NO135061B - - Google Patents

Download PDF

Info

Publication number
NO135061B
NO135061B NO740169A NO740169A NO135061B NO 135061 B NO135061 B NO 135061B NO 740169 A NO740169 A NO 740169A NO 740169 A NO740169 A NO 740169A NO 135061 B NO135061 B NO 135061B
Authority
NO
Norway
Prior art keywords
copolymer
sheath
fuse
detonating fuse
petn
Prior art date
Application number
NO740169A
Other languages
Norwegian (no)
Other versions
NO135061C (en
Inventor
M A Langrish-Smith
D Steele
Original Assignee
Ici Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ici Ltd filed Critical Ici Ltd
Publication of NO135061B publication Critical patent/NO135061B/no
Publication of NO135061C publication Critical patent/NO135061C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C5/00Fuses, e.g. fuse cords

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Multicomponent Fibers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Insulated Conductors (AREA)

Description

Oppfinnelsen vedrører en detonerende lunte sora har en forbedret vanntett skjede av termoplast. The invention relates to a detonating fuse which has an improved waterproof sheath made of thermoplastic.

Detonerende lunter omfatter vanligvis en kjerne av eksplosivt materiale som er omgitt av armerende emballering, f. eks. naturlig eller syntetisk tekstilgarn. En detonerende lunte har således vanligvis en kjerne av PETN (pentaerytritoltetranitrat), og en sikkerhetslunte har en kjerne av svartkrutt. Kjernen er ofte innhyllet i et tynt lag papir eller plastfilm. Armeringsgarn påføres rundt omhyllingen, og en vanntett skjede av termoplast påføres over garnet, vanligvis ved ekstrudering. Den vanntette skjede består vanligvis av myknet polyvinylklorid (PVC) eller polyetylen, og den nødvendige ekstruderingstemperatur overskrider 160°C, som er høyere enn smeltepunktet for PETN (141°C). Derfor er det en vesentlig risiko for for sterk oppvarmning og antennel-se av PETN under ekstruderingsprosessen og slike tilfeller har vært rapportert. Det er klart at det ville være fordelaktig å anvende et skjedemateriale som kan ekstruderes ved lavere temperatur. Detonating fuses usually comprise a core of explosive material surrounded by reinforcing packaging, e.g. natural or synthetic textile yarn. Thus, a detonating fuse usually has a core of PETN (pentaerythritol tetranitrate), and a safety fuse has a core of black powder. The core is often wrapped in a thin layer of paper or plastic film. Reinforcing yarn is applied around the wrap, and a waterproof sheath of thermoplastic is applied over the yarn, usually by extrusion. The waterproof sheath is usually made of plasticized polyvinyl chloride (PVC) or polyethylene, and the required extrusion temperature exceeds 160°C, which is higher than the melting point of PETN (141°C). There is therefore a significant risk of excessive heating and ignition of PETN during the extrusion process and such cases have been reported. It is clear that it would be advantageous to use a sheath material which can be extruded at a lower temperature.

Søkeren har nå funnet at visse kopolymerer av etylen og vinylacetat eller alkylakrylater eller alkylmetakrylater med fordel kan anvendes for dette formål. Ikke bare kan de ekstruderes ved lavere temperatur, men de gir lunter som har andre ønske-lige egenskaper. The applicant has now found that certain copolymers of ethylene and vinyl acetate or alkyl acrylates or alkyl methacrylates can be advantageously used for this purpose. Not only can they be extruded at a lower temperature, but they provide fuses that have other desirable properties.

I overensstemmelse med oppfinnelsen omfatter en eksplosiv lunte en indre, eksplosiv kjerne og en ytre, vanntett skjede av en kopolymer av etylen og fra'7 til 30 vekt% av kopolymeren av vinylacetat eller et alkylakrylat eller et alkylmetakrylat hvor alkylgruppen inneholder fra 1 til 4 karbonatomer. Egnede akryla-ter og metakrylater inkluderer etyl- og butylakrylat og metylmetakrylat. In accordance with the invention, an explosive fuse comprises an inner explosive core and an outer waterproof sheath of a copolymer of ethylene and from 7 to 30% by weight of the copolymer of vinyl acetate or an alkyl acrylate or an alkyl methacrylate where the alkyl group contains from 1 to 4 carbon atoms . Suitable acrylates and methacrylates include ethyl and butyl acrylate and methyl methacrylate.

