NO137009B - COMPOSITE CERAMIC MATERIAL AND PROCEDURE FOR MAKING THIS - Google Patents

COMPOSITE CERAMIC MATERIAL AND PROCEDURE FOR MAKING THIS Download PDF

Info

Publication number
NO137009B
NO137009B NO4077/73A NO407773A NO137009B NO 137009 B NO137009 B NO 137009B NO 4077/73 A NO4077/73 A NO 4077/73A NO 407773 A NO407773 A NO 407773A NO 137009 B NO137009 B NO 137009B
Authority
NO
Norway
Prior art keywords
ceramic material
ceramic
fibers
procedure
hydrogenation
Prior art date
Application number
NO4077/73A
Other languages
Norwegian (no)
Other versions
NO137009C (en
Inventor
Henri Carbonnel
Michel Marchais
Original Assignee
Alsacienne Atom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alsacienne Atom filed Critical Alsacienne Atom
Publication of NO137009B publication Critical patent/NO137009B/en
Publication of NO137009C publication Critical patent/NO137009C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Den foreliggende oppfinnelse angår et sammensatt keramisk material med dispergerte fibre og en fremgangsmåte for fremstilling av dette. The present invention relates to a composite ceramic material with dispersed fibers and a method for its production.

Utviklingen av forskjellige metoder hvor dét anvendes fluider bragt til meget høye temperaturer er i en viss grad betinget av fremstilling av et material med meget lav varmeledningsevne kombinert med en meget høy motstand overfor termiske sjokk. The development of different methods where fluids brought to very high temperatures are used is to a certain extent conditioned by the production of a material with very low thermal conductivity combined with a very high resistance to thermal shocks.

Det er kjent at disse to egenskaper vanskelig kan forenes og It is known that these two characteristics can hardly be reconciled and

at keramiske materialer generelt har den fordel at dé har lav' varmeledningsevne, mens de på den annen side har liten motstand overfor termiske sjokk. that ceramic materials generally have the advantage of low thermal conductivity, while on the other hand they have little resistance to thermal shocks.

Det er også kjent at det termiske sjokk som et keramisk element med en bestemt form kan tåle er proporsjonalt med bruddfastheten S og at det er omvendt proporsjonalt med produktet av utvidelseskoeffisienten a og Youngs modul E. For vesentlig å redusere Youngs modul og derved øke motstanden overfor termiske sjokk har det vært foreslått å fremstille keramisk material som beholder en plastisk tilstand, men erfaringer viser at bruddfastheten S derved samtidig reduseres. Dette gjør slike keramiske substanser uegnet for mange anvendelser og forbedrer ikke motstanden overfor termiske sjokk i vesentlig grad. It is also known that the thermal shock that a ceramic element of a certain shape can withstand is proportional to the fracture toughness S and that it is inversely proportional to the product of the expansion coefficient a and Young's modulus E. To significantly reduce Young's modulus and thereby increase the resistance to thermal shocks, it has been proposed to produce ceramic material that retains a plastic state, but experience shows that the fracture toughness S is thereby simultaneously reduced. This makes such ceramic substances unsuitable for many applications and does not significantly improve resistance to thermal shock.

Det er også kjent at det er laget "matter" av aluminiumoksydfibre' og zirkonfibre, etc, som for den største del har en lagretning vinkelrett på overflaten av den nevnte matte, hvorpå et keramisk material har blitt formet. Overflater som har god motstand overfor termiske sjokk forbundet med utmerkete mekaniske egenskaper i en bestemt retning kan således fremstilles etter ønske. Denne metode gjør det ikke mulig å fremstille deler som har en høy grad av ensartet mekanisk egenskap i flere retninger, og det er heller' ikke mulig å forme gjenstander med komplekse former og samtidig oppnå god motstand overfor termiske sjokk og en forbedret mekanisk styrke i alle retninger. Det er nå funnet et metode til å beskytte følsomme elementer, som anbringes slik at de kommer i kontakt med et medium som plutselig.kan bringes til en høy temperatur, overfor varme og samtidig overfor en kjemisk innvirkning, med samtidig forbedrete mekaniske egenskaper. It is also known that "mats" have been made of aluminum oxide fibers' and zirconium fibers, etc., which for the most part have a layer grain perpendicular to the surface of the said mat, on which a ceramic material has been formed. Surfaces that have good resistance to thermal shock associated with excellent mechanical properties in a specific direction can thus be produced as desired. This method does not make it possible to produce parts that have a high degree of uniform mechanical properties in several directions, nor is it possible to form objects with complex shapes and at the same time achieve good resistance to thermal shocks and an improved mechanical strength in all directions. A method has now been found to protect sensitive elements, which are placed so that they come into contact with a medium which can suddenly be brought to a high temperature, against heat and at the same time against a chemical impact, with simultaneously improved mechanical properties.

