NO136202B - - Google Patents

Download PDF

Info

Publication number
NO136202B
NO136202B NO2911/71A NO291171A NO136202B NO 136202 B NO136202 B NO 136202B NO 2911/71 A NO2911/71 A NO 2911/71A NO 291171 A NO291171 A NO 291171A NO 136202 B NO136202 B NO 136202B
Authority
NO
Norway
Prior art keywords
catalyst
nickel
hydrogenation
fatty acids
fats
Prior art date
Application number
NO2911/71A
Other languages
Norwegian (no)
Other versions
NO136202C (en
Inventor
J Zajic
V Zapletal
J Soukup
F Uhlir
J Ruzicka
Original Assignee
Tukovy Pruemysl Oborove Redite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CS597470A external-priority patent/CS153983B1/cs
Priority claimed from CS597570A external-priority patent/CS153976B1/cs
Application filed by Tukovy Pruemysl Oborove Redite filed Critical Tukovy Pruemysl Oborove Redite
Publication of NO136202B publication Critical patent/NO136202B/no
Publication of NO136202C publication Critical patent/NO136202C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • C11C3/123Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Catalysts (AREA)

Abstract

Fremgangsmåte ved kontinuerlig hydrogenering av oljer, fett, umettede fettsyrer og umettede fettalkoholer.Process for the continuous hydrogenation of oils, fats, unsaturated fatty acids and unsaturated fatty alcohols.

Description

Foreliggende oppfinnelse angår en fremgangsmåte ved kontinuerlig hydrogenering av oljer, fett, umettede fettsyrer og mettede fettalkoholer med 10 - 30 carbonatomer i molekylet med hydrogen i en st rømningsautoklav for å danne de tilsvarende delvis eller helt mettede produkter. På denne måte kan hydrogeneringen utføres selektivt, idet innholdet av trans-isomerer varierer innen grensene 3 til 20%, slik at ce erholdte produkter har passende rheologiske egenskaper. The present invention relates to a method for the continuous hydrogenation of oils, fats, unsaturated fatty acids and saturated fatty alcohols with 10 - 30 carbon atoms in the molecule with hydrogen in a flow autoclave to form the corresponding partially or fully saturated products. In this way, the hydrogenation can be carried out selectively, the content of trans isomers varying within the limits of 3 to 20%, so that the products obtained have suitable rheological properties.

Vegetabilske oljer, animalske fett, fettsyrer og fettalkoholer med forskjellig grad av metning utgjør selv meget viktige råmateri-aler for matvarer og den kjemiske industri. For deres anvendelse spiller metningsgraden en meget viktig rolle. Naturlige faste fett oppfyller ikke alltid kravene som stilles til anvendelsen. Hensikten med hydrogeneringen av vegetabilske og animalske oljer og fett er å frembringe et fast fett eller et fett av mere viskøs kon-sistens enn de opprinnelige flytende oljer med eventuell fjerning av noen materialer som ikke kan fjernes på annet vis. Dette mulig-gjør anvendelsen av fett endog i de tilfelle hvor de uraffinerte fett ikke kan anvendes. Det samme gjelder også andre materialer av mono- eller polyenkarakter. Vegetable oils, animal fats, fatty acids and fatty alcohols with varying degrees of saturation are themselves very important raw materials for foodstuffs and the chemical industry. For their application, the degree of saturation plays a very important role. Natural solid fats do not always meet the requirements set for the application. The purpose of the hydrogenation of vegetable and animal oils and fats is to produce a solid fat or a fat of a more viscous consistency than the original liquid oils with the eventual removal of some materials that cannot be removed in any other way. This enables the use of fat even in cases where the unrefined fat cannot be used. The same also applies to other materials of mono or polyene character.