Den foretrukne kopolymer er en kopolymer av etylen og vinylacetat. Kopolymerene bør fortrinnsvis ha en smelteindeks på fra 0,1 til 25 og mer fortrinnsvis 1 til 7, målt i henhold til Britisk Standard 2782, del 1/105 C/1970 under anvendelse av en 2,16 kg belastning. The preferred copolymer is a copolymer of ethylene and vinyl acetate. The copolymers should preferably have a melt index of from 0.1 to 25 and more preferably 1 to 7, measured according to British Standard 2782, Part 1/105 C/1970 using a 2.16 kg load.

Da smeltepunktet for kopolymeren er lavere enn for polyetylen, påføres kopolymeren gjerne lunten ved ekstrudering, fortrinnsvis trykkekstrudering, idet ekstruderte skjeder av høy kva-litet oppnås ved ekstruderingstemperaturer som er meget lavere enn dem som hittil har vært nødvendig for ekstrudering av ekster-ne skjeder på eksplosive lunter. Ved fremstilling av detonerende lunte som har en kjerne av PETN, kan derfor ekstruderingstempera-turen holdes under smeltepunktet for PETN. As the melting point of the copolymer is lower than that of polyethylene, the copolymer is preferably applied to the fuse by extrusion, preferably pressure extrusion, as extruded sheaths of high quality are obtained at extrusion temperatures that are much lower than those that have hitherto been necessary for the extrusion of external sheaths on explosive fuses. When producing detonating fuses which have a core of PETN, the extrusion temperature can therefore be kept below the melting point of PETN.

Lunten omfatter gjerne ett eller flere armerende skikt av tekstilemballering som er viklet rundt den eksplosive kjerne slik som i de konvensjonelle lunter. Tekstil-omviklede lunter har hittil hatt lav vannresistens, stort sett på grunn av vannets ten-dens til å migrere ved kapillarvirkning langs tekstilskiktet og å komme inn i den eksplosive kjerne fra siden over lange avstander fra en lunteende som er neddyppet i vann. Søkeren har overraskende funnet at kopolymeren som anvendes i henhold til oppfinnelsen, kommer inn i mellomrommene i tekstilskiktet under ekstru-deringen, og migreringen av vann gjennom tekstilskiktet forhindres i stor grad. Vannresistensan til lunten forbedres derved. Lunter med spesielt god vannresistens kan fremstilles når tekstil-emballeringen omfatter fibrillert termoplastgarn, f.eks. fibrillert polypropylen. Fibrillert polypropylengarn som er belagt med et varmesmelte-klebemiddel som omfatter en kopolymer av etylen og vinylacetat, er spesielt nyttig i denne henseende. Eksempler på slike varmesmelte-klebemidler er gitt i DT-PS 2 203 261. The fuse often includes one or more reinforcing layers of textile packaging that are wrapped around the explosive core as in conventional fuses. Textile-wrapped fuses have hitherto had low water resistance, largely due to the tendency of water to migrate by capillary action along the textile layer and to enter the explosive core from the side over long distances from a fuse end that is immersed in water. The applicant has surprisingly found that the copolymer used according to the invention enters the spaces in the textile layer during extrusion, and the migration of water through the textile layer is prevented to a large extent. The water resistance of the fuse is thereby improved. Fuses with particularly good water resistance can be produced when the textile packaging includes fibrillated thermoplastic yarn, e.g. fibrillated polypropylene. Fibrillated polypropylene yarn coated with a hot melt adhesive comprising a copolymer of ethylene and vinyl acetate is particularly useful in this regard. Examples of such hot melt adhesives are given in DT-PS 2 203 261.

For visse formål hvor det er risiko for at lunten antar elektrostatisk ladning, kan kopolymerskjeden med fordel gjøres le-dende ved innarbeidelse av findelt karbon, hvorved ^en eventuell elektrisk ladning lett kan ledes til jord. For certain purposes where there is a risk of the fuse assuming an electrostatic charge, the copolymer sheath can advantageously be made conductive by incorporating finely divided carbon, whereby any electrical charge can easily be conducted to earth.

