NO130573B - - Google Patents

Download PDF

Info

Publication number
NO130573B
NO130573B NO03452/68A NO345268A NO130573B NO 130573 B NO130573 B NO 130573B NO 03452/68 A NO03452/68 A NO 03452/68A NO 345268 A NO345268 A NO 345268A NO 130573 B NO130573 B NO 130573B
Authority
NO
Norway
Prior art keywords
ship
signal
steering
rudder
equation
Prior art date
Application number
NO03452/68A
Other languages
Norwegian (no)
Other versions
NO130573C (en
Inventor
M Bech
Original Assignee
Decca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Decca Ltd filed Critical Decca Ltd
Publication of NO130573B publication Critical patent/NO130573B/no
Publication of NO130573C publication Critical patent/NO130573C/no

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Feedback Control In General (AREA)

Description

Skipsstyreanlegg. Ship steering system.

Det er vel kjent at et skips styreegenskaper normalt bare er lineære i et storre eller mindre område av lav svingehastighet av skipet. It is well known that a ship's steering characteristics are normally only linear in a larger or smaller area of low turning speed of the ship.

Videre er noen skip såkalt "dynamisk ustabile", hvilket er en egenskap, som har en viss likhet med overstyringsegenskapene for visse automobiler. Furthermore, some ships are so-called "dynamically unstable", which is a characteristic that bears some resemblance to the oversteer characteristics of certain automobiles.

Den dynamiske ustabilitet viser seg normalt ved lave verdier av svingehastigheten, men avtar og forsvinner helt, når svinge- The dynamic instability normally manifests itself at low values of the swing speed, but decreases and disappears completely, when the swing

hastigheten overskrider en "bestemt grenseverdi. the speed exceeds a “certain limit value.

På grunn av de omtalte uheldige forhold kan den manuelle styring av et skip medfore vanskeligheter. Det samme er tilfellet, når et skip styres ved hjelp av en autopilot, som simulerer en manuell styring. Due to the mentioned unfortunate conditions, the manual steering of a ship can cause difficulties. The same is the case when a ship is steered using an autopilot, which simulates manual steering.

Et normalt skip har en "styre/karakteristikk" som er ikke-lineær overfor skipets svingehastighet. Uttrykket styrekarakteristikken er i sin bokstavelige mening den kurve som representerer den rorvinkel5 som er nodvendig for å opprettholde en viss svingehastighet vj/ . Hvis således styrekarakteristikken ikke er rettlinjet, er svingehastigheten ikke pro'porsjonal med rorvinklen, hva den ville være for et skip med rettlinjet styrekarakteristikk. A normal ship has a "steer/characteristic" that is non-linear to the ship's rate of turn. The term steering characteristic is, in its literal sense, the curve that represents the rudder angle5 which is necessary to maintain a certain turning speed vj/. Thus, if the steering characteristic is not rectilinear, the turning speed is not proportional to the rudder angle, which it would be for a ship with a rectilinear steering characteristic.

Formålet med anlegget i henhold til oppfinnelsen er å over-sette et styresignal fra rormannen eller autopiloten til et signal som fores til styremekanismen, idet dette siste signal er proporsjonalt med svingehastigheten, slik at skipet opp-forer seg som et ideelt skip med rettlinjet styrekarakteristikk. The purpose of the facility according to the invention is to translate a steering signal from the helmsman or the autopilot into a signal that is fed to the steering mechanism, the latter signal being proportional to the turning speed, so that the ship behaves like an ideal ship with straight steering characteristics.

Skipsstyreanlegget i henhold til oppfinnelsen er av den art The ship steering system according to the invention is of the type

som omfatter en styresignalgiver, en rorinnstillingsmekanisme, comprising a steering signal transmitter, a rudder setting mechanism,

og mellom disse en overforingsstromkrets, hvor det dannes et kombinasjonssignal ved hjelp av styresignalet og et annet signal som anviser skipets svingehastighet, og det særegne ved anlegget består i at overforingskretsen inneholder en funksjonsgenerator and between these a transfer circuit, where a combination signal is formed using the control signal and another signal indicating the ship's turning speed, and the peculiarity of the system is that the transfer circuit contains a function generator