Hydrogeneringen av vegetabilske oljer, animalske fett og noen andre materialer på basis av umettede fettsyrer, alkoholer, etc., til de tilsvarende mere mettede forbindelser har siden oppdagelsen av dem og deres industrielle anvendelse, undergått atskillig utvik-ling. Undersøkelsene og de teknologiske gjennomførelser anvender hovedsakelig den fundamentale ordning med satshydrogenering, ved hvilken der i massen av væskefasen (vegetabilsk olje, fett, umettede fettsyrer, etc.) suspenderes en fast pulverkatalysator (hyppigst nikkel som rent metall eller på en bærer) og findispergert hydrogen innføres i denne suspensjon. En annen teknologisk metode ved hydrogenering av oljer og fett består i sirkuleringen av katalysatoren suspendert i en hydrogenert komponent gjennom en reaktor med hydrogenatmosfære. Disse teknologiske metoder bibeholdes også ved hydrogeneringen av umettede forbindelser i nærvær av et oppløs-ningsmiddel. Fra ovenstående skjema som foreslått av Norman i 1902 er' der ingen avvikelse i det teknologiske prinsipp ved noen av de kontinuerlige metoder. Den teknologiske oppløsning av denne hydrogenering kan realiseres i en reaktor eller i en kaskade av reaktorer. Nyiig er f.eks. Lurgi-, Pintsch-Bamag- og Buss-systemene fremkommet. Hydrogeneringen av frie umettede fettsyrer slo igjennom betraktelig senere sammenlignet med oljer. Vanskelighetene besto i de høyere krav til aktiviteten og varigheten av katalysatoren. Alle metodene for hydrogenering av oljer og fett i suspensjon med et pulver anvendt hittil i industriell skala lider under noen mangler. Til disse hører først og fremst den vanskelige fremgangsmåte ved fra-skilling av katalysatoren når hydrogeneringen er ferdig. Denne operasjon kompliserer også de ovennevnte kontinuerlige metoder. The hydrogenation of vegetable oils, animal fats and some other materials based on unsaturated fatty acids, alcohols, etc., to the corresponding more saturated compounds has, since their discovery and their industrial application, undergone several developments. The investigations and technological implementations mainly use the fundamental scheme of batch hydrogenation, whereby a solid powder catalyst (most often nickel as pure metal or on a carrier) and finely dispersed hydrogen are suspended in the mass of the liquid phase (vegetable oil, fat, unsaturated fatty acids, etc.) introduced in this suspension. Another technological method in the hydrogenation of oils and fats consists in the circulation of the catalyst suspended in a hydrogenated component through a reactor with a hydrogen atmosphere. These technological methods are also retained in the hydrogenation of unsaturated compounds in the presence of a solvent. From the above scheme as proposed by Norman in 1902, there is no deviation in the technological principle in any of the continuous methods. The technological resolution of this hydrogenation can be realized in a reactor or in a cascade of reactors. New is e.g. The Lurgi, Pintsch-Bamag and Buss systems emerged. The hydrogenation of free unsaturated fatty acids broke through considerably later compared to oils. The difficulties consisted in the higher requirements for the activity and duration of the catalyst. All the methods for hydrogenating oils and fats in suspension with a powder used up to now on an industrial scale suffer from some shortcomings. These primarily include the difficult process of separating the catalyst when the hydrogenation is complete. This operation also complicates the above continuous methods.