Gjenstanden for den foreliggende oppfinnelse er et keramisk material, det vil si et produkt oppnådd ved brenning ved en meget høy temperatur under bestemte fysikalske og kjemiske betingelser, nemlig uten trykk og ved temperaturer mellom 1000 og 1300°C. Dette til forskjell fra det produkt som er omhandlet i U.S.patentskrift 3.253.936 som ved brenning ville gi et glassaktig produkt på The object of the present invention is a ceramic material, i.e. a product obtained by firing at a very high temperature under specific physical and chemical conditions, namely without pressure and at temperatures between 1000 and 1300°C. This differs from the product referred to in U.S. patent 3,253,936 which, when fired, would give a glassy product on

grunn av at det anvendes fibre med høyt innhold av SiC>2 som ved brenning eller kontakt med smeltet metall ville gå over i en kolloidal silikagel i produktet, og til forskjell fra det produkt som er kjent fra U.S.patentskrift 3.294.562 og som omfatter en grunnmasse av kalsiumaluminat, men med innlemming av fibre med vesentlig høyere silisiuminnhold, som ved anvendelse i smeltet metall ville bli sterkt angrepet med sprekkdannelser og nedbryting av produktet i løpet av noen timer eller i hvert fall i løpet av noen dager. Til forskjell herfra tar den foreliggende oppfinnelse sikte på innlemming av fibre som inneholder et minimum av silisiumoksyd slik at det oppnådde produkt blir motstandsdyktig overfor den korroderende virkning av smeltet metall, særlig aluminium, til forskjell fra tidligere kjente produkter som for formålet nærmest hadde karakter av å være bestemt for engangs bruk. due to the fact that fibers with a high content of SiC>2 are used which, on burning or contact with molten metal, would turn into a colloidal silica gel in the product, and in contrast to the product known from U.S. patent 3,294,562 which comprises a base mass of calcium aluminate, but with the incorporation of fibers with a significantly higher silicon content, which when used in molten metal would be strongly attacked with cracking and breakdown of the product within a few hours or at least within a few days. In contrast to this, the present invention aims at the incorporation of fibers containing a minimum of silicon oxide so that the obtained product becomes resistant to the corrosive effect of molten metal, in particular aluminium, in contrast to previously known products which for the purpose almost had the character of be intended for single use.

De forsøk som er utført har vist at det er mulig å fremstille The experiments that have been carried out have shown that it is possible to produce

et slikt material som har liten Youngs modul for derved å oppnå en høyere motstand overfor termisk sjokk, ved å innblande spesielle keramiske fibre dispergert i et sement-material. such a material which has a small Young's modulus to thereby achieve a higher resistance to thermal shock, by mixing special ceramic fibers dispersed in a cement material.

Den foreliggende oppfinnelse angår følgelig et sammensatt keramisk material med utpreget motstand overfor termiske sjokk og den korroderende virkning av smeltet aluminium, bestående av keramiske fibre i en mengde som er større enn 20% av den totale vekt av materialet dispergert i et hydraulisk bindemiddel av kalsiumaluminat, og det særegne ved materialet i henhold til oppfinnelsen er at materialet inneholder mindre enn 10% The present invention therefore relates to a composite ceramic material with pronounced resistance to thermal shocks and the corrosive action of molten aluminium, consisting of ceramic fibers in an amount greater than 20% of the total weight of the material dispersed in a hydraulic binder of calcium aluminate, and the peculiarity of the material according to the invention is that the material contains less than 10%

Si regnet på den totale vekt av materialet. Calculate the total weight of the material.

Oppfinnelsen angår videre en fremgangsmåte for fremstilling The invention further relates to a method for production

av det nevnte material, og det særegne ved fremgangsmåten i henhold til oppfinnelsen er at det første operasjonstrinn består i å hurtig dispergere de keramiske fibre inn i det hydrauliske bindemiddel i nærvær av en vannmengde av samme størrelsesorden som de faste bestanddeler. of the said material, and the peculiarity of the method according to the invention is that the first operational step consists in rapidly dispersing the ceramic fibers into the hydraulic binder in the presence of a quantity of water of the same order of magnitude as the solid components.

