NO131911B - - Google Patents
Download PDFInfo
- Publication number
- NO131911B NO131911B NO389573A NO389573A NO131911B NO 131911 B NO131911 B NO 131911B NO 389573 A NO389573 A NO 389573A NO 389573 A NO389573 A NO 389573A NO 131911 B NO131911 B NO 131911B
- Authority
- NO
- Norway
- Prior art keywords
- transistor
- integrator
- resistor
- output
- generator
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 22
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000158147 Sator Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/02—Monitoring continuously signalling or alarm systems
- G08B29/06—Monitoring of the line circuits, e.g. signalling of line faults
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/26—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
- H03K3/28—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
- H03K3/281—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
- H03K3/282—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator astable
- H03K3/2826—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator astable using two active transistors of the complementary type
- H03K3/2828—Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator astable using two active transistors of the complementary type in an asymmetrical circuit configuration
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Emergency Alarm Devices (AREA)
- Manipulation Of Pulses (AREA)
- Amplifiers (AREA)
Description
Foreliggende oppfinnelse vedrorer en anordning for med jevne tids-intervaller ved vekslinger mellom hoyohmig og lavohmig tilstand å frembringe korte strompulser i en til anordningen koblet likespenningsmatet sloyfe. The present invention relates to a device for generating short current pulses in a DC-fed coil connected to the device at regular time intervals when switching between high-resistance and low-resistance conditions.
Ledninger eller sloyfer av nevnte slag forekommer ofte i alarmanlegg, f.eks. brannalarm- eller innbruddsalarmanlegg. Oppgaven for en strompulsgenerator i et slikt anlegg kan f.eks. være fra en posisjon lengst ut i en sloyfe, fra alarmsentralen regnet, å Wires or sloyfers of the aforementioned kind often occur in alarm systems, e.g. fire alarm or burglar alarm system. The task for a current pulse generator in such a facility can e.g. be from a position farthest in a sloyfe, counted from the alarm center, oh
gi korte pulser, hvilke, når de detekteres av alarmsentralen, provide short pulses which, when detected by the alarm control panel,
tolkes som at sloyfen ikke har noe avbrudd. Ettersom strompulsgeneratoren i en slik tillempning tar drivspenning direkte fra sloyfen, er det vesentlig at generatoren gjores hoyohmig i sin is interpreted as that the sloyf has no interruption. As the current pulse generator in such an application takes drive voltage directly from the loop, it is essential that the generator is made high-resistive in its
hvilestilling og at strømpulsene kan gjores korte. Ofte kreves det at alarmanlegg skal klare betydelig tid med sekundær driv-spenningskilde, f.eks. batteri ved nettspenningsbortfall, hvorfor krav på lavt effektbehov aksentueres. Videre må lengden på den korte pulsen nbyaktig kunne bestemmes og holdes konstant slik at effektspektret hos det pulstog som strompulsgeneratoren tilveiebringer, kan kontrolleres med f.eks. filter for å oppfylle bestemmelser som gjelder for transmisjon av digitale signaler. rest position and that the current pulses can be made short. Alarm systems are often required to last a considerable time with a secondary drive voltage source, e.g. battery in the event of a mains voltage failure, which is why requirements for low power requirements are accentuated. Furthermore, the length of the short pulse must be able to be accurately determined and kept constant so that the power spectrum of the pulse train that the current pulse generator provides can be controlled with e.g. filter to meet regulations applicable to the transmission of digital signals.
For å tilveiebringe strompulser i en likespenningsmatet ledning med oppgave å overfore f.eks. informasjon om tilstanden hos ledningen eller til denne koblet apparatur, kan man f.eks. anvende en konvensjonell ustabil multivibrator. To provide current pulses in a DC-fed line with the task of transferring e.g. information about the condition of the line or equipment connected to it, you can e.g. use a conventional astable multivibrator.
Multivibratoren i en tillempning ifolge det ovenfor angitte, må gjores meget usymmetrisk for å kunne frembringe korte pulser med relativt lange tidsintervall, hvilket forhold i kombinasjon med kravet til hoy impedans i tidsintervallet gjor denne type av krets mindre hensiktsmessig som strompulsgenerator i nevnte tillempning. The multivibrator in an application according to the above must be made very asymmetrical in order to produce short pulses with relatively long time intervals, which ratio, in combination with the requirement for high impedance in the time interval, makes this type of circuit less suitable as a current pulse generator in the aforementioned application.
