to room temperature and then allowed to stand still. The supernatant was recovered. The concentration of the organoaluminium compound was 0.237 mol/litre, calculated as aluminum in the top liquid solution.

En 500 ml separasjonsflaske, som var forsynt med en omrorer, A 500 ml separation flask, which was fitted with a stirrer,

en innblåsningsror av propylen, et termometer og et utblåsningsror, ble fylt med 210 ml ren parafin ("kerosene"). Under omroring ble flasken gjennomspylt med nitrogen, og derefter ble flasken fylt med 42 ml av en opplosning av den erholdte organoaluminium-f orbindelsen i parafin ("kerosene") og 0,28 ml allylbutyleter. Derefter ble 1,98 g av den oven fremstilte titantrikloridforbindelsen tilsatt, og temperaturen ble okt til 70°C. Propylengass ble tilfort ved atmosfæretrykk med et lite overskudd i forhold til den absorberte mengden, og polymerisasjonen pågikk 2 timer. Derefter ble propylengassen erstattet med nitrogengass. Produktet ble avkjolt og katalysatoren deaktivert ved tilsetning av 100 ml metanol. Produk- an inlet tube of propylene, a thermometer and an outlet tube, were filled with 210 ml of pure kerosene ("the kerosene"). While stirring, the flask was purged with nitrogen, and then the flask was filled with 42 ml of a solution of the obtained organoaluminum compound in paraffin ("kerosene") and 0.28 ml of allyl butyl ether. Then, 1.98 g of the titanium trichloride compound prepared above was added, and the temperature was raised to 70°C. Propylene gas was added at atmospheric pressure with a small excess in relation to the amount absorbed, and the polymerization continued for 2 hours. The propylene gas was then replaced with nitrogen gas. The product was cooled and the catalyst deactivated by adding 100 ml of methanol. Product

tet ble fjernet fra flasken, og en fast polymer ble utvunnet ved filtrering på glassfilter. Den faste polymeren ble vasket flere ganger med metanol og torket 48 timer ved 70°C tet was removed from the bottle, and a solid polymer was recovered by filtration on a glass filter. The solid polymer was washed several times with methanol and dried for 48 hours at 70°C

i en vakuum-torker. Utbyttet fast polymer (polypropylen) var 134,1 g. Polymerens tilsynelatende tetthet var 0,375 og 96,5% var krystallinsk. Opplost mengde polymer i filtratet var 2,4 g. Folgelig var hele utbyttet 136,5 g og polymeren var totalt 95,2% krystallinsk (T. I.). in a vacuum dryer. The yield of solid polymer (polypropylene) was 134.1 g. The apparent density of the polymer was 0.375 and 96.5% was crystalline. Dissolved amount of polymer in the filtrate was 2.4 g. Consequently, the entire yield was 136.5 g and the polymer was a total of 95.2% crystalline (T.I.).

Sammenligningseksempel 60 Comparative example 60

Når den foregående fremgangsmåten ble gjentatt med unntagelse When the previous procedure was repeated with exception

av at titantriklorid-sammensetningen ikke ble ekstrahert og vasket efter pulveriseringen, erholdt man polypropylen i en total mengde på 80,0 g (summen av fast polymer og i parafin oppløst polymer), hvorved tettheten var 0,302 og krystalliniteten var 91,8%. that the titanium trichloride composition was not extracted and washed after the pulverization, polypropylene was obtained in a total amount of 80.0 g (the sum of solid polymer and polymer dissolved in paraffin), whereby the density was 0.302 and the crystallinity was 91.8%.

Eksempel 44 Example 44

Når fremgangsmåten ifølge eksempel 1 gjentas, hvor det ytterli-gere i forhold til TiCl^-komponenten anvendes 0,14 mol o-bromanisol som hjelpemiddel pr. mol titantriklorid og at den pulveriserte blanding vaskes med trikloretan, så erholdes polypropylen 1 en total mengde på 12 5 g og med en krystallinitet på 95,4%. When the method according to example 1 is repeated, where in addition to the TiCl 2 component, 0.14 mol of o-bromoanisole is used as an aid per moles of titanium trichloride and that the powdered mixture is washed with trichloroethane, then polypropylene 1 is obtained in a total amount of 12 5 g and with a crystallinity of 95.4%.

