NO129505B - - Google Patents

Download PDF

Info

Publication number
NO129505B
NO129505B NO00297/71A NO29771A NO129505B NO 129505 B NO129505 B NO 129505B NO 00297/71 A NO00297/71 A NO 00297/71A NO 29771 A NO29771 A NO 29771A NO 129505 B NO129505 B NO 129505B
Authority
NO
Norway
Prior art keywords
soil
dialdehyde
aqueous solution
weight
solution
Prior art date
Application number
NO00297/71A
Other languages
Norwegian (no)
Inventor
W Bracke
Original Assignee
Labofina Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Labofina Sa filed Critical Labofina Sa
Publication of NO129505B publication Critical patent/NO129505B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/20Vinyl polymers
    • C09K17/22Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Soil Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

Fremgangsmåte ved agglomerering av faste partikler. Procedure for agglomeration of solid particles.

Den foreliggende oppfinnelse angår en fremgangsmåte ved agglomerering av faste partikler. The present invention relates to a method for the agglomeration of solid particles.

Teknikken med dannelse av stabile aggregater fra partik-kelformige materialer anvendes på vidt forskjellige områder, f.eks. The technique of forming stable aggregates from particulate materials is used in widely different areas, e.g.

ved avstivning av jord for reising av bygninger eller bygging av rulle- when stiffening soil for the construction of buildings or the construction of rolling

baner, brcinnboring, tunnelbygging, stabilisering av sanddyner og jord mot erosjon, fremstilling av kullstovagglomerater, skallstoping osv. lanes, rock drilling, tunnel construction, stabilization of sand dunes and soil against erosion, production of coal stove agglomerates, shell stuffing, etc.

Enkelte kjente fremgangsmåter er allerede foreslått for fremstilling av agglomerater fra part ikkelformige materialer, nemlig ved belegning bg impregnering av partiklene med acrylamidpolymere som deretter tverrbindes. Imidlertid krever tverrbindingen kopo lymerisa- Certain known methods have already been proposed for the production of agglomerates from non-crystalline materials, namely by coating or impregnating the particles with acrylamide polymers which are then cross-linked. However, the cross-linking requires copo lymerisa-

sjon av acrylamid med en annen kostbar monomer, f.eks. a I kyliden-bis-acrylamid, ved hjelp av hvilken tverrbindingen utfores, eller det tion of acrylamide with another expensive monomer, e.g. a In kylidene-bis-acrylamide, by means of which the cross-linking is carried out, or that

kreves en lang 'oppvar'mings6'perasjon''"rjg " rørVær "åv. egnede 'addi t iver . Disse forskjellige fremgangsmåter er uokonomiske og har fått. liten an-vendel se . " - a long 'heating' operation is required and suitable additives are required. These different methods are uneconomical and have received little use.

En side ved den foreliggende oppfinnelse er a. fremskaffe en enkel og okonomisk fremgangsmåte for agglomerering av faste, partikler. En annen side ved oppfinnelsen er å fremskaffe en fleksibel fremgangsmåte som tillater behandling av vidt forskjellige partikke 1 for~ mige materialer for å oppnå mere voluminose og stabile aggregater som har forskjellige strukturer. Et ytterligere trekk ved den foreliggende oppfinnelse er å skaffe en fremgangsmåte for å agglomerere jordpartik-ler, med den hensikt å forbedre strukturen åv dårlig jord eller å sta-bilisere strukturen av god.jord..... One aspect of the present invention is a. to provide a simple and economical method for agglomeration of solid particles. Another aspect of the invention is to provide a flexible method which allows the treatment of widely different particle-like materials in order to obtain more voluminous and stable aggregates which have different structures. A further feature of the present invention is to provide a method for agglomerating soil particles, with the intention of improving the structure of poor soil or of stabilizing the structure of good soil.....