En såkalt Hook-vippe ville også kunne anvendes som strompulsgenerator, men ettersom tidskretsen, som består av en RC-kombinasjon, hele tiden er belastet i denne type av vippe, dvs. strom trekkes fra kondensatoren også under dens oppiadningsfase, så må man for kondensatoren velge en hoy komponentverdi for å kunne frembringe de lange tidsintervallene. Den hoye komponentverdien på kondensatoren umuliggjor tilvirkning av kretsen i integrert teknikk, hvilket ellers skulle være fordelaktig. A so-called Hook flip-flop could also be used as a current pulse generator, but as the timing circuit, which consists of an RC combination, is constantly loaded in this type of flip-flop, i.e. current is drawn from the capacitor also during its opiate charge phase, then one must for the capacitor choose a high component value to be able to produce the long time intervals. The high component value of the capacitor makes it impossible to manufacture the circuit in integrated technology, which would otherwise be advantageous.
En tredje type krets som ville kunne anvendes for nevnte formåler dobbeltbasisdiodeoscillatoren, hvis pulstid imidlertid vil påvir-kes av dobbeltbasisdiodens innkoblingstid og derfor bli vanske-lig å bestemme. A third type of circuit which could be used for the aforementioned purposes is the double-base diode oscillator, whose pulse time will however be affected by the switch-on time of the double-base diode and therefore become difficult to determine.
Hensikten med den foreliggende oppfinnelse er å tilveiebringe The purpose of the present invention is to provide
en strompulsgenerator med stor usymmetri med hensyn på pulsfor-holdet. Anordningen er derfor kjennetegnet slik som det frem-går av hovedkravets kjennetegnende del. a current pulse generator with large asymmetry with respect to the pulse ratio. The device is therefore characterized as is apparent from the characterizing part of the main claim.
Sn fordel med anordningen ifolge oppfinnelsen er at den store usymmetrien med hensyn på pulspauseforholdet kan oppnås med en relativt liten kondensator i tidskretsen, hvilket er nodvendig dersom man onsker å tilvirke kretsen i integrert teknikk. The advantage of the device according to the invention is that the large asymmetry with regard to the pulse pause ratio can be achieved with a relatively small capacitor in the timing circuit, which is necessary if one wishes to manufacture the circuit in integrated technology.
Videre er det, tross den store usymmetri i pulspauseforholdet, mulig med en anordning ifolge oppfinnelsen å oppnå meget stabile pulstider respektive1 pulstidsintervaller, hvilket gir et vel-definert effektspektrum for pulstoget. Dette medforer i sin tur at den nodvendige filtrering av det pulsformede signalet for å oppfylle bestemmelsene som gjelder for transmisjon av digitale signaler, kan gjores enkel. Furthermore, despite the large asymmetry in the pulse pause ratio, it is possible with a device according to the invention to achieve very stable pulse times and pulse time intervals respectively, which gives a well-defined power spectrum for the pulse train. This in turn means that the necessary filtering of the pulse-shaped signal to meet the provisions that apply to the transmission of digital signals can be made simple.
Oppfinnelsen vil i det folgende bli beskrevet ved hjelp av et utforelseseksempel under henvisning til vedlagte tegning, på hvilken In the following, the invention will be described by means of an embodiment with reference to the attached drawing, in which
fig. 1 er et prinsippskjema over et brannalarmanlegg, i hvilket en strompulsgenerator ifolge oppfinnelsen inngår, fig. 1 is a schematic diagram of a fire alarm system, in which a current pulse generator according to the invention is included,
fig. 2 viser de ulike signaltypene som kan forekomme på sloyfen, fig. 2 shows the different signal types that can occur on the sloyf,
fig. 3 viser'kretslosningen for en utfbrelsesform av oppfinnelsen, og fig. 3 shows the circuit solution for an embodiment of the invention, and
fig. 4 viser kretslosningen for to varianter av integratoren som inngår i kretsen ifolge fig. 3. fig. 4 shows the circuit solution for two variants of the integrator included in the circuit according to fig. 3.