Eksempel 45 Example 45

Innsiden av en 2 liter autoklav ble tilfredsstillende gjennom-skylt med nitrogengass. En glassampulle, som inneholdt 0,015 g av den samme titantriklorid-forbindelsen som ble anvendt i eksempel 1, ble plassert i en termometer-rør-åpning i autoklaven, slik at omrøreren ved rotasjon ville kollidere med ampullen og knuse denne. Autoklaven ble derefter gjennomspylt med propylengass, og 460 g propylen og 7,5 mmol dietylaluminiumklorid ble tilført autoklaven ved romtemperatur. Autoklaven ble derefter tilsatt 2 200 ml hydrogen. Systemet ble oppvarmet til 80°C, og derefter ble omrøreren startet. Ved knusing av ampullen starter polyme-risasjonene av propylen. Efter å ha polymerisert 8 timer, ble ureagert propylen tømt ut, og katalysatoren ble deaktivert ved tilsetning av metanol. Mengden erholdt polypropylen var 167 g. Den hadde en tetthet på 0,320, en krystallinitet på 88% og en The inside of a 2 liter autoclave was satisfactorily flushed through with nitrogen gas. A glass ampoule, containing 0.015 g of the same titanium trichloride compound used in Example 1, was placed in a thermometer-tube opening in the autoclave, so that the stirrer would collide with the ampoule upon rotation and crush it. The autoclave was then purged with propylene gas, and 460 g of propylene and 7.5 mmol of diethylaluminum chloride were added to the autoclave at room temperature. The autoclave was then charged with 2200 ml of hydrogen. The system was heated to 80°C, and then the stirrer was started. When the ampoule is crushed, the polymerization of propylene starts. After polymerizing for 8 hours, unreacted propylene was drained off and the catalyst was deactivated by addition of methanol. The amount of polypropylene obtained was 167 g. It had a density of 0.320, a crystallinity of 88% and a

[^] på 3,63. [^] of 3.63.

Eksempel 46 og sammenligningseksempler 61- 62 Example 46 and comparative examples 61-62

Når fremgangsmåten ifølge eksempel 45 gjentas, bortsett fra at hjelpemidlet og vaskevæsken endres, oppnåes de i tabell III viste resultater. When the method according to example 45 is repeated, except that the auxiliary agent and the washing liquid are changed, the results shown in Table III are obtained.

Eksempel 47 Example 47

Ved å anvende apparaturen som ble brukt i eksempel 1, ble 1,5 Using the apparatus used in Example 1, 1.5

g av den samme titantrikloridsammensetningen som anvendt i eksempel 4 og 10 millimol dietylaluminiumklorid tilsatt. Under omrøring ble blandingen oppvarmet til 40°C og 50 ml 4-metyl-l-pentan ble tilsatt dråpevis i løpet av 10 minutter. Polymerisasjonen ble utført i en time og produktet efterbehandlet på samme måte som beskrevet i eksempel 2. Utbyttet av den produserte polymeren var 19 g og det hadde en krystallinitet på 92%. g of the same titanium trichloride composition as used in example 4 and 10 millimoles of diethyl aluminum chloride added. While stirring, the mixture was heated to 40°C and 50 ml of 4-methyl-1-pentane was added dropwise over 10 minutes. The polymerization was carried out for one hour and the product post-treated in the same way as described in example 2. The yield of the produced polymer was 19 g and it had a crystallinity of 92%.

Sammenligningseksempel 63 Comparative example 63

Når den forangående fremgangsmåten ble gjentatt, bortsett fra at en titantrikloridsammensetning som ikke var ekstrahert og vasket med toluen.ble anvendt, ble polymeren erholdt i en mengde på 13 g og den hadde en krystallinitet på 87,8%. When the above procedure was repeated except that a titanium trichloride composition which was not extracted and washed with toluene was used, the polymer was obtained in an amount of 13 g and it had a crystallinity of 87.8%.