Den er i hvert fall en satsmetode (vanligst filtrering i filter-presse) som krever manuelt arbeide. En annen ulempe består i relativt høye temperaturer (teknologisk gjennomførbare hydrogeneringer krever l8o C og mere) som•organiske materialer underkastes i relativt lange tider (3-8 timer). Reaksjonstiden påvirkes av den relativt lave konsentrasjon av katalysator og hydrogen i reaksjons-blandingen. Ved hydrogeneringen med suspendert pulverkatalysator ved de vanlige teknologiske temperaturer fåes alltid et produkt med høyt innhold av trans-isomerer av fettsyrer (20 - 40%). Bare noen former for den kontinuerlige hydrogenering av oljer og fett avviker mer eller mindre fra det ovennevnte teknologiske skjema og gir en forskjellig løsning av prosessen. E. R. Bolton & E. J. Lush ut-arbeidet i 1921 - 1927 den kontinuerlige hydrogenering av oljer og fett på en fastlagskatalysator for å unngå det vanskelige arbeide med pulverkatalysator. Metallisk nikkel i form av streng og spon med kjemisk aktivert overflate (oxydasjon med HNO^, anodisk oxydasjon med påfølgende reduksjon av nikkeloxydet med hydrogen) ble anvendt som katalysator. Denne interessante prosess har imidlertid ikke vært realisert teknologisk på grunn av en rekke vanskeligheter. Metaller og deres legeringer i form av spon, streng eller fliser som aktiveres på en hvilken som helst måte, anvendes ved katalysereak-sjonen bare i dets relativt tynne overflatelag.. Der er ingen for-skjell mellom aktiveringen av metallisk nikkel ved fremgangsmåten ifølge Bolton & Lush og katalysatorene erholdt ved utlutning av Raney-legeringer. Dette aktive overflatelag belastes betraktelig (ved hydrogeneringene i væskefase) og må fornyes efter relativt kort tid. Ved den periodiske regenering av katalysator er utstyret ute av drift i relativt lang tid. Arbeidet med konsentrert alkalilut ved utlutning av Raney-legeringer eller arbeide med salpetersyre eller oppløsning av elektrolytter ved Bolton & Lush aktivering frembringer også katalytisk hydrogenering av umettede hydroxysyrer og deres estere, og de erholdte hydrogenerte produkter fant ikke en praktisk anvendelse, på grunn av relativt høye arbeidstrykk og den lave volumhastighet av hydrogenerte materialer.. In any case, it is a batch method (usually filtration in a filter press) that requires manual work. Another disadvantage consists in relatively high temperatures (technologically feasible hydrogenations require l8o C and more) to which organic materials are subjected for relatively long times (3-8 hours). The reaction time is affected by the relatively low concentration of catalyst and hydrogen in the reaction mixture. During the hydrogenation with a suspended powder catalyst at the usual technological temperatures, a product is always obtained with a high content of trans isomers of fatty acids (20 - 40%). Only some forms of the continuous hydrogenation of oils and fats deviate more or less from the above technological scheme and provide a different solution to the process. E. R. Bolton & E. J. Lush worked out in 1921 - 1927 the continuous hydrogenation of oils and fats on a fixed bed catalyst to avoid the difficult work with powder catalyst. Metallic nickel in the form of string and shavings with a chemically activated surface (oxidation with HNO^, anodic oxidation with subsequent reduction of the nickel oxide with hydrogen) was used as catalyst. However, this interesting process has not been realized technologically due to a number of difficulties. Metals and their alloys in the form of shavings, strips or tiles which are activated in any way are used in the catalysis reaction only in their relatively thin surface layer. There is no difference between the activation of metallic nickel by the method according to Bolton & Lush and the catalysts obtained by leaching Raney alloys. This active surface layer is considerably stressed (by the hydrogenations in the liquid phase) and must be renewed after a relatively short time. During the periodic regeneration of the catalyst, the equipment is out of operation for a relatively long time. The work with concentrated alkali liquor in the leaching of Raney alloys or work with nitric acid or dissolution of electrolytes in Bolton & Lush activation also produces catalytic hydrogenation of unsaturated hydroxy acids and their esters, and the obtained hydrogenated products did not find a practical application, due to relatively high working pressure and the low volume rate of hydrogenated materials..

Til en rekke produkter i matvareindustrien, f.eks. fremstilling av margarin, smult og spisefett, må de anvendte råfett ha noen nød-vendige egenskaper..Da i de fleste tilfelle disse produkter -er herdede fett eller blandinger av herdede fett >og vegetabilske og animalske fett og vegetabilske oljer,, er hensikten å erholde blandinger mec} bestemte rheologiske egenskaper og /kvantitative para-metere. Meget gode resultater ble oppnådd med selektivt herdede fett, d.v.s. fettene som inneholder den nødvendige mengde av mono-eller di-umettede fettsyrer. For a number of products in the food industry, e.g. production of margarine, lard and edible fat, the crude fats used must have some necessary properties. As in most cases these products are hardened fats or mixtures of hardened fats and vegetable and animal fats and vegetable oils, the purpose is to obtaining mixtures with certain rheological properties and/quantitative parameters. Very good results were obtained with selectively hardened greases, i.e. the fats that contain the required amount of mono- or di-unsaturated fatty acids.