som tilfores et signal som representerer svingehastigheten og avgir et tredje signal som er dannet i overensstemmelse med skipets styrekarakteristikk, d.v.s. den kurve som representerer den rorvinkel som er nodvendig for å opprettholde en viss svingehastighet, idet det tredje signal legges til det kombinasjonssignal som fores til rorinnstillingsmekanismen for å bringe skipet til å oppfore seg som om det hadde en rettlinjet styrekarakteristikk. which is fed a signal representing the rate of turn and emits a third signal which is formed in accordance with the ship's steering characteristics, i.e. the curve representing the rudder angle required to maintain a certain rate of turn, the third signal being added to the combination signal fed to the rudder setting mechanism to cause the ship to behave as if it had a straight line steering characteristic.

Som det senere vil bli forklart, er det derved mulig å tildele As will be explained later, it is thereby possible to assign

et skip ideelle lineære styreegenskaper. a ship ideal linear steering characteristics.

Oppfinnelsen skal nå forklares nærmere under henvisning til tegningen. The invention will now be explained in more detail with reference to the drawing.

Fig. 1 viser en oppstilling av matematiske ligninger. Fig. 1 shows a set of mathematical equations.

Fig. 2 viser forskjellige former for styrekarakteristikker. Fig. 2 shows different forms of control characteristics.

Fig. 3 viser stromkretsdiagram for en utforelsesform for styre-anlegget i henhold til oppfinnelsen. Fig. 3 shows a circuit diagram for an embodiment of the control system according to the invention.

Det kombinerte rorinnstillingssignal, som oppnås ved hjelp av det i det foregående kjennetegnede styreanlegg, og som svarer til den rorvinkel, som skal innstilles, fremgår av ligning I i fig. 1,■hvor tegnene har folgende betydning: The combined rudder setting signal, which is obtained with the aid of the control system described above, and which corresponds to the rudder angle to be set, appears from equation I in fig. 1,■where the signs have the following meaning:

= rorinnstillingssignal, som fastlegger rorvinklen, = rudder setting signal, which determines the rudder angle,

&C = den rorvinkel som forlanges av rorgjengeren, henhv. &C = the rudder angle required by the rudder threader, resp.

autopiloten, og som svarer til det ovennevnte styresignal, the autopilot, and which corresponds to the above-mentioned control signal,

H(V) = styrekarakteristikken for et skip, definert som den til opprettholdelse av en bestemt svingehastighetvu nødven-dige rorvinkelå som en funksjon av \j> • H(V) = the steering characteristic of a ship, defined as the required rudder angle to maintain a certain turning speedvu as a function of \j> •

a = en konstant. a = a constant.

Noen typiske eksempler på styrekarakteristikker er vist i fig. 2. Kurven 2A svarer til et alminnelig ustabilt skip med styrbarhet: dårlig, kurven 2B til et marginalt stabilt skip, styrbarhet: tillatelig, kurven 2C et stabilt skip, styrbarhet: god, kurven 2D et overstabilt skip, styrbarhet: god eller tillatelig, og kurven 2E et uendelig stabilt skip, styrbarhet: dårlig. Some typical examples of control characteristics are shown in fig. 2. Curve 2A corresponds to a general unstable ship with steerability: poor, curve 2B to a marginally stable ship, steerability: acceptable, curve 2C a stable ship, steerability: good, curve 2D an overstable ship, steerability: good or acceptable, and curve 2E an infinitely stable ship, steerability: poor.

Undersøkelser har vist, at et skips styrefunksjon med god tilnærmelse kan uttrykkes ved hjelp av ligning II i fig. 1, forutsatt at skipet seiler med konstant hastighet. De i ligning II anvendte tegn, som ikke er definert i det foregående, har folgende betydning: Investigations have shown that a ship's steering function can be expressed with a good approximation using equation II in fig. 1, provided that the ship sails at a constant speed. The signs used in equation II, which are not defined above, have the following meaning:

= skipets kurs vinkel, = ship's heading angle,

M = skipets masse, M = ship's mass,

Iz = skipets treghetsmoment om en loddrett akse gjennom tyngdepunktet, Iz = the ship's moment of inertia about a vertical axis through the center of gravity,