Oppfinnelsen angår folgelig en fremgangsmåte ved agglomerering av faste partikler, f.eks. ved avstiving av jord og agglomerering av sandpar t ikler og kul 1 s t ovpar t ik le r-, hvor det par t ikke lf ormige materiale behandles med en vandig opplosning på basis av polyacrylamid, hvilken fremgangsmåte er kjennetegnet ved at det anvendes en opplosning som ytterligere inneholder et alifatisk aldehyd med 2-5 carbonatomer. The invention therefore relates to a method by agglomeration of solid particles, e.g. by stiffening soil and agglomeration of sand particles and carbon fiber particles, where the partially non-formable material is treated with an aqueous solution based on polyacrylamide, which method is characterized by using a solution which further contains an aliphatic aldehyde with 2-5 carbon atoms.

Yttrykkene "acrylamidpolymer" og. "polyacrylamid" som benyttet ovenfor og i den fcilgende del av beskrivelsen skal forståes således at de omfatter både homopolymerene av acrylamid og kopolymere på basis av acrylamid, f.eks. slike av acrylamid som er kopolymerisert med en monomer eller monomere valgt blant acrylsyre, methacrylsyre, estere av slike, acrylonitril og/eller andre vinyl- eller polyolefinmonomere. .1 alminnelighet har acrylamidpolymeren en molvekt i området 50.000 til 1-500.000, hvor de hciyere molvekter gir usedvanlig viskose losninger som ikke enkelt kan håndteres. The expressions "acrylamide polymer" and. "polyacrylamide" as used above and in the following part of the description is to be understood as including both the homopolymers of acrylamide and copolymers based on acrylamide, e.g. those of acrylamide which are copolymerized with a monomer or monomers selected from acrylic acid, methacrylic acid, esters thereof, acrylonitrile and/or other vinyl or polyolefin monomers. .1 generally, the acrylamide polymer has a molecular weight in the range 50,000 to 1-500,000, where the higher molecular weights give exceptionally viscous solutions which cannot be easily handled.

Konsentrasjonen av den vandige polyacrylamidlosning samt mengden av losning som benyttes, avhenger av enkelte faktorer, nemlig av type agglomerater som er onsket. The concentration of the aqueous polyacrylamide solution as well as the amount of solution used depends on certain factors, namely the type of agglomerates that are desired.

I alminnelighet inneholder polyacrylamidlosningen fra O,5 til IO'vekt% polymer, idet mer konsentrerte losninger er for viskose og vanskelige å fordele over' partiklene, mens meget fortynnede losninger resulterer i nærvær av en unodvendig mengde vann. Fortrinnsvis inneholder den vandige losning fra 1 til 4 vekt%, og spesielt fra 1 ti 1 ■ 2 vekt% av acry lamidpolymer. In general, the polyacrylamide solution contains from 0.5 to 10% by weight of polymer, more concentrated solutions being too viscous and difficult to distribute over the particles, while very dilute solutions result in the presence of an unnecessary amount of water. Preferably, the aqueous solution contains from 1 to 4% by weight, and in particular from 1 to 1 ■ 2% by weight of acrylic amide polymer.

Når jord behandles for å agglomerere de faste partikler When soil is treated to agglomerate the solid particles

og danner stabile aggregater, - som imidlertid tillater luft å trenge ned til de underliggende lag gjennom mellomrommene mellom ag<g>regatene and form stable aggregates, - which, however, allow air to penetrate down to the underlying layers through the spaces between the aggregates

og således tillater disse å holde på fuktighet -, tilsvarer den benyttede mengde vandig losning av acrylamidpolymer en vekt av acrylamidpolymer (beregnet på tort grunnlag) fra O,5 til 5 vektdeler, og mer spesielt fra 1 til 3 vektdeler pr. lOOO vektdeler partikkelformig materiale . and thus allow these to retain moisture -, the amount of aqueous solution of acrylamide polymer used corresponds to a weight of acrylamide polymer (calculated on a dry basis) from 0.5 to 5 parts by weight, and more particularly from 1 to 3 parts by weight per lOOO parts by weight of particulate matter.