Fig. 1 viser et brannalarmanlegg bestående av en alarmsentral LC og en til denne koblet sloyfe S. Flere sloyfer er vanligvis tilkoblet samme alarmsentral, men for enkelhets skyld vises kun en sloyfe. Denne består av i prinsippet to tråder mellom hvilke på hensiktsmessige steder parallelt med hverandre er innkoblet et antall detektorer D1...DN, hvilke eksempelvis kan være rdkdetek-tor. Disse detektorer endrer ved aktivering, dvs. når de påvir-kes av rbkutvikling, sin impedans sett fra tilkoblingsklemmene fra en hoy til en lav verdi. Videre er det på samme måte som en detektor koblet en strompulsgenerator SG til sloyfen i den fra alarmsentralen vendte ende. Sloyfens ene tråd er tilkoblet en likespenningskilde E i alarmsentralen, og den andre tråden er jordet via en signaldetektor SD med binært utgangssignal i alarmsentralen. Når en av detektorene eller strompulsgeneratoren Fig. 1 shows a fire alarm system consisting of an alarm center LC and a sloyfe S connected to it. Several sloyfes are usually connected to the same alarm center, but for the sake of simplicity only one sloyfe is shown. In principle, this consists of two wires between which a number of detectors D1...DN, which can for example be rdk detectors, are connected in parallel with each other at suitable locations. These detectors change upon activation, i.e. when they are affected by rbk development, their impedance seen from the connection terminals from a high to a low value. Furthermore, in the same way as a detector, a current pulse generator SG is connected to the sloyf at the end facing away from the alarm centre. One wire of the sloyfen is connected to a direct voltage source E in the alarm central, and the other wire is grounded via a signal detector SD with a binary output signal in the alarm central. When one of the detectors or the current pulse generator
går over til lavohmig tilstand, oker strbmmen gjennom sloyfen kraftig, hvilket detekteres av signaldetektoren SD i alarmsentralen. Utgangssignalet fra signaldetektoren for tre ulike drifttilfeller vises i fig. 2. I intervallet A, som tilsvarer det normale drifttilfellet uten avbrudd eller alarm, detekteres de periodisk tilbakekommende korte strbmpulsene fra strompulsgeneratoren, hvorfor signaldetektorens utgangssignal oppviser kortvarige tilstandsendringer tilsvarende de fra sloyfen inn-kommende strompulser. I intervallet B har en eller flere detektorer blitt aktivert og shuntet sloyfen lavohmig. Da detektorene vil befinne seg i denne tilstand inntil alarmårsaken er blitt eliminert, vil således tilstandsendringen i signaldetektorens utgangssignal sannsynligvis bli mere langvarige enn en puls fra strompulsgeneratoren. Dette oppdages av den til signaldetektoren koblede signalbehandlende logikk- og tidsmålingskrets LK i alarmsentralen. Logikk- og tidsmålingskretsen gir herved et alarmsignal til en tilkoblet alarmindikeringsanordning LI, hvilken f.eks. ved en lampetavle eller på akustisk veg indikerer alarmen. I intervallet C detekteres overhodet ikke tilstandsendringer, hvilket av alarmsentralen tolkes som avbrudd på sloyfen. switches to a low-resistance state, the current through the loop increases sharply, which is detected by the signal detector SD in the alarm centre. The output signal from the signal detector for three different operating cases is shown in fig. 2. In the interval A, which corresponds to the normal operating case without interruption or alarm, the periodically recurring short current pulses from the current pulse generator are detected, which is why the output signal of the signal detector shows short-term state changes corresponding to the current pulses coming from the loop. In the interval B, one or more detectors have been activated and shunted the sloyfen low-resistance. As the detectors will be in this state until the cause of the alarm has been eliminated, the state change in the signal detector's output signal will probably be longer than a pulse from the current pulse generator. This is detected by the signal processing logic and time measurement circuit LK in the alarm center connected to the signal detector. The logic and time measuring circuit thereby provides an alarm signal to a connected alarm indicating device LI, which e.g. by a lamp panel or acoustically indicates the alarm. In the interval C, no state changes are detected at all, which the alarm center interprets as an interruption of the sloyf.