Of = en konstant for et bestemt skip, Of = a constant for a particular ship,

. Yr) . Yr)

Yv) = hydrodynamiske avledete som definert i: "Nomenclature Nr) for treating the motion of-a submerged body through Yv) = hydrodynamic derivatives as defined in: "Nomenclature Nr) for treating the motion of-a submerged body through

N ) a fluid", The Society of Naval Architects and Marine Engineers,' Technical and Research Bulletin Nos. 1-5, April 1952, og F.H. Imlay: "A nomenclature for stability and control", David Taylor Model Basin Report Nr. 1319, May 1959. N ) a fluid", The Society of Naval Architects and Marine Engineers,' Technical and Research Bulletin Nos. 1-5, April 1952, and F.H. Imlay: "A nomenclature for stability and control", David Taylor Model Basin Report No. 1319 , May 1959.

Når verdien avj ifolge ligning I innsettes i ligning II, antar denne formen for ligning III, som på sin side lar seg redusere til den form som er vist i ligning IV. Det kan påvises, at A, B og C i ligning IV med god tilnærmelse er konstanter. When the value of j according to equation I is inserted into equation II, this assumes the form of equation III, which in turn can be reduced to the form shown in equation IV. It can be shown that A, B and C in equation IV are constants with a good approximation.

Ved de lave rorhastigheter, som normalt kommer på tale for skip, kan 5 med god tilnærmelse settes lik Sc. Ved innsetting av denne verdi i ligning IV antar denne formen for ligning V. At the low rudder speeds, which normally occur for ships, 5 can with a good approximation be set equal to Sc. When inserting this value into equation IV, this assumes the form of equation V.

Dette er en lineær differensialligning med konstante koeffisienter, og denne ligning svarer til et skip med ideelle lineære styreegenskaper i hele skipets styreområde. This is a linear differential equation with constant coefficients, and this equation corresponds to a ship with ideal linear steering properties throughout the ship's steering range.

Konstanten a utgjor forholdet mellom det opprinnelige styresignal, f.eks. rattvinklen og den resulterende svingehastighet y. The constant a forms the ratio between the original control signal, e.g. the steering wheel angle and the resulting turning speed y.

I fig. 3 betegner 1 et skipsratt, som i overensstemmelse med rorgjengerens manuelle styring tilveiebringer et styresignal Sc? som over en vender 5 påtrykkes en summator 6, når venderen inn-tar sin nederste stilling. In fig. 3 denotes 1 a ship's steering wheel, which, in accordance with the helmsman's manual control, provides a control signal Sc? as above a turner 5, a summator 6 is pressed, when the turner assumes its lowest position.

En rategyro 2 måler skipets svingehastighet f og sender et til-svarende signal til en funksjonsgenerator 3 samt til en signal-omformer h, som multipliserer signalet med konstanten -a. A rate gyro 2 measures the ship's turning speed f and sends a corresponding signal to a function generator 3 and to a signal converter h, which multiplies the signal by the constant -a.

De signaler H(4*) og -ay som derved fremkommer påtrykkes like-ledes summatoren 6, som nå frembringer det onskede kombinasjons-signal<5, som på vanlig måte anvendes til å fastlegge rorvinklen. The signals H(4*) and -ay which are thereby produced are likewise applied to the adder 6, which now produces the desired combination signal <5, which is normally used to determine the rudder angle.

Signalet 6 c kan i stedet for å bli avgitt fra skipsrattet avgis fra en autopilot 75 8? 9> 10 av i og for seg kjent art, når venderen 5 ligger i overste stilling. The signal 6 c, instead of being emitted from the ship's steering wheel, can be emitted from an autopilot 75 8? 9> 10 of a kind known in and of itself, when the turner 5 is in the top position.

Da funksjonen H(Y) avhenger både av hastigheten og av skipets last, kan funksjonsgeneratoren 3 være utformet på en sådan måte, at det i den kan innregnes både skipets hastighet, f.eks. auto-matisk fra skipets log, samt opplysninger om skipets lastefor-hold, f.eks. ved manuell innstilling. As the function H(Y) depends both on the speed and on the ship's load, the function generator 3 can be designed in such a way that it can take into account both the ship's speed, e.g. automatically from the ship's log, as well as information about the ship's cargo conditions, e.g. by manual setting.

