NO131338B - - Google Patents

Download PDF

Info

Publication number
NO131338B
NO131338B NO2492/73A NO249273A NO131338B NO 131338 B NO131338 B NO 131338B NO 2492/73 A NO2492/73 A NO 2492/73A NO 249273 A NO249273 A NO 249273A NO 131338 B NO131338 B NO 131338B
Authority
NO
Norway
Prior art keywords
extraction
separation
extracted
sulfuric acid
metals
Prior art date
Application number
NO2492/73A
Other languages
Norwegian (no)
Other versions
NO131338C (en
NO249273L (en
Inventor
J Alstad
L Farbu
Original Assignee
Sjeldne Jordarter Forskning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sjeldne Jordarter Forskning filed Critical Sjeldne Jordarter Forskning
Priority to NO2492/73A priority Critical patent/NO131338C/no
Priority to FR7420776A priority patent/FR2233284A1/en
Priority to JP6727874A priority patent/JPS5638662B2/ja
Priority to DE2428952A priority patent/DE2428952C3/en
Publication of NO249273L publication Critical patent/NO249273L/no
Publication of NO131338B publication Critical patent/NO131338B/no
Publication of NO131338C publication Critical patent/NO131338C/no
Priority to US05/688,046 priority patent/US4041125A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • C01F17/17Preparation or treatment, e.g. separation or purification involving a liquid-liquid extraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

Fremgangsmåte for separasjon av sjeldne jordarts-metaller fra Procedure for the separation of rare earth metals from

en blanding ved hjelp av væske-væske ekstraksjon. a mixture using liquid-liquid extraction.

Oppfinnelsen angår en prosess for separasjon og rensing av sjeldne jordartsmetaller fra en blanding av deres salter og de vanlige forurensninger som følger med når saltene er løst i vann. Begrepet sjeldne jordarter som brukt i denne beskrivelse, omfatter gruppen av elementer med atomnr. fra og med 57 til og med 71, og dessuten yttrium. The invention relates to a process for the separation and purification of rare earth metals from a mixture of their salts and the usual impurities that accompany them when the salts are dissolved in water. The term rare earths as used in this description includes the group of elements with atomic no. from and including 57 to and including 71, and also yttrium.

Ved fremgangsmåten ifølge oppfinnelsen blir en vandig oppløsning av yttrium og andre sjeldne jordarter brakt i kontakt med en organisk vann-uoppløselig vasskefase som hovedsakelig består av di (2-etylhexyl) fosforsyre i et organisk oppløsningsmiddel (fortynner). De to væskefaser blandes omhyggelig ved hjelp av omrøring inntil ekstraksjons-likevekt er oppnådd. Herved fåes på vanlig måte en partiell separasjon, idet de lette sjeldne jordarter fortrinnsvis vil holde seg i vannfasen, mens de tunge sjeldne jordarter og yttrium vil overføres til den organiske fase i langt større, grad enn de lette sjeldne jordarter. Hensikten med oppfinnelsen er å fremskaffe en metode til videreseparering av de metalljonene som kan ekstraheres inn i organisk fase. Ved å bruke spesifiserte konsentrasjoner av svovelsyre-løsninger til å tilbakeekstrahere metalljonene fra organisk fase, har en funnet at lengden av fasenes kontakttid har en betydelig virkning på separasjonsfaktorene. Dette medfører at rensingen av yttrium kan utføres effektivt, og den partielle separasjon mellom nabo-lanthanider kan optimaliseres m.h.p. kontakttiden. Separasjonsfaktoren for to stoffer A og B, \ X —, er som kjent forholdet mellom In the method according to the invention, an aqueous solution of yttrium and other rare earth species is brought into contact with an organic water-insoluble washing phase which mainly consists of di(2-ethylhexyl) phosphoric acid in an organic solvent (diluent). The two liquid phases are carefully mixed by stirring until extraction equilibrium is achieved. This usually results in a partial separation, as the light rare earths will preferably stay in the water phase, while the heavy rare earths and yttrium will be transferred to the organic phase to a far greater extent than the light rare earths. The purpose of the invention is to provide a method for further separation of the metal ions that can be extracted into the organic phase. By using specified concentrations of sulfuric acid solutions to back-extract the metal ions from the organic phase, it has been found that the length of the contact time of the phases has a significant effect on the separation factors. This means that the purification of yttrium can be carried out efficiently, and the partial separation between neighboring lanthanides can be optimized with regard to the contact time. The separation factor for two substances A and B, \ X —, is, as is known, the ratio between