I tillegg til de ovenfor nevnte fordeler er lunten i henhold til oppfinnelsen mer fleksibel ved lave temperaturer og er overraskende mer slitasjeresistent enn lunter med skjeder av polyvinylklorid eller polyetylen. Den er derfor mer egnet for anvendelse under strenge betingelser, f.eks. i frosne områder og for suspendering av ladninger i ujevne mineringshull„ In addition to the above-mentioned advantages, the fuse according to the invention is more flexible at low temperatures and is surprisingly more wear-resistant than fuses with sheaths of polyvinyl chloride or polyethylene. It is therefore more suitable for use under strict conditions, e.g. in frozen areas and for suspending charges in uneven mining holes„

Oppfinnelsen skal i det følgende illustreres ved hjelp In the following, the invention will be illustrated with help

av eksempler på detonerende lunte, hvorav eksemplene 1 og 2 har konvensjonelle skjeder av PVC eller polyetylen og er tatt med for sammenligningens skyld, mens eksemplene 3 til 5 er i overensstemmelse med oppfinnelsen. of examples of detonating fuses, of which examples 1 and 2 have conventional sheaths of PVC or polyethylene and are included for the sake of comparison, while examples 3 to 5 are in accordance with the invention.

De detonerende lunter ble laget ved en vanlig brukt .. luntefremstillingsmetode, som f.eks. er beskrevet i GB-PS 1 120 200. De hadde en eksplosiv kjerne som bestod av krystallinsk PETN fylt ved en ladningshastighet på 10 g pr. meter, omgitt av en papirhyl-se av 0,18 mm tykkelse. Papirhylsen ble dekket med et spiralformet spunnet armeringsskikt av 10 strenger på 1000 denier "pin-roll"-fibrillert polypropylen-tape med en bredde på 2,5 mm og en tykkelse på 0,01 mm, spunnet med 26 vendinger pr. meter, fulgt av et spiralformet, motsatt spunnet skikt som bestod av 8 strenger av den samme "pin-roll"-fibrillerte polypropylen-tape spunnet ved 39 vendinger pr. meter. En 0,4 mm tykk termoplastskjede ble ekstrudert rundt polypropylenskiktene ved hjelp av en krysshode-ekstruderingsmaskin, idet skjedene fra eksemplene 3 til 5 ble ekstrudert under trykk. The detonating fuses were made by a commonly used .. fuse manufacturing method, such as e.g. is described in GB-PS 1 120 200. They had an explosive core consisting of crystalline PETN filled at a charge rate of 10 g per meters, surrounded by a paper sleeve of 0.18 mm thickness. The paper sleeve was covered with a spirally spun reinforcement layer of 10 strands of 1000 denier "pin-roll" fibrillated polypropylene tape with a width of 2.5 mm and a thickness of 0.01 mm, spun at 26 turns per meters, followed by a helical, counter-spun layer consisting of 8 strands of the same "pin-roll" fibrillated polypropylene tape spun at 39 turns per meters. A 0.4 mm thick thermoplastic sheath was extruded around the polypropylene layers using a crosshead extruder, the sheaths of Examples 3 to 5 being extruded under pressure.

I eksempel 1 var skjeden av PVC som var myknet med 36 deler di-isooktylftalat pr. 100 deler PVC. I eksempel 2 var skjeden av LD-polyetylen. I eksemplene 3 til 5 var den av en av en kopolymer av etylen og vinylacetat (VA) omfattende henholds-vis 7, 18 og 28 vekt% vinylacetat, mens kopolymerenes smelteindeks var 2. Egenskapene til luntene i henhold til eksemplene er gjengitt i følgende tabell. In example 1, the sheath was made of PVC that had been softened with 36 parts of diisooctyl phthalate per 100 parts PVC. In Example 2, the sheath was of LD polyethylene. In Examples 3 to 5, it was of one of a copolymer of ethylene and vinyl acetate (VA) comprising respectively 7, 18 and 28% by weight of vinyl acetate, while the melt index of the copolymers was 2. The properties of the fuses according to the examples are given in the following table .

Slitasjeresistensen ble bestemt ved å henge opp en lun-telengde, med en 3 kg vekt festet i den ene ende, over den rett-vinklede side av en betongblokk, mens den annen ende ble holdt i en vinkel av 30° mot horisontalen. Lunten ble gjentatte ganger ført over betongkanten til skjeden ble punktert. Det gjennom-snittlige antall passeringer som var nødvendig, er gjengitt for hver prøve. The abrasion resistance was determined by suspending a length of fuse, with a 3 kg weight attached to one end, over the right-angled side of a concrete block, while the other end was held at an angle of 30° to the horizontal. The fuse was repeatedly passed over the concrete edge until the sheath was punctured. The average number of passes required is given for each sample.