Disse og andre trekk ved oppfinnelsen fremgår av patentkravene. These and other features of the invention appear in the patent claims.

Det er tidligere fremstilt keramiske fibre ved bruk av flere produkter, som f.eks. aluminiumoksyd, zirkoniumoksyd eller bor. En keramisk fiber hvor aluminiumoksyd-innholdet er av størrelsesorden 88% og den gjenværende del utgjøres' av silisiumoksyd (Si02) er markedsført og egner seg for anvendelse ved den foreliggende oppfinnelse.Slike fibre innblandes i et hydraulisk bindemiddel som hovedsakelig består av kalsiumaluminat, fremstilt på den måte som er angitt nedenfor, i en mengde som er større enn 20% av den totale vekt av materialet. Et keramisk material hvori Youngs modul E er minst 20 ganger mindre enn i kjente keramiske materialer oppnås. Utvidelseskoeffisienten a avtar vesentlig, mens bruddfastheten S forblir konstant, slik at motstanden overfor termiske sjokk forbedres i vesentlig grad. Ceramic fibers have previously been produced using several products, such as e.g. aluminum oxide, zirconium oxide or boron. A ceramic fiber in which the aluminum oxide content is of the order of 88% and the remaining part consists of silicon oxide (SiO2) has been marketed and is suitable for use in the present invention. Such fibers are mixed into a hydraulic binder which mainly consists of calcium aluminate, produced on the way indicated below, in an amount greater than 20% of the total weight of the material. A ceramic material in which Young's modulus E is at least 20 times smaller than in known ceramic materials is obtained. The coefficient of expansion a decreases significantly, while the fracture toughness S remains constant, so that the resistance to thermal shocks is significantly improved.

Videre skal det bemerkes at motstanden overfor korrosjon av Furthermore, it should be noted that the resistance to corrosion of

slike produkter vanligvis blir svært lik den for det benyttete such products usually become very similar to the one used

hydrauliske bindemiddel. I det tilfelle hvor de innførte fibre hovedsakelig består av aluminiumoksyd eller zirkoniumoksyd og hvor det hydrauliske bindemiddel er kalsiumaluminat oppnås den samme motstand overfor korrosjon, i varm tilstand, som i et keramisk material hovedsakelig bestående av aluminiumoksyd og kalsiumaluminat. hydraulic binder. In the case where the introduced fibers mainly consist of aluminum oxide or zirconium oxide and where the hydraulic binder is calcium aluminate, the same resistance to corrosion is achieved, in a hot state, as in a ceramic material mainly consisting of aluminum oxide and calcium aluminate.

Oppfinnelsen beskrives mer detaljert nedenfor under henvisning til et utførelseseksempel hvor det som utgangsmaterial anvendes en industrielt fremstilt keramisk fiber, f.eks. "Fibral" fremstilt av Societe Generale des Produits Refractaires (S.G.P.R.), med aluminiumoksydinnhold 88% og Si02~innhold 12%, med en toleranse på 1 til 4% med hensyn til aluminium-oksydet. The invention is described in more detail below with reference to an embodiment where an industrially produced ceramic fiber is used as starting material, e.g. "Fibral" manufactured by Societe Generale des Produits Refractaires (S.G.P.R.), with alumina content 88% and SiO2 content 12%, with a tolerance of 1 to 4% with respect to the alumina.

Den ovennevnte fiber innblandes i en mengde som er større enn The above-mentioned fiber is mixed in an amount greater than

20 vektprosent av de samlede faste bestanddelene i en hydraulisk sement dannet av kalsiumaluminat. Blandingen foretas i et blandeapparat av kjent type, ved å tilsette en vannmengde som minst er lik vekten av sementen. Blandingen utføres hurtig. Under disse betingelser er det mulig å innblande fibre i en mengde opp til 80 vektprosent av den totale vekt av materialet ved gradvis å tilsette den nødvendige vannmengde. Den oppnådde blanding støpes og vibreres. Vannet stiger til overflaten. Det må tørkes fullstendig bort. Når flere operasjoner er utført etter hverandre er det absolutt nødvendig å tørke produktet etter hver vibrering f-ar ytterligere mengde av frisk oppnådd blanding tilsettes. Vibreringen stoppes når produktet får konsistensen av et ferskt keramisk material. Det er da nødvendig å vente inntil den hydrauliske "setting " har funnet sted, og dette tar vanligvis flere timer. 20 percent by weight of the total solid components in a hydraulic cement formed from calcium aluminate. The mixture is made in a mixing apparatus of a known type, by adding a quantity of water which is at least equal to the weight of the cement. Mixing is carried out quickly. Under these conditions, it is possible to mix in fibers in an amount of up to 80% by weight of the total weight of the material by gradually adding the required amount of water. The resulting mixture is poured and vibrated. The water rises to the surface. It must be completely wiped away. When several operations are carried out one after the other, it is absolutely necessary to dry the product after each vibration before a further amount of freshly obtained mixture is added. The vibration is stopped when the product has the consistency of a fresh ceramic material. It is then necessary to wait until the hydraulic "setting" has taken place, and this usually takes several hours.