For å oppnå mer kompakte agglomerater, f.eks. for å gjore byggearealer fastere, for stabilisering av jord for boligformål, eller ved fremstilling av stdpeskall, er mengden acrylamidpolymer storre enn de ovenfor angitte verdier, uten at mengden imidlertid overskrider 50 vektdeler, og i alminnelighet 10 til 20 vektdeler pr. lOOO vektdeler partikkelformig materiale. Det oppnås ingen fordel ved å benytte storre mengder polymer. To achieve more compact agglomerates, e.g. to make building areas firmer, to stabilize soil for residential purposes, or in the production of stdpe shell, the amount of acrylamide polymer is greater than the values stated above, without the amount, however, exceeding 50 parts by weight, and in general 10 to 20 parts by weight per lOOO parts by weight of particulate matter. No advantage is gained by using large amounts of polymer.

Dialdehydet som benyttes i bLanding med den vandige losning av acrylamidpolymer må være vannldselig. Valget av dialdehydet avhenger primært av okonomiske faktorer, og med hensyn til dette benyttes fortrinnsvis malonsyre-, ravsyre- og glutarsyredialdehyder, og særlig glyoxal, 0=CH-CH=0. The dialdehyde used in mixing with the aqueous solution of acrylamide polymer must be water-soluble. The choice of the dialdehyde depends primarily on economic factors, and with regard to this, malonic acid, succinic acid and glutaric acid dialdehydes are preferably used, and especially glyoxal, 0=CH-CH=0.

Mengden tilsatt aktivt dialdehyd må være således at ikke mer enn én aldehydgruppe er tilstede for hver amidgruppe av polymeren. Ingen geldannelse av polymeren skjer ved hoyere andeler dialdehyd. Spesielt i tilfelle med glyoxal er mengden tilsatt aktivt dialdehyd i området fra 0,25 til 10 vekt% av den torre polymer. The amount of added active dialdehyde must be such that no more than one aldehyde group is present for each amide group of the polymer. No gel formation of the polymer occurs at higher proportions of dialdehyde. Especially in the case of glyoxal, the amount of added active dialdehyde is in the range from 0.25 to 10% by weight of the dry polymer.

Den kan antas (hvor det må forstås slik at denne hypetese ikke skal fortolkes som en begrensning av området for den foreliggende oppfinnelsesgjenstand) at i nærværet av dialdehyd, f.eks. glyoxal, tverrbindes polyacrylamidpolymeren i henhold til folgende skjema: It can be assumed (where it must be understood that this hypothesis should not be interpreted as a limitation of the scope of the present invention) that in the presence of dialdehyde, e.g. glyoxal, the polyacrylamide polymer is cross-linked according to the following scheme:

Det er funnet at allerede ved omgivelsestemperatur inn-trer geldannelse av polyacrylamid i nærvær av dialdehydet, men denne geldannelse er relativt langsom. Geldannelseshastigheten kan påskyn-des ved tilsetning av en basisk forbindelse, for å gi en pH-verdi hciyere enn 7j og mer spesielt en pH-verdi innenfor området 7,5 til 9. pH-verdien påvirker ikke bare geldannelsesbastigheten for polymeren, men også leseligheten av den dannede gel. Således avhenger valget av pH-verdi av den antatte anvendelse for fremgangsmåten ved den foreliggende oppfinnelse. For anvendelse ved jordstabilisering må f.eks. gelen dannes i et ikke for kort tidsrom, for å tillate fordeling av blandingen på jorden, men det er også nddvendig at de dannede aggregater forblir stabile i lengre' tid. Av denne grunn' er 'fortrinnsvis reaksjonsblan-dingens pH-verdi 8 - 8,5- De pH-modifiserénde midler ef basiske forbindelser, sbm er inerte med hensyn' til polymeren og dialdehydet og de er mer spesielt uorganiske' forbindelser, f.eks. alkaliske hydroxyder og hydroxyder av ikke-jordaIkalimetaller eller salter, bl.a. alkalisk carbonat eller fosfat. It has been found that gel formation of polyacrylamide already occurs at ambient temperature in the presence of dialdehyde, but this gel formation is relatively slow. The rate of gel formation can be accelerated by the addition of a basic compound, to give a pH value higher than 7j and more particularly a pH value within the range of 7.5 to 9. The pH value affects not only the gelation basicity of the polymer, but also the readability of the formed gel. Thus, the choice of pH value depends on the assumed application for the method of the present invention. For use in soil stabilization, e.g. the gel is formed in a not too short period of time, to allow distribution of the mixture on the soil, but it is also necessary that the aggregates formed remain stable for a longer time. For this reason, the pH value of the reaction mixture is preferably 8 - 8.5. The pH-modifying agents are basic compounds, sbm are inert with respect to the polymer and the dialdehyde and they are more particularly inorganic compounds, e.g. . alkaline hydroxides and hydroxides of non-alkaline earth metals or salts, i.a. alkaline carbonate or phosphate.