Problemene ved den selektive herdning av oljer og fett ved de klassiske fremgangsmåter, d.v.s. ved den heterogene katalytiske reaksjon med metallisk katalysator dispergert i olje og med sirkul-ering eller stasjonær hydrogenatmosfære, har vært behandlet av en rekke forfattere. Bare fundamentale egenskaper for den gitte type av fremgangsmåte, har vært oppnådd, og det er således vanskelig å bestemme karakteren av reaksjonene utvetydig. Den høyere selektivitet av fremgangsmåten kan vanligvis oppnåes med en katalysator med lav aktivitet, lav hydrogenkonsentrasjon og den høyere arbeids-temperatur. The problems with the selective curing of oils and fats by the classical methods, i.e. by the heterogeneous catalytic reaction with metallic catalyst dispersed in oil and with circulation or a stationary hydrogen atmosphere, has been treated by a number of authors. Only fundamental properties for the given type of method have been achieved, and it is thus difficult to determine the nature of the reactions unequivocally. The higher selectivity of the process can usually be achieved with a catalyst with low activity, low hydrogen concentration and the higher working temperature.

Av interesse er også de metoder som gir den høyere selektivitet ved prosessen ved andre metaller enn nikkel, eller ved tilsetning av disse metaller sammen med noen organiske materialer av ikke-fett-karakter. Ved anvendelse av heterogent katalysatorkobber på en bærer ved en konsentrasjon av 0,01 - 2% kobber, et trykk på 1 - Also of interest are the methods that give the process higher selectivity with metals other than nickel, or by adding these metals together with some organic materials of a non-fatty nature. When using heterogeneous catalyst copper on a support at a concentration of 0.01 - 2% copper, a pressure of 1 -

100 atm og temperatur på 150 - 220°C fikk man en høy grad av selektivitet. En lignende virkning kan oppnåes ved tilsetning av noen materialer med hydroxylgrupper (inntil 5%), eller ved dannelse av denne gruppe under prosessen. Til disse materialer hører f.eks. manit , sorbit, butanol, octanol, etc. Klassisk nikkelkatalysator på bærer i vanlige mengder anvendes. 100 atm and temperature of 150 - 220°C, a high degree of selectivity was obtained. A similar effect can be achieved by adding some materials with hydroxyl groups (up to 5%), or by forming this group during the process. These materials include e.g. mannitol, sorbitol, butanol, octanol, etc. Classic nickel catalyst on a carrier in normal quantities is used.

Fremgangsmåten ved kontinuerlig hydrogenering av oljer, fett, umettede fettsyrer og umettede fettalkoholer i henhold til foreliggende oppfinnelse muliggjør oppnåelsen av produkter med den ønskede metningsgrad og muligens med de egnede rheologiske egenskaper. Hydrogeneringen utføres kontinuerlig som følger: I en strømningsreaktor med et fast lag av nikkelkatalysator på en meget mekanisk resistent bærer innføres 'et hydrogenert materiale forvarmet til den ønskede temperatur, fra toppen. Katalysatoren i form av pellets eller i en eller annen annen form, inneholder 5-85 masse%, fortrinnsvis 20 - 6o masse% nikkel på en bærer, idet forholdet av den molare mengde redusert metallisk nikkel til mengden av nikkel i oxydform er 10:0,5 til 1,5:10, og ved et trykk på 0,2 - 45 atm, The method of continuous hydrogenation of oils, fats, unsaturated fatty acids and unsaturated fatty alcohols according to the present invention makes it possible to obtain products with the desired degree of saturation and possibly with suitable rheological properties. The hydrogenation is carried out continuously as follows: In a flow reactor with a solid layer of nickel catalyst on a very mechanically resistant support, a hydrogenated material preheated to the desired temperature is introduced from the top. The catalyst in the form of pellets or in some other form contains 5-85% by mass, preferably 20-60% by mass of nickel on a support, the ratio of the molar amount of reduced metallic nickel to the amount of nickel in oxide form being 10:0 .5 to 1.5:10, and at a pressure of 0.2 - 45 atm,