Lavtemperatur-oppførselen ble målt som den temperatur ved hvilken skjeden ble sprø eller for stiv til at luntelengder kunne knytes sammen. Kold-bøyetemperaturen ble bestemt i henhold til Britisk Standard 2782, del 1/104 B/1970, kold-krummetempera-turen ble bestemt i henhold til Britisk Standard 2782, del 1/104 B/1970 og'Charpy-sprøhetstemperaturen ble bestemt i henhold til Britisk Standard 2782/306E/1970. The low temperature behavior was measured as the temperature at which the sheath became brittle or too stiff for fuse lengths to be tied together. The cold bending temperature was determined according to British Standard 2782, Part 1/104 B/1970, the cold bending temperature was determined according to British Standard 2782, Part 1/104 B/1970 and the Charpy brittleness temperature was determined according to to British Standard 2782/306E/1970.

Vannresistensen ble bestemt ved å henge luntelengder vertikalt med en eksponert ende neddyppet under en vannkilde på 1,6 meter i 24 timer og måling av de avstander som vannet hadde trengt gjennom langs lunten. The water resistance was determined by hanging lengths of fuse vertically with one exposed end submerged under a water source of 1.6 meters for 24 hours and measuring the distances that the water had penetrated along the fuse.

I gap- utbredelsestesten ble to luntelengder holdt parallelt og i en målt avstand fra hverandre med et luftrom mellom seg. Den maksimale avstand over hvilken detonering ble kommuni-sert fra den ene lengde til den annen, ble bestemt. In the gap propagation test, two lengths of fuse were held in parallel and at a measured distance from each other with an air space between them. The maximum distance over which detonation was communicated from one length to the other was determined.

Testresultatene som er gjengitt i tabellen, viser at luntene i henhold til eksemplene 3 til 5 ble belagt med skjede ved en temperatur under smeltepunktet for PETN. De var overleg-ne med hensyn til slitasjeresistens, vannresistens og fleksibili-tet overfor luntene som var forsynt med skjede av PVC dg polyetylen, og med hensyn til eksplosive og mekaniske egenskaper var de minst like gode som de sistnevnte lunter. The test results given in the table show that the fuses according to Examples 3 to 5 were sheathed at a temperature below the melting point of PETN. They were superior in terms of wear resistance, water resistance and flexibility to the fuses that were provided with sheaths of PVC such as polyethylene, and with regard to explosive and mechanical properties they were at least as good as the latter fuses.

Claims (5)

1. Detonerende lunte som omfatter en indre, eksplosiv kjerne og en ytre, vanntett skjede, karakterisert ved at skjedematerialet er en kopolymer av etylen og fra 7 til 30 vekt% av kopolymeren av vinylacetat eller et alkylakrylat eller et alkylmetakrylat, hvor alkylgruppen inneholder 1 til 4 karbonatomer.1. Detonating fuse comprising an inner, explosive core and an outer, waterproof sheath, characterized in that the sheath material is a copolymer of ethylene and from 7 to 30% by weight of the copolymer of vinyl acetate or an alkyl acrylate or an alkyl methacrylate, where the alkyl group contains 1 to 4 carbon atoms. 2. Detonerende lunte som angitt i krav 1, karakterisert ved at kopolymeren er en kopolymer av etylen og etylakrylat, butylakrylat eller metylmetakrylat.2. Detonating fuse as stated in claim 1, characterized in that the copolymer is a copolymer of ethylene and ethyl acrylate, butyl acrylate or methyl methacrylate. 3. Detonerende lunte som angitt i krav 1 eller 2, karakterisert ved at kopolymeren har en smeltein deks på fra 0,1 til 25, fortrinnsvis 1 til 7.3. Detonating fuse as stated in claim 1 or 2, characterized in that the copolymer has a melting point dex of from 0.1 to 25, preferably 1 to 7. 4. Detonerende lunte som angitt i krav 1, karakterisert ved at den eksplosive kjerne er PETN og at skjeden er ekstrudert ved en temperatur under smeltepunktet for PETN.4. Detonating fuse as stated in claim 1, characterized in that the explosive core is PETN and that the sheath is extruded at a temperature below the melting point of PETN. 5. Detonerende lunte som angitt i hvilket som helst av kravene 1 til 4, karakterisert ved at kopolymerskjeden inneholder findelt karbon.5. Detonating fuse as set forth in any one of claims 1 to 4, characterized in that the copolymer sheath contains finely divided carbon.
NO740169A 1973-02-19 1974-01-18 NO135061C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB799473A GB1396471A (en) 1973-02-19 1973-02-19 Exposive fuse-cord