I fig. 3 vises en utfbreisesform av strompulsgeneratoren ifolge oppfinnelsen. Generatoren tilkobles sloyfen via tilkoblingsklemmene G og H med plusspolaritet på klemmen G. Generatoren består funksjonsmessig av tre deler, en integrator I, en forsterker F og en omkoblingskrets U, hvilke hver og en i figuren vises innenfor en stiplet ramme. In fig. 3 shows an expanded form of the current pulse generator according to the invention. The generator is connected to the sloyf via connection terminals G and H with positive polarity on terminal G. Functionally, the generator consists of three parts, an integrator I, an amplifier F and a switching circuit U, each of which is shown in the figure within a dotted frame.
I intervallene mellom de korte strbmpulsene er samtlige tran-sistorer TI, T2 og T3 blokkert. Kondensatoren Cl i integratoren I lades opp herved via den hbyohmige motstanden RI og utgangssignalet fra integratoren, dvs. spenningen i punktet P2 er et omtrentlig mål på integralet av spenningen over generatorens tilkoblingsklemmer. Strbm flyter samtidig gjennom de hbyohmige motstandene R4, R3, R2 og dioden D3 i forsterkeren F, hvorved potensialet i punktet Pl holdes ved en konstant verdi. Dioden Dl i forsterkeren F, hvilken kobler integratorens utgang til basisen på transistoren Tl, er tilsiktet å beskytte basisemitter- dioden i transistoren Tl mot strom i sperreretningen ved innkobling av spenning i alarmsentralen. Da under kondensatorens Cl opplad-ningsforlop potensialet i punktet P2 akkurat oppnår verdien på potensialet i punktet Pl pluss spenningsfallet i lederetningen for dioden Dl og basisemitter-dioden i transistoren Tl, begynner transistoren Tl å lede. Herved drar transistoren Tl via sin kol-lektorkrets strom fra basisen på transistoren T2 som også begynner å lede. På grunn av den positive tilbakekoblingen fra transistorens T2 emitter til emitteren på transistoren Tl over motstanden R3 påbegynnes herved et kumulativt forlop, hvilket resulterer i at transistoren T2 meget raskt går i metning. Videre vil, på grunn av det ovenfor nevnte, spenningen på forsterkerens F utgang, hvilken er identisk med kollektoren på transistoren T2, oke, hvorved transistoren T3 i utgangstrinnet også går i metning. Herved tilkobles dels den lavohmige motstanden R7 parallelt med strompulsgeneratorens tilkoblingsklemmer, hvilket resulterer i en kraftig senkning av generatorimpedansen sett fra disse klem-mer med påfolgende stromokning gjennom sloyfen, dels vil kondensatoren Cl utlades via motstanden R6, dioden D2 og transistoren T3. N.år spenningen over kondensatoren Cl har sunket så meget at transistoren Tl ikke lenger kan holdes i ledende tilstand, går også transistorene T2 og T3 tilbake til ikke-ledende tilstand, og forlopet gjentas. In the intervals between the short power pulses, all transistors T1, T2 and T3 are blocked. The capacitor Cl in the integrator I is thereby charged via the hbyohmic resistance RI and the output signal from the integrator, i.e. the voltage at point P2 is an approximate measure of the integral of the voltage across the generator's connection terminals. Strbm simultaneously flows through the high-ohmic resistors R4, R3, R2 and the diode D3 in the amplifier F, whereby the potential at the point Pl is kept at a constant value. The diode Dl in the amplifier F, which connects the output of the integrator to the base of the transistor Tl, is intended to protect the base emitter diode in the transistor Tl against current in the blocking direction when voltage is switched on in the alarm center. When, during the capacitor Cl's charging process, the potential at point P2 just reaches the value of the potential at point Pl plus the voltage drop in the conduction direction for the diode Dl and the base-emitter diode in the transistor Tl, the transistor Tl begins to conduct. Hereby, the transistor T1 via its collector circuit draws current from the base of the transistor T2, which also begins to conduct. Due to the positive feedback from the emitter of the transistor T2 to the emitter of the transistor T1 across the resistor R3, a cumulative process is thereby initiated, which results in the transistor T2 very quickly going into saturation. Furthermore, due to the aforementioned, the voltage at the output of the amplifier F, which is identical to the collector of the transistor T2, will increase, whereby the transistor T3 in the output stage also goes into saturation. Hereby, the low-resistance resistor R7 is connected in parallel with the current pulse generator's connection terminals, which results in a sharp lowering of the generator impedance seen from these terminals with a subsequent current increase through the loop, and the capacitor Cl will be discharged via the resistor R6, the diode D2 and the transistor T3. When the voltage across the capacitor Cl has dropped so much that the transistor Tl can no longer be kept in the conducting state, the transistors T2 and T3 also return to the non-conducting state, and the process is repeated.