Selv når H(Y) ikke innstilles noyaktig på denne måte, forbedres et vanskelig styrbart skips styreegenskaper dog vesentlig. Om onskes kan også forhold utenfor skipet, og som har en viss inn-flytelse på H(Y) regnes inn i funksjonsgeneratoren, som f.eks. vanndybde, kanaleffekt og påvirkninger fra andre skip i umiddel-bar nærhet. Even when H(Y) is not precisely set in this way, the steering characteristics of a difficult-to-steer ship are improved significantly. If desired, conditions outside the ship, which have a certain influence on H(Y), can also be factored into the function generator, such as e.g. water depth, channel effect and influences from other ships in the immediate vicinity.

Konstanten .a, som betegner skipets endrede styrekarakteristikk, kan på enkel måte innstilles etter onske. The constant .a, which denotes the ship's changed steering characteristics, can be easily adjusted as desired.

Funksjonsgeneratorer som sådanne er vel kjent. Som eksempel kan det henvises til "Handbook of Automation, Computation, and Control", Band 2, utgitt av Thompson Ramo Woolridge, Inc., Los Angeles, California, USA. Function generators as such are well known. As an example, reference may be made to "Handbook of Automation, Computation, and Control", Band 2, published by Thompson Ramo Woolridge, Inc., Los Angeles, California, USA.

Angående skipets styreegenskaper og bestemmelsen av disse egen-skaper, henvises det til "Hydro- and Aerodynamics Laboratory, Lyngby, Danmark, Report No. Hy-1C", mai 1967. Regarding the ship's steering characteristics and the determination of these characteristics, reference is made to "Hydro- and Aerodynamics Laboratory, Lyngby, Denmark, Report No. Hy-1C", May 1967.

Autopiloter, som simulerer den manuelle styring, kjennes i mange utforelsesformer, som enten er basert på gyrokompass eller mag-netiske kompass. Det kan f.eks. henvises til det engelske patent nr. 627-97^. Autopilots, which simulate manual steering, are available in many designs, which are either based on gyrocompasses or magnetic compasses. It can e.g. reference is made to the English patent no. 627-97^.

Når et styreanlegg i henhold til oppfinnelsen skal innstalleres i et skip, hvis styrekarakteristikk ikke er kjent3 gjores hele innstallasjonen ferdig for det foretas 'provetur med skipet. Under denne provetur bestemmes skipets styrekarakteristikk, f.eks. ved hjelp av spiralmetoden, henhv. den omvendte spiral-metode^ jfr. den ovennevnte "Hydro- and Aerodynamics Laboratory Report". Funksjonsgeneratoren innstilles deretter i overensstemmelse med den styrekarakteristikk som er bestemt på denne måten. When a steering system according to the invention is to be installed in a ship, whose steering characteristics are not known3, the entire installation is completed before a test trip is made with the ship. During this test trip, the ship's steering characteristics are determined, e.g. using the spiral method, respectively the inverted spiral method^ cf. the above-mentioned "Hydro- and Aerodynamics Laboratory Report". The function generator is then set in accordance with the control characteristic thus determined.

Claims (1)

Skipsstyreanlegg med en styresignalgiver, en rorinnstillingsmekanisme, og mellom disse en overforingsstromkrets, hvor det dannes et kombinasjonssignal ved hjelp av styresignalet og et annet signal som anviser skipets svingehastighet, karakterisert ved at overforingskretsen (3, k, 5? 6) inneholder en funksjonsgenerator (3) som tilfores et signal som representerer . svingehastigheten (Y)og avgir et tredje signal som er dannet i overensstemmelse med skipets styrekarakteristikk (HY), d.v.s.' den kurve som representerer den rorvinkel (<f) som er nodvendig for å opprettholde en viss svingehastighet (Y)j idet det tredje signal legges til det kombinasjonssignal som fores til rorinnstillingsmekanismen for å bringe skipet til å oppfore seg som om det hadde en rettlinjet styrekarakteristikk.Ship steering system with a steering signal transmitter, a rudder setting mechanism, and between these a transmission circuit, where a combination signal is formed using the steering signal and another signal indicating the ship's turning speed, characterized in that the transmission circuit (3, k, 5? 6) contains a function generator (3 ) which is fed a signal representing . the turning speed (Y) and emits a third signal which is formed in accordance with the ship's steering characteristic (HY), i.e.' the curve representing the rudder angle (<f) required to maintain a certain rate of turn (Y)j the third signal being added to the combination signal fed to the rudder setting mechanism to cause the ship to behave as if it had a straight line steering characteristic .
NO3452/68A 1967-09-06 1968-09-05 NO130573C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK447967AA DK130400B (en) 1967-09-06 1967-09-06 Ship control system.