A Da A Yes

A's og B's fordelingsforhold, dvs. (X -5- = tt<6-> , idet fordelingsfor-B DB A's and B's distribution ratio, i.e. (X -5- = tt<6-> , as distribution for-B DB

holdet for et stoff er lik forholdet mellom stoffets konsentrasjon i organisk fase og samme stoffs konsentrasjon i vannfasen. the holding for a substance is equal to the ratio between the substance's concentration in the organic phase and the same substance's concentration in the water phase.

Det er tidligere blitt foreslått å separere sjeldne jordarter i blanding ved hjelp av væske-væske ekstraksjonsprosesser hvor di(2-ethylhexyl) fosforsyre blir brukt som ekstraktant. Effektiviteten ved separasjonen av naboelementer er relativt høy ved denne ekstråksjonsprosess, men det må likevel benyttes mange trinn for å oppnå en renhetsgrad på produktene som tilfredsstiller de kvaliteter som er etterspurt på markedet. It has previously been proposed to separate rare earth species in a mixture using liquid-liquid extraction processes where di(2-ethylhexyl) phosphoric acid is used as an extractant. The efficiency of the separation of neighboring elements is relatively high with this extraction process, but many steps must still be used to achieve a degree of purity in the products that satisfies the qualities that are in demand on the market.

Oppfinnerne har nu funnet at når en løsning av sjeldne jordarts-sulfater i vann ekstraheres med di(2-etylhexyl)fosforsyre fortynnet med et organisk oppløsningsmiddel som er ublandbart med vann, vil ekstråksjonshastigheten for en.stor del av metalljonene være for-, skjellig, og at dette kan utnyttes til oppnåelse av en forhøyet separasjonsfaktor i en væske-væske ekstraksjonsprosess. Ved fremgangsmåten ifølge oppfinnelsen blir en svovelsur oppløsning av en blanding av sjeldne jordartsmetaller, eller en blanding som i tillegg inneholder vanlige forurensninger, brakt i kontakt med en vannuopp-løslig ekstraksjonsvæske bestående av di(2-etylhexyl)fosforsyre (HDEHP) i en fortynner på parafin-basis, hvor kontakttiden på forhånd er valgt slik at en oppnår et høyt fordelingsforhold for de stoffer som ekstraheres raskt, og et lavt fordelingsforhold for de stoffer The inventors have now found that when a solution of rare earth sulphates in water is extracted with di(2-ethylhexyl) phosphoric acid diluted with an organic solvent which is immiscible with water, the extraction rate for a large part of the metal ions will be different, and that this can be used to achieve an increased separation factor in a liquid-liquid extraction process. In the method according to the invention, a sulfuric acid solution of a mixture of rare earth metals, or a mixture which also contains common contaminants, is brought into contact with a water-insoluble extraction liquid consisting of di(2-ethylhexyl) phosphoric acid (HDEHP) in a diluent of paraffin base, where the contact time is selected in advance so that a high distribution ratio is achieved for the substances that are extracted quickly, and a low distribution ratio for the substances

som ekstraheres langsomt, hvorpå de to væskefaser med sine innhold av metalljoner skilles fra hverandre. Derpå foretas en partiell tilbakeekstraksjon med fortynnet svovelsyre av metaller i den which is extracted slowly, after which the two liquid phases with their contents of metal ions are separated from each other. A partial back-extraction is then carried out with dilute sulfuric acid of metals in it

organiske fasen ved å kontakte de to oppløsninger en fastsatt tid, slik at optimal separasjon oppnås mellom de metaller som tilbakeekstraheres hurtig og de som tilbakeekstraheres langsomt. the organic phase by contacting the two solutions for a set time, so that optimal separation is achieved between the metals that are back-extracted quickly and those that are back-extracted slowly.