Strompulsintervallets lengde, som tilsvares av kondensatorens The length of the current pulse interval, which corresponds to that of the capacitor
Cl oppladningstid, bestemmes av tidskretsen som er dannet av motstanden RI og kondensatoren Cl samt spenningen i punktet Pl, hvilken i sin tur bestemmes av dimensjoneringen av spennings-deleren R4-R3-R2-D3. Strompulsens lengde, hvilken tilsvares av kondensatoren Cl utladningstid, bestemmes hovedsakelig av kondensatoren Cl samt motstandene R6 og R2. Dels utlades kondensatoren Cl via transistorens T3 kollektoremitterdel, dels via transistorens T2 basisemitterdel. Under hele utladningsforiopet flyter en oppladningsstrom gjennom den hoyohmige motstanden Ri, men denne er så liten i forhold til utladningsstrommene at mot-standens RI innvirkning helt kan ses bort fra under utladnings-fasen. Cl charging time, is determined by the time circuit formed by the resistor RI and the capacitor Cl and the voltage at the point Pl, which in turn is determined by the dimensioning of the voltage divider R4-R3-R2-D3. The length of the current pulse, which corresponds to the discharge time of the capacitor Cl, is mainly determined by the capacitor Cl and the resistors R6 and R2. The capacitor Cl is partly discharged via the collector-emitter part of the transistor T3, and partly via the base-emitter part of the transistor T2. During the entire discharge cycle, a charging current flows through the high-ohmic resistor Ri, but this is so small in relation to the discharge currents that the effect of the resistor RI can be completely ignored during the discharge phase.
Strompulsgeneratorens impedans, sett fra dens tilledningsklemmer, The impedance of the current pulse generator, viewed from its supply terminals,
bestemmes altså under strompulsintervallet av de hbyohmige mot- is thus determined during the current pulse interval by the hbyohmic counter-
standene RI, R2, R3 og R4. Under den tid som strompulsen varer, stands RI, R2, R3 and R4. During the time that the current pulse lasts,
bestemmes impedansen hovedsaklig av den lavohmige motstanden R7. the impedance is mainly determined by the low-resistance resistor R7.
Kondensatoren C2 utgjor . et enkelt filter for de utgående strbm- The capacitor C2 constitutes . a simple filter for the outgoing strbm-
pulsene. the pulses.
Fig. 4 viser kretslbsningene for to varianter av integratoren som inngår i kretsen ifolge fig. 3. I integratoren I<1> er motstanden R6, gjennom hvilken kondensatorens Cl hovedsaklige utladnings- Fig. 4 shows the circuit connections for two variants of the integrator included in the circuit according to fig. 3. In the integrator I<1> is the resistor R6, through which the capacitor Cl main discharge
strbm flyter, blikt koblet i serie med motstanden RI slik at den også inngår i tidskretsen, hvilken bestemmer oppladningsfor- strbm floats, tin connected in series with the resistor RI so that it is also included in the timing circuit, which determines the charging pro-
lbpet. pounded.
Integratoren I'' har en delvis annerledes funksjon ved at konden- The integrator I'' has a partially different function in that the conden-
satorens Cl utladningsstrbm i sin helhet går via dioden Dl, the sator's Cl discharge strbm in its entirety goes via the diode Dl,
transistoren Tl, motstanden R2 og dioden D3. Utladningen via transistoren T3 sperres av dioden D4, hvilken når transistoren T3 går i metning, blir forspent i sperreretningen og derved også for- the transistor Tl, the resistor R2 and the diode D3. The discharge via the transistor T3 is blocked by the diode D4, which, when the transistor T3 goes into saturation, is biased in the blocking direction and thereby also
hindrer at oppladningsstrom flyter til kondensatoren Cl under dens utladningsforlbp. I dette tilfelle bestemmes således strømpul- prevents charging current from flowing to the capacitor Cl during its discharge process. In this case, the current pulse is thus determined
sens lengde hovedsaklig av motstanden R2. sen's length mainly by the resistor R2.