Publications (2)

Publication Number Publication Date
NO130573B true NO130573B (en) 1974-09-30
NO130573C NO130573C (en) 1975-01-08

Family

ID=8133893

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3452/68A NO130573C (en) 1967-09-06 1968-09-05

Country Status (9)

Country Link
JP (1) JPS516955B1 (en)
DK (1) DK130400B (en)
ES (1) ES357864A1 (en)
FI (1) FI48816C (en)
FR (1) FR1577921A (en)
GB (1) GB1176913A (en)
NL (1) NL150391B (en)
NO (1) NO130573C (en)
SE (1) SE354624B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188817A (en) * 1984-03-09 1985-09-26 Osaka Gas Co Ltd Feedback type fluidic flowmeter
JPS60146814U (en) * 1984-03-10 1985-09-30 大阪瓦斯株式会社 Feedback fluidic flow meter

Also Published As

Publication number Publication date
FI48816C (en) 1975-01-10
DK130400B (en) 1975-02-17
ES357864A1 (en) 1970-04-01
FI48816B (en) 1974-09-30
DE1798180B2 (en) 1977-03-31
NO130573C (en) 1975-01-08
JPS516955B1 (en) 1976-03-03
GB1176913A (en) 1970-01-07
DE1798180A1 (en) 1970-12-03
NL6812613A (en) 1969-03-10
SE354624B (en) 1973-03-19
DK130400C (en) 1975-09-08
NL150391B (en) 1976-08-16
FR1577921A (en) 1969-08-08

Similar Documents

Publication Publication Date Title
Sawada et al. Path following algorithm application to automatic berthing control
US5523951A (en) System and method for automatic ship steering
Feng et al. Evaluation of the effects of the communication cable on the dynamics of an underwater flight vehicle
CN104765370A (en) UUV trajectory sight guiding method with sideslip angle considered under condition of environmental disturbance
Lataire et al. Ship to ship interaction forces during lightering operations
DE2245166C3 (en) Automatic arrangement for dynamic maintenance of the position and for controlling a watercraft or underwater vehicle
CN112612268A (en) Path tracking control method, device, equipment and storage medium
CN111798702B (en) Unmanned ship path tracking control method, system, storage medium and terminal
CN114044104B (en) Method for measuring minimum speed of ship for keeping course
Holvik Basics of dynamic positioning
EP3526650B1 (en) Method for automatically controlling the mooring maneuver of a boat with respect to an object and associated system
Zhou et al. Spatial path following for AUVs using adaptive neural network controllers
Maimun et al. A mathematical model on manoeuvrability of a LNG tanker in vicinity of bank in restricted water
NO130573B (en)
CN110515387A (en) A kind of above water craft drift angle compensating non-linear course heading control method
Yasukawa et al. Effect of bilge keels on maneuverability of a fine ship
Yoshimura Mathematical model for the manoeuvring ship motion in shallow water (2nd Report)-mathematical model at slow forward speed
Pivano et al. Better analysis-better data-better decisions-better operational risk management= delivery of incident free operations: Enabled by DynCap
Pipchenko et al. Features of an ultra-large container ship mathematical model adjustment based on the results of sea trials
Li et al. [Retracted] A Systematic Pipelaying Control Method Based on the Sliding Matrix for Dynamically Positioned Surface Vessels
US4590570A (en) Marine navigational aid
RU2615846C1 (en) Control method of towing system movement
DE3302169A1 (en) Device for measuring the trim in ships
KR102376887B1 (en) Steering control method for drill ship
Moreira et al. Modeling, guidance and control of “Esso Osaka” model