en temperatur på 60 - 26o°C og en volumhastighet av påmatet væske på 0,2 - 10 liter pr. liter katalysator pr. time. Dessuten kan en katalysator modifiseres inne i reaktoren eller utenfor reaktoren med svovelholdige eller fosforholdige materialer for å a temperature of 60 - 26o°C and a volume rate of supplied liquid of 0.2 - 10 liters per liter of catalyst per hour. In addition, a catalyst can be modified inside the reactor or outside the reactor with sulfur-containing or phosphorus-containing materials to

få 0,02 - 5 masse% svovel, 0,01 - 5 masse% fosfor individuelt eller i blanding i relasjon til mengden av nikkel. Produktet som forlater katalysatorlaget, er klart og behøver ikke å fil-t reres. get 0.02 - 5 mass% sulphur, 0.01 - 5 mass% phosphorus individually or in a mixture in relation to the amount of nickel. The product leaving the catalyst layer is clear and does not need to be filtered.

Eksempel Example

I alle de angitte tilfelle ble det hydrogenerte materiale matet sammen med hydrogen i den øvre del av hydrogeneringsreaktorer fylt med en katalysator. En nikkelkatalysator ble fremstilt i henhold til tsjekkoslovakisk patent 111.791 og 130.468, redusert i den ønskede utstrekning fulgt av passivering. Reaktoren ble fylt med passivert katalysator, idet aktiveringen ble utført i reaktoren i løpet av et tidsrom på 3 timer med hydrogen ved en temperatur på l6o°C og en volumhastighet på hydrogenet på 400 liter pr. liter katalysator og time. Modifikasjonen av katalysatoren med svovel eller fosfor ble utført direkte i reaktoren med svovelholdige eller fosforholdige forbindelser. Et hydrogenert flytende materiale strømmer ned over pelletene av katalysator inn i den nedre del av reaktoren forbundet med en separator, hvor væsken skilles fra hydrogen. Mengden av uttatt hydrogen var 5 N liter pr. 1 liter hydrogenert råmateriale. Doseringen av råmateriale ble oppnådd ved den variable pumpekapasitet på matepumpen. Hydrogentrykket i reaktoren ble opprettholdt ved en reduksjonsventil. Temperaturene på forvarmeren og reaktoren ble regulert av kraftmengden innført i opp-varmningsutstyret. In all the cases indicated, the hydrogenated material was fed together with hydrogen in the upper part of hydrogenation reactors filled with a catalyst. A nickel catalyst was prepared according to Czechoslovak patents 111,791 and 130,468, reduced to the desired extent followed by passivation. The reactor was filled with passivated catalyst, the activation being carried out in the reactor over a period of 3 hours with hydrogen at a temperature of 160°C and a volume rate of the hydrogen of 400 liters per minute. liters of catalyst and hour. The modification of the catalyst with sulfur or phosphorus was carried out directly in the reactor with sulfur- or phosphorus-containing compounds. A hydrogenated liquid material flows down over the pellets of catalyst into the lower part of the reactor connected to a separator, where the liquid is separated from the hydrogen. The amount of hydrogen withdrawn was 5 N liters per 1 liter hydrogenated raw material. The dosing of raw material was achieved by the variable pump capacity of the feed pump. The hydrogen pressure in the reactor was maintained by a reducing valve. The temperatures of the preheater and the reactor were regulated by the amount of power introduced into the heating equipment.

Forsøk 1 Attempt 1

Hydrogenering av avsyret og bleket solsikkeolje. Hydrogenation of deacidified and bleached sunflower oil.

Jodtall (ifølge Hanus) 127,4. Iodine number (according to Hanus) 127.4.

Syretall 0,43- Acid number 0.43-

Innhold av fosfolipider 0,09% som lecithin. Content of phospholipids 0.09% as lecithin.