Eksempel 48 Example 48

Når fremgangsmåten ifølge eksempel 47 gjentas under anvendelse av 0,14 mol o-bromanisol som hjelpemiddel pr. mol titantriklorid og at trikloretylen anvendes som vaskevæske så erholdes poly(4-metyl-l-penten) i en total mengde på 19 g og med en krystallinitet på 91,3%. When the method according to example 47 is repeated using 0.14 mol of o-bromoanisole as an aid per moles of titanium trichloride and that trichlorethylene is used as washing liquid, poly(4-methyl-1-pentene) is obtained in a total amount of 19 g and with a crystallinity of 91.3%.

Eksempel 49 Example 49

Under anvendelse av den samme katalysator og apparat som ble anvendt i eksempel 1 ble innført en gassblanding bestående av 98,8 volumdeler propylen og 1,2 volumdeler etylen ved 70°C i en time. Det ble erholdt en polymer med en krystallinitet på 85,8% og et etyleninnhold på 2,4 % i en mengde på 57 g. Using the same catalyst and apparatus as used in example 1, a gas mixture consisting of 98.8 parts by volume propylene and 1.2 parts by volume ethylene was introduced at 70°C for one hour. A polymer with a crystallinity of 85.8% and an ethylene content of 2.4% was obtained in an amount of 57 g.

Sammenligningseksempel 64 Comparative example 64

Når fremgangsmåten ifølge eksempel 49 gjentas, bortsett fra at titantrikloridsammensetningen ikke var vasket med toluen, så ble det erholdt en polymer i en total mengde på 35 g og en krystallinitet på 83,0%. When the procedure according to Example 49 is repeated, except that the titanium trichloride composition was not washed with toluene, a polymer was obtained in a total amount of 35 g and a crystallinity of 83.0%.

Eksempel 50 Example 50

Når fremgangsmåten ifølge eksempel 49 gjentas under anvendelse av 0,14 mol o-bromanisol som hjelpemiddel pr. mol titantriklorid, og at den pulveriserte blanding vaskes med trikloretylen, så ble det erholdt en kopolymer i en total mengde på 55 g, og med en krystallinitet på 84,9% og med et etyleninnhold på 2,1%. When the method according to example 49 is repeated using 0.14 mol of o-bromoanisole as an aid per moles of titanium trichloride, and that the powdered mixture is washed with trichloroethylene, a copolymer was obtained in a total amount of 55 g, and with a crystallinity of 84.9% and with an ethylene content of 2.1%.

Eksempel 51 Example 51

Når fremgangsmåten ifølge eksempel 36 gjentas under anvendelse av de hjelpemidler og vaskevæsker som er vist i den etterfølgen-de tabell erholdes efter polymerisasjon ifølge eksempel 1, de i tabellen viste resultater: When the method according to example 36 is repeated using the aids and washing liquids shown in the following table, the results shown in the table are obtained after polymerization according to example 1:

Claims (1)