Publications (2)

Publication Number Publication Date
NO135061B true NO135061B (en) 1976-10-25
NO135061C NO135061C (en) 1977-02-02

Family

ID=9843745

Family Applications (1)

Application Number Title Priority Date Filing Date
NO740169A NO135061C (en) 1973-02-19 1974-01-18

Country Status (12)

Country Link
JP (1) JPS5747150B2 (en)
CA (1) CA1019150A (en)
CS (1) CS181741B2 (en)
ES (1) ES423387A1 (en)
FR (1) FR2218548B1 (en)
GB (1) GB1396471A (en)
IN (1) IN138025B (en)
IT (1) IT1007267B (en)
NO (1) NO135061C (en)
PH (1) PH10135A (en)
ZA (1) ZA74569B (en)
ZM (1) ZM1674A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1566107A (en) * 1976-11-08 1980-04-30 Ici Ltd Explosive fuse cord
JP6059354B2 (en) 2012-10-26 2017-01-11 バクスター・コーポレーション・イングルウッドBaxter Corporation Englewood Improving image acquisition for medical dosage preparation systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248526B (en) * 1965-01-19 1967-08-24 Dynamit Nobel Ag Detonating cord
US3349705A (en) * 1966-01-21 1967-10-31 Dow Chemical Co Presplitting device
DE2057042C3 (en) * 1970-11-20 1974-06-12 Dynamit Nobel Ag, 5210 Troisdorf Detonating cord for use in companies exposed to firedamp and coal dust

Also Published As

Publication number Publication date
ZA74569B (en) 1975-09-24
JPS5069212A (en) 1975-06-10
FR2218548A1 (en) 1974-09-13
GB1396471A (en) 1975-06-04
ZM1674A1 (en) 1975-09-22
ES423387A1 (en) 1976-05-16
PH10135A (en) 1976-09-06
DE2407962B2 (en) 1975-11-06
CA1019150A (en) 1977-10-18
NO135061C (en) 1977-02-02
CS181741B2 (en) 1978-03-31
IT1007267B (en) 1976-10-30
FR2218548B1 (en) 1978-03-10
DE2407962A1 (en) 1974-09-05
JPS5747150B2 (en) 1982-10-07
AU6478474A (en) 1975-07-24
IN138025B (en) 1975-11-15

Similar Documents

Publication Publication Date Title
US5911023A (en) Polyolefin materials suitable for optical fiber cable components
US4493261A (en) Reinforced explosive shock tube
US6658185B2 (en) Optical fiber cable with components having improved compatibility with waterblocking filling compositions
US6232376B1 (en) Moisture curable polyolefin compositions
CA2933637C (en) Optical fiber cable components
US20100122833A1 (en) Multiphase Polymeric Composition Useful for Preparing Cable Insulation
NO135061B (en)
KR20000005334A (en) Ethylene polymer composition for cable applications
US3908549A (en) Explosive fuse-cord
GB2198258A (en) Optical wave-guides
US3867884A (en) Explosive fuse-cord
TW201144049A (en) Fiber-reinforced, thermoplastic tape as a strength member for wire and cable
US4259410A (en) Random propylene copolymers for electric cable insulation
CN1126519A (en) Heat-shrinkable article
US3874985A (en) Strapping formed by bonding co-extending filaments with a polymeric composition
AU776800B2 (en) Optical fiber cable with components having improved compatibility with waterblocking filling compositions
DE2517802C3 (en) Method of sealing one end of a pop fuse
CN1132233A (en) Waterproof coiled material
NO160507B (en) AMPLIFIED EXPLOSIVES.
JPH08302087A (en) Rubber wrapping film and rubber bale
DE2407962C3 (en) Detonating fuse
CN114007839A (en) Method for producing glass fiber reinforced compositions
ITMI940427A1 (en) FILM OR SLABS OF OLEFINIC POLYMERS
US3939941A (en) Fuse cord
CA3094393A1 (en) Flooding composition with polysiloxane