Tørking utføres deretter ifølge kjent metode ved stadig økende temperaturer som er tilpasset formen og dimensjonen av gjenstanden. Drying is then carried out according to a known method at constantly increasing temperatures which are adapted to the shape and dimensions of the object.

For gjenstander med liten diameter er det mulig å øke temperaturen med 20°C pr. time og således oppnå temperaturer For objects with a small diameter, it is possible to increase the temperature by 20°C per hour and thus achieve temperatures

på 100°C og 300°C i løpet av noen få timer. at 100°C and 300°C within a few hours.

For gjenstander med større dimensjoner må temperaturen økes langsommere. Det er oppnådd gode resultater med en økning på 10°C pr. time. For objects with larger dimensions, the temperature must be increased more slowly. Good results have been achieved with an increase of 10°C per hour.

Brenning utføres ved temperaturer av størrelsesorden 1000 til 1300°C med en økning i temperatur av samme størrelsesorden som tidligere nevnt. Det oppnådde produkt er et sammensatt keramisk material med dispergert struktur som er halvt fibrøs, halvt sement og som har en Youngs modul av størrelsesorden 20.000 kg/cm<2 >i stedet for 500.000 kg/cm<2> til 800.000 kg/cm<2>,mens strekk-fastheten er av størrelsesorden 11 kg/cm 2 og trykk-motstandsevnén i nærheten av 100 kg/cm 2, og utvidelseskoeffisienten har avtatt omtrent 25% for en gitt temperatur. På den annen side er det funnet at koeffisienten for varmeoverføring er meget liten og i størrelsesorden 0,2 til 0,4 w/m/°C. Firing is carried out at temperatures of the order of 1000 to 1300°C with an increase in temperature of the same order of magnitude as previously mentioned. The product obtained is a composite ceramic material with a dispersed structure which is half fibrous, half cement and which has a Young's modulus of the order of 20,000 kg/cm<2> instead of 500,000 kg/cm<2> to 800,000 kg/cm<2 >, while the tensile strength is of the order of 11 kg/cm 2 and the compressive strength in the vicinity of 100 kg/cm 2 , and the coefficient of expansion has decreased by approximately 25% for a given temperature. On the other hand, it has been found that the coefficient of heat transfer is very small and in the order of 0.2 to 0.4 w/m/°C.

En annen vesentlig egenskap ved det oppnådde produkt skal også bemerkes, nemlig at det har en ubetydelig krympning under settingen så vel som under brenningen. Another significant property of the product obtained should also be noted, namely that it has negligible shrinkage during setting as well as during firing.

Et keramisk material med forbedrete egenskaper oppnås ved A ceramic material with improved properties is obtained by

den samme fremgangsmåte, ved å innføre en fiber som hovedsakelig inneholder stabilisert zirkoniumoksyd, og som f.eks. består av 98% zirkoniumoksyd stabilisert med yttriumoksyd, i kalsiumaluminat som på samme måte som tidligere fungerer som et hydraulisk bindemiddel. the same method, by introducing a fiber which mainly contains stabilized zirconium oxide, and which e.g. consists of 98% zirconium oxide stabilized with yttrium oxide, in calcium aluminate which, in the same way as before, functions as a hydraulic binder.

Dispergeringen av de keramiske fibre i det hydrauliske bindemiddel fremmes ved å innføre en stor vannmengde. Men dispersjonen av de keramiske fibre kan også oppnås ved tørrblanding og med utmerkete egenskaper ved først å fremstille blandingen av hydraulisk bindemiddel med de keramiske fibre helt og holdent i tørr tilstand i f.eks. en Y-blandeenhet. The dispersion of the ceramic fibers in the hydraulic binder is promoted by introducing a large amount of water. But the dispersion of the ceramic fibers can also be achieved by dry mixing and with excellent properties by first preparing the mixture of hydraulic binder with the ceramic fibers entirely in a dry state in e.g. a Y mixing unit.