Etter ekstraksjonen av de sjeldne jordarter og den etterfølgende trinnvise tilbakeekstraksjon, kan det resterende innhold av ekstraherte stoffer fra første ekstraksjonstrinn i den organiske fase fjernes fra denne ved at man vasker den organiske fase med en sterk syre ( ^ 10 N ^SO^) og lut, hvoretter fasen regenereres og føres tilbake til 1. ekstråksjonstrinn. After the extraction of the rare earth species and the subsequent step-by-step back-extraction, the remaining content of extracted substances from the first extraction step in the organic phase can be removed from this by washing the organic phase with a strong acid ( ^ 10 N ^SO^) and lye , after which the phase is regenerated and returned to the 1st extraction stage.

For en gitt konsentrasjon av svovelsyre i vannfasen i første ekstraksjonstrinn vil hastigheten for overføring av metall fra en fase til en annen være avhengig av hvilket-metall det angår. Er konsentrasjonen av-metallet C som en betrakter, i en fase ved et tidspunkt = t og konsentrasjon av det samme metallet Coo i fasen ved likevekt, vil differansen C - Coo avta eksponensielt med tiden som fasene er i kontakt. Den kontakttid som medgår til at differansen har avtatt til det halve,, kalles halveringstiden t^ og er karakteris-tisk for det enkelte metall og en funksjon av svovelsyrekonsentrasjonen. Dette er illustrert på fig. 1 som viser hvorledes halveringstiden for tilbakeekstraksjon av terbium, erbium og yttrium varierer med konsentrasjonen av svovelsyre i vannfasen. For a given concentration of sulfuric acid in the water phase in the first extraction step, the rate of transfer of metal from one phase to another will depend on which metal is concerned. If the concentration of the metal C as an observer, in a phase at a time = t and concentration of the same metal Coo in the phase at equilibrium, the difference C - Coo will decrease exponentially with the time that the phases are in contact. The contact time that allows the difference to decrease to half is called the half-life t^ and is characteristic of the individual metal and a function of the sulfuric acid concentration. This is illustrated in fig. 1 which shows how the half-life for back extraction of terbium, erbium and yttrium varies with the concentration of sulfuric acid in the water phase.

For en gitt' syrekonsentrasjon er fordelingsforhold, Dt, funnet å være bestemt av kontakttiden for fasene, t, hastighetskonstanten, k, og fordelingsforholdet ved likevekt, D. Som en følge av disse observa-sjoner kan separasjonsfaktoren for to elementer forandres ved å variere kontakttiden. For a given acid concentration, the distribution ratio, Dt, is found to be determined by the contact time for the phases, t, the rate constant, k, and the distribution ratio at equilibrium, D. As a result of these observations, the separation factor for two elements can be changed by varying the contact time .

Fremgangsmåten er spesielt anvendelig for de innmatningsløsninger som fremkommer når råstoff for sjeldne jordarter løses i mineral-syre. Under ekstråksjonan blir metallkonsentrasjonen i hver fase registrert kontinuerlig som funksjon av tiden, ved hjelp av egnede, indikatorer, f.eks. radioaktive tracere. The method is particularly applicable to the feed solutions that appear when raw material for rare earth species is dissolved in mineral acid. During the extraction, the metal concentration in each phase is recorded continuously as a function of time, using suitable indicators, e.g. radioactive tracers.

Det kan gis følgende eksempel på separasjon av terbium og yttrium: Ekstraksjonen ble foretatt fra 1,5 N svovelsur vannfase. Under disse betingelser er separasjonen mellom tunge og lette lanthanider slik at separasjonspunktet, hvor fordelingsforholdet D = 1, ligger et sted i midten av lanthaniderekken, men noe avhengig av metallkonsentrasjonen. Ved denne svovelsyrekonsentrasjonen er reaksjons-hastigheten funnet å være forholdsvis hurtig for alle sjeldne jordarter. The following example can be given of the separation of terbium and yttrium: The extraction was carried out from a 1.5 N sulfuric acid water phase. Under these conditions, the separation between heavy and light lanthanides is such that the separation point, where the distribution ratio D = 1, lies a place in the middle of the lanthanide series, but somewhat dependent on the metal concentration. At this sulfuric acid concentration, the reaction rate has been found to be relatively fast for all rare earth species.