En nikkelkatalysator på en bærer, nikkelinnhold i katalysatoren 51%, mengden av redusert metallisk nikkel 6l%. A nickel catalyst on a support, nickel content of the catalyst 51%, the amount of reduced metallic nickel 6l%.

Forsøk 2 Attempt 2

Hydrogenering av olein (blanding av fettsyrer) . Hydrogenation of olein (mixture of fatty acids) .

jodtall (ifølge Hanus) 49,1. iodine number (according to Hanus) 49.1.

Syretall 202,2. Acid number 202.2.

En nikkelkatalysator på en bærer, nikkelinnhold i katalysatoren 51%, mengden av redusert metallisk nikkel 6l%. A nickel catalyst on a support, nickel content of the catalyst 51%, the amount of reduced metallic nickel 6l%.

Forsøk 3 Attempt 3

Hydrogenering av oleylalkohol (octadec-9-en-l-ol). Hydrogenation of oleyl alcohol (octadec-9-en-l-ol).

Jodtall (ifølge Hanus) 90,5- Iodine number (according to Hanus) 90.5-

Hydroxyltall 2o4,0. Hydroxyl number 2o4.0.

En nikkelkatalysator på en bærer, nikkelinnhold i katalysatoren 51%, mengden av redusert metallisk nikkel 61%. A nickel catalyst on a support, nickel content of the catalyst 51%, the amount of reduced metallic nickel 61%.

Forsøk 4 Attempt 4

Hydrogenering av solsikkeolje. Hydrogenation of sunflower oil.

Jodtall (ifølge Hanus) 132,4. Iodine number (according to Hanus) 132.4.

Syretall 0,4l- Acid number 0.4l-

Katalysator nikkel på bærer (diatomit), nikkelinnhold 45,2%, mengden av redusert metallisk nikkel 24%. Catalyst nickel on support (diatomite), nickel content 45.2%, amount of reduced metallic nickel 24%.

Forsøk 5 Attempt 5

Hydrogenering av solsikkeolje. Hydrogenation of sunflower oil.

Jodtall (ifølge Hanus) 127,4. Iodine number (according to Hanus) 127.4.

Syretall 0,43. Acid number 0.43.

Katalysator nikkel på bærer (diatomit), nikkelinnhold 52%, mengden av redusert metallisk nikkel 94%- Catalyst nickel on carrier (diatomite), nickel content 52%, amount of reduced metallic nickel 94%-

Innhold av bundet svovel i forhold til nikkel 4,1%-Content of bound sulfur in relation to nickel 4.1%-

Claims (1)

Fremgangsmåte ved kontinuerlig hydrogenering av oljer og fett inneholdende i glyceridform foruten monoumettede også pcly-umettede fettsyrer, av umettede fettsyrer og umettede fettalkoholer med 10 - 30 carbonatomer i molekylet til de tilsvarende delvis eller fullstendig mettede forbindelser med hydrogen i en strømningsreaktor, hvor forvarmede, umettede, flytende materialer mates fra toppen på et fast lag av katalysator på en bærer, hvor hydrogeneringen finner sted i filmen av væske som fukter katalysatoren, karakterisert ved at der anvendes en katalysator som inneholder 5-85 masse%, fortrinnsvis 20 - 60 masse%, nikkel på en bærer, idet forholdet av den molare mengde redusert metallisk nikkel til mengden av nikkel i ,,oxydform er 10:0,5 til 1,5:10, og ved et trykk på 0,2 - 45 atm,Process for continuous hydrogenation of oils and fats containing in glyceride form besides monounsaturated also polyunsaturated fatty acids, of unsaturated fatty acids and unsaturated fatty alcohols with 10 - 30 carbon atoms in the molecule to the corresponding partially or completely saturated compounds with hydrogen in a flow reactor, where preheated, unsaturated , liquid materials are fed from the top onto a solid layer of catalyst on a carrier, where the hydrogenation takes place in the film of liquid that wets the catalyst, characterized in that a catalyst containing 5-85% by mass, preferably 20-60% by mass, is used. nickel on a support, the ratio of the molar amount of reduced metallic nickel to the amount of nickel in oxide form being 10:0.5 to 1.5:10, and at a pressure of 0.2 - 45 atm, en temperatur på 60 - 260°C og en volumhastighet av påmatet væske på 0,2 - IO liter pr. lite.r katalysator pr. time.a temperature of 60 - 260°C and a volume rate of supplied liquid of 0.2 - 10 liters per lite.r catalyst per hour.
NO291171A 1970-09-01 1971-08-03 PROCEDURES FOR CONTINUOUS HYDROGENATION OF OILS, FATS, UNSaturated Fatty Acids and Unsaturated FATAL ALCOHOLS. NO136202C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CS597470A CS153983B1 (en) 1970-09-01 1970-09-01
CS597570A CS153976B1 (en) 1970-09-01 1970-09-01