Fremgangsmåten ved den foreliggende oppfinnelse er spesielt enkel og krever ikke spesiell forsiktighet ved ' utforeLse. I rea-liteten kan den utfores ved enten å blande de vandige losninger av acrylamidpolymer ogdialdehyd og deretter tilsette dé eventuelle basiske katalysatorer, eller forst tilsette den nevnte katalysator til den vandige losning av én av reaktantene, og deretter tilsette den vandige losning av.den andre reaktant. The method of the present invention is particularly simple and does not require special care in execution. In reality, it can be carried out by either mixing the aqueous solutions of acrylamide polymer and dialdehyde and then adding any basic catalysts, or first adding the aforementioned catalyst to the aqueous solution of one of the reactants, and then adding the aqueous solution of the other reactant.

Fremgangsmåten ved agglomerering av partikkelformig materiale i henhold til den foreliggende'oppfinne1se har spesiell verdi' ved behandling av jord, for å forbedre strukturen av dårlig jord eller opp-rettholde strukturen av god jord. De dannede aggregater forhindrer erosjon og motvirker bevegelse av jordoverflaten under påvirkning av vind eller regn. Ennvidere tillater de at jorden får luft og de gjor nedtrengningen lett for regnvann eller overrislingsyann ned i jorden, hvilket vann trenger ned gjennom mellomrommere mellom aggregatene og inn i kapi1lærgangené av de nevnte stabile aggregater» Som et resul-tat av dette skjer spiringen av froene og veksten av plantene lettere. The method of agglomeration of particulate material according to the present invention has particular value in the treatment of soil, to improve the structure of poor soil or to maintain the structure of good soil. The aggregates formed prevent erosion and counteract movement of the soil surface under the influence of wind or rain. Furthermore, they allow the soil to get air and they make it easy for rainwater or sprinkler water to penetrate into the soil, which water penetrates through spaces between the aggregates and into the capillary passages of the aforementioned stable aggregates." As a result of this, the germination of the seeds and the growth of the plants easier.

En annen fordel ved fremgangsmåten i henhold til den foreliggende oppfinnelse ligger i det faktum at den kan anvendes for for-bedring av jordstrukturen enten fc5r, under eller etter tilsåing av nevnte jord, og de benyttede forbindelser er ikke toksiske og er uten ugunstig virkning på froene eller plantene. Froene kan nemlig disper-geres i polyacrylamidlosningen, og en strom av denne losning blandes så med en strom av losningen av dialdehyd og basisk forbindelser, for påsprutning på jorden. Tiden for geldannelse kan reguleres slik at store jordarealer' kan behandles for geldannelse av de blandede losninger . Another advantage of the method according to the present invention lies in the fact that it can be used for improving the soil structure either before, during or after sowing said soil, and the compounds used are not toxic and have no adverse effect on the seeds or the plants. Namely, the seeds can be dispersed in the polyacrylamide solution, and a stream of this solution is then mixed with a stream of the solution of dialdehyde and basic compounds, for spraying on the soil. The time for gelation can be regulated so that large areas of soil can be treated for gelation of the mixed solutions.

I alminnelighet anvendes 5 til 500 g polymer pr. m<2> jord, hvor den benyttede mengde avhenger av enkelte faktorer, som f.eks. jordens struktur og onsket grad av agglomerering. In general, 5 to 500 g of polymer are used per m<2> soil, where the amount used depends on certain factors, such as e.g. soil structure and desired degree of agglomeration.