Den organiske fase med metallene (ekstraktet) som initialt var 1 molar med hensyn til di(2-etylhexyl) fosforsyre, ble så bragt 1 kontakt med en vannfase som var innstilt til 2, 1 N i svovelsyre. Forskjellen i hastigheten for tilbakeekstraksjon av terbium og yttrium ble ut-nyttet ved å justere fasenes oppholdstid i blandekaret, slik at separasjonsfaktoren for de to metalljonene blir maksimal. Separasjonsfaktoren som er målt for yttrium/terbium, varierer med oppholds-tiden, kontakttiden, slik som vist i fig. II, som illustrerer hvor- i ledes separasjonsfaktoren for yttrium/terbium varierer med oppholds-tiden i blandekaret for de to væskefåsene. Svovelsyrekonsentrasjonen i vannfasen var 2,7 N. I vårt eksempel vil 6 min. kontakttid øke separasjonsfaktoren fra 11,7 (for likevekt) til 13,7, dvs. en økning på 17%. Under de betingelser som er angitt ovenfor vil terbium tilbakeekstraheres nesten til sin likevektsverdi, mens yttrium holdes igjen i den organiske fase i sammenligning med sin likevektsfordeling. The organic phase with the metals (extract) which was initially 1 molar with respect to di(2-ethylhexyl) phosphoric acid, was then brought into contact with an aqueous phase which was adjusted to 2.1 N in sulfuric acid. The difference in the rate of back extraction of terbium and yttrium was exploited by adjusting the residence time of the phases in the mixing vessel, so that the separation factor for the two metal ions is maximized. The separation factor measured for yttrium/terbium varies with the residence time, the contact time, as shown in fig. II, which illustrates how the separation factor for yttrium/terbium varies with the residence time in the mixing vessel for the two liquid basins. The sulfuric acid concentration in the water phase was 2.7 N. In our example, 6 min. contact time increase the separation factor from 11.7 (for equilibrium) to 13.7, i.e. an increase of 17%. Under the conditions stated above, terbium will be back-extracted almost to its equilibrium value, while yttrium is retained in the organic phase in comparison with its equilibrium distribution.

Claims (2)

1. Fremgangsmåte til separasjon av de sjeldne jordartsmetaller fra en blanding, hvor en svovelsyreoppløsning av blandingen av sjeldne jordarter i vann bringes i kontakt med en vannuoppløselig ekstraksjonsvæske bestående av di(2-etylhexyl) fosforsyre i en fortynner, karakteiseres ved at kontakttiden på forhånd er valgt slik at en oppnår et høyt fordelingsforhold for de stoffer som ekstraheres raskt, og et lavt fordelingsforhold for de stoffer som ekstraheres langsomt, hvorpå de to væskefaser med sine innhold av metalljoner skilles fra hverandre.1. Process for the separation of the rare earth metals from a mixture, where a sulfuric acid solution of the mixture of rare earths in water is brought into contact with a water-insoluble extraction liquid consisting of di(2-ethylhexyl) phosphoric acid in a diluent, characterized by the contact time in advance being chosen so that a high distribution ratio is achieved for the substances that are extracted quickly, and a low distribution ratio for the substances that are extracted slowly, after which the two liquid phases with their contents of metal ions are separated from each other. 2. Fremgangsmåte som i krav 1, karakterisert ved en partiell tilbakeekstraksjon med 'fortynnet svovelsyre av metaller i den organiske fase ved å kontakte de to oppløsninger en fastsatt tid,, slik at optimal separasjon oppnås mellom de metaller som tilbakeekstraheres hurtig og de som tilbakeekstraheres langsomt.2. Method as in claim 1, characterized by a partial back-extraction with 'diluted sulfuric acid' of metals in the organic phase by contacting the two solutions for a fixed time, so that optimal separation is achieved between the metals which are back-extracted quickly and those which are back-extracted slowly .
NO2492/73A 1973-06-15 1973-06-15 NO131338C (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NO2492/73A NO131338C (en) 1973-06-15 1973-06-15
FR7420776A FR2233284A1 (en) 1973-06-15 1974-06-14 Rare earth metals sepn. and purificn. - by liq.-liq. extraction with di-(2-ethylhexyl)-phosphoric acid soln.
JP6727874A JPS5638662B2 (en) 1973-06-15 1974-06-14
DE2428952A DE2428952C3 (en) 1973-06-15 1974-06-15 Process for separating yttrium and terbium from a mixture of their salts
US05/688,046 US4041125A (en) 1973-06-15 1976-05-19 Process for separation of the lanthanides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO2492/73A NO131338C (en) 1973-06-15 1973-06-15