Vann tilsettes da i et etterfølgende trinn. Water is then added in a subsequent step.

En primær anvendelse av det fremstile keramiske material er fremstilling av keramiske deler som tildannes rundt magnetiske kretser i nedsenkbare elektromagnetiske pumper. Disse enheter skal f.eks. tåle det termiske sjokk som opptrer når pumpen senkes ned i det flytende metallbad som holdes ved en høy temperatur, under behandling eller bearbeidelse av aluminium. A primary application of the manufactured ceramic material is the manufacture of ceramic parts that are formed around magnetic circuits in submersible electromagnetic pumps. These units must e.g. withstand the thermal shock that occurs when the pump is immersed in the liquid metal bath maintained at a high temperature, during treatment or machining of aluminium.

Pumper som er beskyttet på denne måte er også beskyttet overfor Pumps protected in this way are also protected against

termiske sjokk ved avkjøling. thermal shocks on cooling.

En anvendelse som utgjør en meget stor fordel er ved One application that constitutes a very big advantage is wood

fremstillingen av former for aluminiumstøpning, idet det foreliggende keramiske material er fullstendig fritt for krympning og utvidelse under fremstillingen av formen. the production of molds for aluminum casting, the present ceramic material being completely free from shrinkage and expansion during the production of the mold.

Det er videre mulig å fremstille former av alle typer, rør, It is also possible to produce molds of all types, pipes,

ildfaste murstener, støperenner for flytende metall og også bekledninger for smelteovner, smelteøser, utløpskanaler for meget varme væsker eller gasser som er spesielt reaktive. refractory bricks, chutes for liquid metal and also linings for melting furnaces, melting ladles, outlet channels for very hot liquids or gases that are particularly reactive.

Claims (2)

1. Fremgangsmåte ved fremstilling av1. Procedure for the production of primære alifatiske aminer ved kontinuerlig katalytisk hydrogenering av nitriler i nær- vær av en base og minst én hydrogene- ringskatalysator ved forhøyet temperatur og under overatmosfærisk trykk inntil hy-drogeneringen er i det vesentlige fullstendig, hvoretter aminet fjernes fra hydrogeneringssonen og avkjøles, karakterisert ved at endel av det avkjølte amin resirkuleres til hydrogeneringssonen. primary aliphatic amines by continuous catalytic hydrogenation of nitriles in the presence of a base and at least one hydrogen ring catalyst at elevated temperature and under superatmospheric pressure until the hydrogenation is substantially complete, after which the amine is removed from the hydrogenation zone and cooled, characterized in that part of the cooled amine is recycled to the hydrogenation zone. 2. Fremgangsmåten ifølge påstand 1, karakterisert ved at der anvendes et nitril inneholdende fra 8 til 24 karbon-atomer og at en mengde avkjølt amin tilsvarende fra 25 til 200 % av det tilførte nitril resirkuleres til hydrogeneringssonen.2. The method according to claim 1, characterized in that a nitrile containing from 8 to 24 carbon atoms is used and that an amount of cooled amine corresponding to from 25 to 200% of the supplied nitrile is recycled to the hydrogenation zone.
NO4077/73A 1972-10-24 1973-10-22 COMPOSITE CERAMIC MATERIAL AND PROCEDURE FOR MAKING THIS NO137009C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7237680A FR2203788B1 (en) 1972-10-24 1972-10-24

Publications (2)

Publication Number Publication Date
NO137009B true NO137009B (en) 1977-09-05
NO137009C NO137009C (en) 1977-12-14

Family

ID=9106148

Family Applications (1)

Application Number Title Priority Date Filing Date
NO4077/73A NO137009C (en) 1972-10-24 1973-10-22 COMPOSITE CERAMIC MATERIAL AND PROCEDURE FOR MAKING THIS

Country Status (10)