Publications (2)

Publication Number Publication Date
NO136202B true NO136202B (en) 1977-04-25
NO136202C NO136202C (en) 1977-08-03

Family

ID=25746289

Family Applications (1)

Application Number Title Priority Date Filing Date
NO291171A NO136202C (en) 1970-09-01 1971-08-03 PROCEDURES FOR CONTINUOUS HYDROGENATION OF OILS, FATS, UNSaturated Fatty Acids and Unsaturated FATAL ALCOHOLS.

Country Status (5)

Country Link
DE (1) DE2139566C3 (en)
FR (1) FR2107131A5 (en)
GB (1) GB1367312A (en)
NL (1) NL7111684A (en)
NO (1) NO136202C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2230020A (en) * 1989-01-27 1990-10-10 Unilever Plc Hydrogenation method

Also Published As

Publication number Publication date
DE2139566A1 (en) 1972-03-09
DE2139566B2 (en) 1974-07-25
DE2139566C3 (en) 1975-03-13
FR2107131A5 (en) 1972-05-05
NO136202C (en) 1977-08-03
GB1367312A (en) 1974-09-18
NL7111684A (en) 1972-03-03

Similar Documents

Publication Publication Date Title
Coenen Hydrogenation of edible oils
EP1586549B1 (en) Process for producing fatty alcohol
DE69025553T2 (en) Process for the hydrogenation of oils
EP0230971B1 (en) Process for the continuous heterogeneous catalytic hydrogenation of fats, fatty acids and fatty-acid derivatives
DE2605107C3 (en) Process for the preparation of diols by catalytic hydrogenation of the corresponding dicarboxylic acids
Sattorov et al. Selection and research of new modifications of stationary promoted nickel-copper-aluminum catalysts
DE2838529C2 (en)
NO803956L (en) NICKEL-BASED, BASELY CATALYSTS AND PROCEDURES IN PRODUCING THEREOF.
DE2838488A1 (en) HYDRATION CATALYSTS AND HYDRATION METHODS
NO136202B (en)
US4510092A (en) Continuous reduction of edible oils
US3792067A (en) Continuous hydrogenation of fatty materials
DE2101856B2 (en) Aluminum-nickel alloy, especially for use as a catalyst for the hydrogenation of unsaturated organic compounds
EP0878534A2 (en) Process for the continuous catalyst conversion of organic compounds
US4479902A (en) Selective reduction of edible fats and oils; platinum and palladium on titania
US3687989A (en) Process for the selective hydrogenation of fats and fatty acids
Schmidt Hydrogenation of triglycerides containing linolenic acids: II. Continuous hydrogenation of vegetable oils
US4158665A (en) Hydrogenation of glyceride oils
US4510091A (en) Continuous reduction of edible oils
US2302994A (en) Method of continuously hydrofining fatty acid esters
US4169844A (en) Hydrogenation of unrefined glyceride oils
DE615148C (en) Process for the catalytic hydrogenation of fats and fatty oils
Bafoeva et al. The Features of Technologies for Obtaining Cocoa Butter Substitutes from Vegetable Oil
SU503574A1 (en) The method of obtaining edible fats from a mixture of vegetable oils and animal fats
US4158666A (en) Stearine production