Den foreliggende oppfinnelse beskrives ytterligere under henvisning til de fblgende eksempler: The present invention is further described with reference to the following examples:

Eksempel 1 Example 1

O,1 ml av en 30%-ig vandig losning av glyoxal og IO ml av en vandig losning av natriumcarbonat ble tilsatt 100 ml av en 2%-ig vandig losning av polyacrylamid. Tiden for geldannelse av polymeren ble bestemt ved 20°C som funksjon av pH-verdien av reaksjonsblandingen. Resultatene er gitt i tabell I. 0.1 ml of a 30% aqueous solution of glyoxal and 10 ml of an aqueous solution of sodium carbonate were added to 100 ml of a 2% aqueous solution of polyacrylamide. The time for gel formation of the polymer was determined at 20°C as a function of the pH value of the reaction mixture. The results are given in Table I.

Eksempel 2 Example 2

Vandige losninger av polyacrylamid og glyoxal ble blandet som beskrevet i eksempel 1, og en vandig losning av forskjellige basiske forbindelser ble så tilsatt, for å oppnå en pH-verdi på 9°Aqueous solutions of polyacrylamide and glyoxal were mixed as described in Example 1, and an aqueous solution of various basic compounds was then added to achieve a pH value of 9°

Tiden for geldannelse ble bestemt som funksjon av type basisk forbindelse. Resultatene av disse undersbkelser er vist i tabell II. The time for gel formation was determined as a function of the type of basic compound. The results of these investigations are shown in Table II.

Eksempel 3 Example 3

To forsdk ble utfort ved å blande en vandig losning av polyacrylamid med en vandig liisning av dialdehyd og med en vandig losning av natriumhydroxyd, til en pH-verdi på 8,5= Den tilsatte mengde dialdehyd tilsvarte ca. én aldehydgruppe pr.. 30 amidgrupper i polymeren . Two tests were carried out by mixing an aqueous solution of polyacrylamide with an aqueous solution of dialdehyde and with an aqueous solution of sodium hydroxide, to a pH value of 8.5 = The added amount of dialdehyde corresponded to approx. one aldehyde group per 30 amide groups in the polymer.

Disse forsok ble utfort ved 20°C, og tiden for geldannelse ble bestemt som funksjon av type aldehyd. De oppnådde resultater er gitt i tabell III. These experiments were carried out at 20°C, and the time for gel formation was determined as a function of the type of aldehyde. The results obtained are given in table III.

Eksempel 4 Example 4

lOO ml av en 2%-ig vandig losning av en kopolymer inneholdende 85 vekt% acrylamid og 15 vekt% methylacrylat ble blandet med 0,2 ml av en 30%-ig vandig losning av glyoxal og 10 ml av en 0,4 %-ig vandig losning av natriumcarbonat, ved 50°C. 100 ml of a 2% aqueous solution of a copolymer containing 85% by weight acrylamide and 15% by weight methyl acrylate was mixed with 0.2 ml of a 30% aqueous solution of glyoxal and 10 ml of a 0.4% ig aqueous solution of sodium carbonate, at 50°C.

Tiden for geldannelse var mindre enn 5 min. The time for gel formation was less than 5 min.

Eksempel 5 Example 5

Varierende mengde 2%-ig vandig losning av polyacrylamid som hadde en molvekt på ca. 200.OOO, og som inneholdt 0,1 vekt% gly= oxal, og hvilken losning hadde en pH-verdi på 8,5, ble tilsatt til 1500 g sand som hadde en partikkelstdrrelse mindre enn 2 mm. Varying amount of 2% aqueous solution of polyacrylamide which had a molecular weight of approx. 200.OOO, and which contained 0.1% by weight gly= oxal, and which solution had a pH value of 8.5, was added to 1500 g of sand which had a particle size of less than 2 mm.

For hver av forsokeren ble agglomereringsgraden for sand bestemt (agglomereringsgraden = prosentandel av partikler som er agglo-merert til aggregatstorrelser storre enn 2 mm). For each experimenter, the degree of agglomeration of sand was determined (degree of agglomeration = percentage of particles that are agglomerated to aggregate sizes greater than 2 mm).

Resultatene av forsdket er vist i tabell IV. The results of the research are shown in table IV.