Publications (3)

Publication Number Publication Date
NO249273L NO249273L (en) 1975-01-13
NO131338B true NO131338B (en) 1975-02-03
NO131338C NO131338C (en) 1975-05-14

Family

ID=19878884

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2492/73A NO131338C (en) 1973-06-15 1973-06-15

Country Status (4)

Country Link
JP (1) JPS5638662B2 (en)
DE (1) DE2428952C3 (en)
FR (1) FR2233284A1 (en)
NO (1) NO131338C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782954U (en) * 1980-11-11 1982-05-22

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1261200A (en) * 1968-11-12 1972-01-26 Thorium Ltd Separation procedure

Also Published As

Publication number Publication date
FR2233284B1 (en) 1977-10-07
DE2428952B2 (en) 1979-11-15
DE2428952A1 (en) 1975-01-02
DE2428952C3 (en) 1980-07-24
NO131338C (en) 1975-05-14
JPS5036310A (en) 1975-04-05
JPS5638662B2 (en) 1981-09-08
NO249273L (en) 1975-01-13
FR2233284A1 (en) 1975-01-10

Similar Documents

Publication Publication Date Title
Abreu et al. Study on separation of heavy rare earth elements by solvent extraction with organophosphorus acids and amine reagents
Amaral et al. Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction
Singh et al. Studies on uranium extraction from phosphoric acid using di-nonyl phenyl phosphoric acid-based synergistic mixtures
Hung et al. Cloud-point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants
JP2756794B2 (en) Rare earth element separation method
US4207294A (en) Process for recovering uranium from wet-process phosphoric acid
Nazari et al. Studies on extraction of uranium from phosphoric acid using PN-1200 extractant
NO151552B (en) PROCEDURE FOR SELECTIVE EXTRACTION OF YTTRIUM IONS
NO131338B (en)
US3151946A (en) Extraction of gallium using a trialkyl pohosphate
Morais et al. Uranium stripping from tertiary amine loaded solution by ammonium sulfate
CN108046283A (en) The process of boron is extracted from salt lake bittern based on centrifugal extractor
US3514267A (en) Batch separator of yttrium and rare earths under total reflux
CN108220596A (en) A kind of praseodymium neodymium extracting and enriching separation method
US3402042A (en) Recovery of nickel and cobalt from an aqueous solution
NO842984L (en) PROCEDURE AND MEDICINE FOR AA REMOVE ACID ORGANIC COMPOUNDS FROM Aqueous SOLUTIONS
CN212076904U (en) Continuous reaction equipment for liquid-liquid two-phase reaction
KR890004520B1 (en) A process for the overall recovery of uranium yttrium thorium and rare earths contained in a phosphate-bearing ore
KR101667418B1 (en) Method for separating and recovering phosphoric acid from mixing acid waste of acetic acid-nitric acid-phosphoric acid
CN108220632A (en) A kind of rare earth recovery process of enriching
US3259472A (en) Fraction separation of aqueous rare earths using amines
Chakraborty et al. Extraction of Te (IV) by liquid surfactant membrane
GB1509576A (en) Method of treating phosphoric acid to prevent crud formation during solvent extraction
US3227754A (en) Quaternary ammonium borohydride compositions and method of preparation
US2721221A (en) Propanol extraction of sodium vanillinate