Country Link
JP (1) JPS5644038B2 (en)
AU (1) AU477144B2 (en)
CA (1) CA1018190A (en)
CH (1) CH584667A5 (en)
DE (1) DE2351782A1 (en)
FR (1) FR2203788B1 (en)
GB (1) GB1428711A (en)
IT (1) IT998953B (en)
NO (1) NO137009C (en)
SU (2) SU482940A3 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH596109A5 (en) * 1975-01-15 1978-02-28 Activite Atom Avance
SE414399B (en) 1976-03-16 1980-07-28 Hans Scheicher CERAMIC MATERIAL FOR USE IN MEDICINE, IN PARTICULAR FOR MANUFACTURE OF IMPLANTS, FOREIGN ODONTOLOGICAL IMPLANTS AND SET FOR MANUFACTURING THE MATERIAL
FR2432489A1 (en) * 1978-08-03 1980-02-29 Kraszewski Richard CEMENT-BASED WATER-REPELLENT POWDER COMPOSITION AND APPLICATION THEREOF
JPS56166305A (en) * 1980-05-23 1981-12-21 Matsushita Electric Ind Co Ltd Plunger punch for hot press
FR2501191B1 (en) * 1981-03-04 1985-06-21 Novatome REFRACTORY MATERIAL IN PARTICULAR FOR CONTACT WITH MOLTEN ALUMINUM AND PROCESS FOR PRODUCING THE SAME
CA1214794A (en) * 1982-11-15 1986-12-02 Robert L. Farmer Machinable fiber board
JPS60239371A (en) * 1984-05-14 1985-11-28 佐藤 宏 Heat-resistant refractory ceramics and manufacture
NO178976C (en) * 1989-11-14 1996-07-10 Union Carbide Ind Gases Tech Container for hot holding and refining of molten aluminum
ES2800155T3 (en) * 2017-10-04 2020-12-28 Refractory Intellectual Property Gmbh & Co Kg Mixture for the manufacture of a refractory product, a procedure for the manufacture of a refractory product, a refractory product as well as the use of a synthetic raw material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253936A (en) * 1963-06-10 1966-05-31 Socony Mobil Oil Co Inc Castable fibrous refractory compositions and articles obtained therefrom
US3467535A (en) * 1966-10-17 1969-09-16 Carborundum Co Refractory insulating compositions
FR1568996A (en) * 1968-03-20 1969-05-30
US3752683A (en) * 1969-10-06 1973-08-14 Foseco Int Protection of turbine casings
JPS517475A (en) * 1974-07-05 1976-01-21 Omron Tateisi Electronics Co SHINGOHEN KANSOCHI

Also Published As

Publication number Publication date
SU482940A3 (en) 1975-08-30
CA1018190A (en) 1977-09-27
FR2203788B1 (en) 1980-02-15
AU477144B2 (en) 1976-10-14
SU651688A3 (en) 1979-03-05
JPS4980107A (en) 1974-08-02
NO137009C (en) 1977-12-14
FR2203788A1 (en) 1974-05-17
AU6141873A (en) 1975-04-17
GB1428711A (en) 1976-03-17
IT998953B (en) 1976-02-20
JPS5644038B2 (en) 1981-10-16
CH584667A5 (en) 1977-02-15
DE2351782A1 (en) 1974-05-02

Similar Documents

Publication Publication Date Title
NO137009B (en) COMPOSITE CERAMIC MATERIAL AND PROCEDURE FOR MAKING THIS
US4690867A (en) Material for low melting point metal casting equipment
US2364108A (en) Bonded silicon carbide refractories
JPH04321551A (en) Method of manufacturing refractory material and use thereof in casting of corrosive alloy
JPS5850943B2 (en) All information required
US3999998A (en) Isotropic composite ceramic with dispersed fibers and process for manufacture thereof
US4309371A (en) Preparing refractory insulating products having controlled porosity by the wet method
JPH01160854A (en) Fire-proof castables of high strength and abrasion resistance
US2567088A (en) Refractory material and method of making
JP7034981B2 (en) Insulation material, its manufacturing method, and composition
US4162179A (en) Refractory article and method of making the same
JPH0243701B2 (en)
JP5180504B2 (en) Method for manufacturing precast block for metal melting furnace ceiling and precast block for metal melting furnace ceiling
Ovčačík et al. Technology of refractory materials and heat insulating materials
US3230102A (en) Refractory
US4135939A (en) Refractory article and method of making the same
US976996A (en) Process of manufacturing refractory material.
Antonovich et al. Study on the destruction of heat-resistant chamotte concrete during sharp heating and cooling
JPH0328393B2 (en)
JPH1149577A (en) Prepared unshaped refractory
RU2101263C1 (en) Mullite material for fabrication of refractory products, method of manufacturing such mullite material, and refractory laminated article
JPS6191071A (en) Manufacture of thermal shock resistant ceramic
SU334801A1 (en) RAW MIXTURE FOR THE MANUFACTURE OF THE HEAT-RESISTANT CONCRETE
SU1416191A1 (en) Method of producing the hydrocyclone lining
CN113651625A (en) Non-cracking corrosion-resistant high-aluminum castable and application thereof