Fremgangsmåte ved fremstilling av en katalysatorblanProcedure for the production of a catalyst mixture ding for anvendelse ved polymerisering av olefinmonomerer som utgjøres av eten, propen, 1-buten, 4-metyl-l-penten, styren,ding for use in the polymerization of olefin monomers consisting of ethylene, propene, 1-butene, 4-methyl-1-pentene, styrene, 1-penten, 3-metyl-l-buten eller trimetylvinylsilan eller ved sampolymerisering av eten med propen, 1-buten eller 1-heksen, eller sampolymerisering av propen med styren, karakterisert ved den kombinasjon at (1) en titantrikloridkomponent, erholdt ved reduksjon av titantetraklorid med metallisk aluminium, pulveriseres i nærvær av et hjelpemiddel i en mengde på 0,005 - 0,40 mol pr. mol titantriklorid, hvilket hjelpemiddel utgjøres av en organisk oksygenholdig forbindelse som utgjøres av en alifatisk eter, aromatisk eter, alifatisk karboksylsyreester, aromatisk karboksylsyreester, alifatisk alkohol, fenol, alifatisk karboksylsyre, aromatisk karboksylsyre, aromatisk karboksylsyrehalogenid, alifatisk keton eller aromatisk keton, til a- eller Y-typen av titantrikloridet ikke lenger kan identifiseres i et røntgen-diffraksjonsmønster, (2) den pulveriserte titantrikloridblanding vaskes med en vaskevæske som utgjøres av (i) et mettet alifatisk hydrokarbon med 3-20 karbonatomer, et alicyklisk hydrokarbon med 3-18 karbonatomer, et cykloalifatisk hydrokarbonhalogenid med 3-10 karbonatomer, et aromatisk hydrokarbon med 6-20 karbonatomer, en halogenbenzen, trikloreten eller karbondisulfid, eller (ii) en blanding av minst én forbindelse (i) og en eller flere av (a) de organiske oksygenholdige forbindelser som ovenfor defi-nert under (1), (b) en organisk, nitrogenholdig forbindelse som utgjøres av et alifatisk, aromatisk eller heterocyklisk amin, et aromatisk nitril, et aromatisk isocyanat eller en aromatisk azo-forbindelse eller (c) en organisk siliciumholdig forbindelse som utgjøres av et.organo-halogensilan, et uforgrenet siloksan, eller en silazan, idet mengden av (i) er større enn mengden av (a), (b) eller (c), idet det anvendes en mengde av vaskevæsken som er 1-100 vektdeler pr. del av den pulveriserte titanholdige blanding, og når en blanding anvendes som vaskevæske inneholder denne 0,005-10,0 vektdeler av forbindelsen (a), (b) eller (c) pr. del av den pulveriserte titantrikloridblanding, (3) den vaskete titantrikloridblanding skilles fra vaskevæsken, og (4) den erholdte titantrikloridblanding blandes med en organo-aluminiumforbindelse.1-pentene, 3-methyl-1-butene or trimethylvinylsilane or by copolymerization of ethylene with propylene, 1-butene or 1-hexene, or copolymerization of propylene with styrene, characterized by the combination that (1) a titanium trichloride component, obtained by reduction of titanium tetrachloride with metallic aluminium, is pulverized in the presence of an auxiliary agent in an amount of 0.005 - 0.40 mol per mol of titanium trichloride, which aid is constituted by an organic oxygen-containing compound which is constituted by an aliphatic ether, aromatic ether, aliphatic carboxylic acid ester, aromatic carboxylic acid ester, aliphatic alcohol, phenol, aliphatic carboxylic acid, aromatic carboxylic acid, aromatic carboxylic acid halide, aliphatic ketone or aromatic ketone, to a- or the Y type of the titanium trichloride can no longer be identified in an X-ray diffraction pattern, (2) the powdered titanium trichloride mixture is washed with a washing liquid consisting of (i) a saturated aliphatic hydrocarbon of 3-20 carbon atoms, an alicyclic hydrocarbon of 3-18 carbon atoms , a cycloaliphatic hydrocarbon halide with 3-10 carbon atoms, an aromatic hydrocarbon with 6-20 carbon atoms, a halobenzene, trichloroethene or carbon disulfide, or (ii) a mixture of at least one compound (i) and one or more of (a) the organic oxygen-containing compounds as defined above under (1), (b) an organic, nitrogenous compound else which is constituted by an aliphatic, aromatic or heterocyclic amine, an aromatic nitrile, an aromatic isocyanate or an aromatic azo compound or (c) an organic silicon-containing compound which is constituted by an organohalosilane, an unbranched siloxane, or a silazane, the amount of (i) being greater than the amount of (a), (b) or (c), using an amount of the washing liquid that is 1-100 parts by weight per part of the powdered titanium-containing mixture, and when a mixture is used as a washing liquid this contains 0.005-10.0 parts by weight of the compound (a), (b) or (c) per part of the powdered titanium trichloride mixture, (3) the washed titanium trichloride mixture is separated from the washing liquid, and (4) the obtained titanium trichloride mixture is mixed with an organo-aluminum compound.
NO395970A 1969-10-20 1970-10-20 PROCEDURE FOR PREPARING A CATALYST MIXTURE FOR USE IN POLYMERIZATION OF OLEFINES. NO139131C (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP8323269 1969-10-20
JP8323369 1969-10-20
JP8462569 1969-10-24
JP8725569 1969-11-01
JP8725669 1969-11-01
JP8725769 1969-11-01
JP5105470A JPS491947B1 (en) 1970-06-15 1970-06-15
JP5593770A JPS5421319B1 (en) 1970-06-29 1970-06-29
JP5593670A JPS5421318B1 (en) 1970-06-29 1970-06-29
JP6230170A JPS4917159B1 (en) 1970-07-17 1970-07-17
JP6230370A JPS4917160B1 (en) 1970-07-17 1970-07-17
JP6230270A JPS4915719B1 (en) 1970-07-17 1970-07-17