Spenningsfallet over basisemitter-dioden i transistoren Tl vari- The voltage drop across the base-emitter diode in the transistor Tl varies
erer imidlertid avhengig av utladningsstrbmmens stbrrelse, are, however, dependent on the control of the discharge current,
hvilken påvirker pulslengden. I de tidligere beskrevne utfbrel- which affects the pulse length. In the previously described results
sesformene for integratoren bestemmes strømpulsens lengde til stbrste delen av utladningen gjennom transistoren T3, hvorfor nevnte variasjon i spenningsfallet over basisemitter-dioden i transistoren Tl ikke nevne-verdig påvirker pulstiden. In the form of the integrator, the length of the current pulse to the first part of the discharge through the transistor T3 is determined, which is why said variation in the voltage drop across the base emitter diode in the transistor T1 does not appreciably affect the pulse time.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1300572 | 1972-10-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
NO131911B true NO131911B (en) | 1975-05-12 |
NO131911C NO131911C (en) | 1975-08-20 |
Family
ID=20296667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO389573A NO131911C (en) | 1972-10-09 | 1973-10-08 |
Country Status (3)
Country | Link |
---|---|
CH (1) | CH567838A5 (en) |
DE (1) | DE2351103B2 (en) |
NO (1) | NO131911C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0066879A1 (en) * | 1981-06-05 | 1982-12-15 | Hekatron GmbH | Circuit arrangement for the transmission of measured values to a central station, especially for a fire signalling system |
DE3122474A1 (en) * | 1981-06-05 | 1982-12-23 | Hekatron GmbH, 7811 Sulzburg | "CIRCUIT ARRANGEMENT FOR TRANSMITTING MEASURED VALUES, IN PARTICULAR IN A FIRE DETECTING SYSTEM, TO A CENTRAL UNIT" |
-
1973
- 1973-10-08 NO NO389573A patent/NO131911C/no unknown
- 1973-10-08 CH CH1430573A patent/CH567838A5/xx not_active IP Right Cessation
- 1973-10-09 DE DE19732351103 patent/DE2351103B2/en active Granted
Also Published As
Publication number | Publication date |
---|---|
DE2351103A1 (en) | 1974-04-25 |
DE2351103B2 (en) | 1976-10-21 |
NO131911C (en) | 1975-08-20 |
CH567838A5 (en) | 1975-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3665461A (en) | Apparatus for monitoring the conductors or lines of fire alarm installations | |
US3603949A (en) | Fire alarm installation | |
GB1140294A (en) | Fire alarm system with monitoring device for fire alarms connected in groups to a central station | |
US3676680A (en) | Ionization fire alarm with insulation monitoring system | |
US3955183A (en) | Alarm condition sensing and indicating circuit with test capability | |
US3333258A (en) | Foolproof systems for sensing both normal and abnormal conditions | |
GB2145863A (en) | Monitoring system | |
US3868665A (en) | Ground fault current detector | |
US3774186A (en) | Smoke detector failure alarm | |
NO131911B (en) | ||
US3152256A (en) | Photosensitive code identifying means and method | |
US3015042A (en) | Pulse responsive circuit with storage means | |
US3184729A (en) | Signal deviation detector | |
JPS6017156B2 (en) | fire alarm system | |
US3059177A (en) | Sensitive high impedance detector | |
US3403269A (en) | Frequency responsive rc timing circuit for detecting either lack of input or overextended presence of input | |
EP0050953A1 (en) | Flame detection circuit | |
JPS6355120B2 (en) | ||
US3281812A (en) | Control apparatus | |
US3680068A (en) | Alarm circuit | |
US3103652A (en) | Supervisory system | |
US3200390A (en) | Voltage monitoring circuit | |
US3392374A (en) | Variable pulse width alarm network | |
NO144442B (en) | DEVICE FOR DETECTING THE TIME OF ARRIVAL OF A SIGNAL, SPECIFICALLY A DEVICE OF THE TYPE USED IN A TACAN RECEIVER | |
US3055002A (en) | Gated integrating circuit |