Publications (2)

Publication Number Publication Date
NO139131B true NO139131B (en) 1978-10-02
NO139131C NO139131C (en) 1979-01-10

Family

ID=27583324

Family Applications (1)

Application Number Title Priority Date Filing Date
NO395970A NO139131C (en) 1969-10-20 1970-10-20 PROCEDURE FOR PREPARING A CATALYST MIXTURE FOR USE IN POLYMERIZATION OF OLEFINES.

Country Status (3)

Country Link
DK (1) DK143160C (en)
GB (1) GB1324173A (en)
NO (1) NO139131C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193893A (en) * 1975-05-28 1980-03-18 Imperial Chemical Industries Limited Transition metal catalyst
DE2860737D1 (en) 1977-08-31 1981-09-03 Ici Plc Titanium trichloride compositions, preparation thereof, catalyst system containing them, and polymerisation of olefins using this system
DE2861357D1 (en) 1977-08-31 1982-01-28 Ici Plc Titanium trichloride compositions, preparation thereof, catalyst system containing them and polymerisation of olefins using this system
EP0072128B1 (en) 1981-08-07 1986-03-19 Imperial Chemical Industries Plc Spraying solid

Also Published As

Publication number Publication date
NO139131C (en) 1979-01-10
DK143160B (en) 1981-07-06
GB1324173A (en) 1973-07-18
DK143160C (en) 1981-11-16

Similar Documents

Publication Publication Date Title
EP0245854B1 (en) Process for producing olefin polymer
US4307209A (en) Process for production of chemically blended composition of non-elastomeric ethylene resins
US4743665A (en) Process for producing α-olefin polymers
CA1086888A (en) Impact-resistant chemically blended propylene polymer composition and process for preparation thereof
EP0022675B1 (en) Process for producing olefin polymers
EP2586801B1 (en) Propylene random copolymer, method for its preparation, and compositions and articles containing the same
JP5981441B2 (en) Process for producing solid catalyst components for ethylene polymerization and copolymerization
EP0244678B1 (en) Process for producing alpha-olefin polymer
US20110269928A1 (en) Process for producing solid catalyst component for olefin polymerization
JP2003183319A (en) Olefin polymerization catalyst and process for producing polyolefin using the same
JPH072799B2 (en) Method for producing highly stereoregular a-olefin polymer
JPH0660216B2 (en) Process for producing solid catalyst for olefin polymerization
JPS61287904A (en) Production of alpha-olefin polymer
JPH04306203A (en) Improved drying catalyst for olefin polymerization
NO153534B (en) PROCEDURE FOR POLYMERIZING AN OLEFIN CONTAINING 3-8 CARBON ATOMS, OR COPOLYMERIZING SUCH WITH EACH OTHER OR A MAXIMUM OF 10 MOL% ETHYLENE AND / OR A DIENE, AND CATALOG FOR THE PREPARATION OF THE PROCESS.
JPH0772217B2 (en) Process for producing olefin polymerization catalyst and ethylene copolymer
CN107709382B (en) Process for preparing propylene polymer compositions
NO139131B (en) PROCEDURE FOR PREPARING A CATALYST MIXTURE FOR USE IN POLYMERIZATION OF OLEFINES.
EP0446801B1 (en) Solid catalyst component for use in polymerization of alpha-olefins
US5084429A (en) Catalysts for polymerization of olefins
US4798866A (en) Branched alpha-olefin polymer composition and process for its production
JP2814310B2 (en) Method for producing polyolefin
JPH06145269A (en) Production of propylene block copolymer
CA2021311C (en) Process for preparing polyolefins
JP2004018697A (en) Method for producing ethylene-conjugated diene copolymer