Eksempel 6 Example 6

I en tank på 250 liter ble blandet 200 liter av en 2%-ig polyacrylamidlbsning, 0,2 liter av en 30%-ig losning av glyoxal og 20 liter av en O,2%-ig losning av natriumcarbonat. Blandingen ble sproy-tet på o sanddyner med én hastighet av 1,5 liter/m 2. Geldannelse fant sted 30 minutter etter tidspunktet for blanding. på grunn av bland-ingens gode impregnering av sandpartiklene og geldannelsen av nevnte blanding, ble erosjon av sanddynene forårsaket av vind forhindret. In a tank of 250 litres, 200 liters of a 2% polyacrylamide solution, 0.2 liters of a 30% solution of glyoxal and 20 liters of a 0.2% solution of sodium carbonate were mixed. The mixture was sprayed onto sand dunes at a rate of 1.5 litres/m 2 . Gel formation took place 30 minutes after the time of mixing. due to the mixture's good impregnation of the sand particles and the gelation of said mixture, erosion of the dunes caused by wind was prevented.

Eksempel 7 Example 7

En tankbil som var utstyrt med to tankvolumer ble benyttet. Et av tankvolumene, som var forsynt med et roreverk eller en sir-kulasjonspumpe, inneholdt 4000 liter av en 2%-ig vandig losning polyacrylamid, hvor 20 kg gressfrd var dispergert. pH-verdien av nevnte losning ble innstilt på 8,5 ved tilsetning av natriumcarbonat. Det andre tankvolum inneholdt 40 li Ler av en 30%-ig vandig l(5sning av gly = oxal. A tanker equipped with two tank volumes was used. One of the tank volumes, which was equipped with an agitator or a circulation pump, contained 4,000 liters of a 2% aqueous solution of polyacrylamide, in which 20 kg of grass feed was dispersed. The pH value of said solution was adjusted to 8.5 by adding sodium carbonate. The second tank volume contained 40 l of a 30% aqueous solution of gly = oxal.

Under påforingeri på jorden ble polymer liisningen blandet med den andre losning i et forhold på 100:1. Dette ble foretatt ved å benytte to pumper'som leverte et konstant volum av hver losning pr. tidsenhet". De to 1 osn i ngs s t rommer b Le ledet sammen inn i påfbringsan-ordningen, 20 cm for dennes spriiy tedyser. Ca. 2 liter blandet produkt During application to the soil, the polymer solution was mixed with the second solution in a ratio of 100:1. This was done by using two pumps which delivered a constant volume of each solution per unit of time". The two 1 osn i ngs s t rooms b Le led together into the application arrangement, 20 cm for its spriy tedises. Approx. 2 liters of mixed product

2 2

ble benyttet pr. m jord. was used per m land.

I et spesielt tilfelle hvor dette system ble benyttet hadde marken en helning på ca. 70°. Jorden bLe utmerket stabilisert og froene holdt seg på plass» Ingen erosjon og ingen bevegelse av overf latejorden ble observert etter 3 dager ved sterkt regn. In a particular case where this system was used, the ground had a slope of approx. 70°. The soil was excellently stabilized and the seeds stayed in place" No erosion and no movement of the surface soil was observed after 3 days of heavy rain.

Eksempel 8 Example 8

1500 g sandpartikler med korns teir re 1 se mindre enn 2 mm ble impregnert med en vandig losning inneholdende 4 % polyacrylamid (midlere molekylvekt 400.000) og 0,4 vekt% glyoxyal og hvis pH var 8. 1500 g of sand particles with a grain size less than 2 mm were impregnated with an aqueous solution containing 4% polyacrylamide (average molecular weight 400,000) and 0.4% by weight glyoxyal and whose pH was 8.

Det ble anvendt 24 g polyacrylamid. Partiklenes agglome-reringsgrad var 100%. 24 g of polyacrylamide were used. The degree of agglomeration of the particles was 100%.

Stdpeformer ble fremstilt med den agglomererte sand. Cast forms were made with the agglomerated sand.

Eksempel 9 Example 9

KulIbriketter ble fremstilt ved å behandle kullstov med en vandig losning inneholdende 2 vekt% polyacrylamid (midlere molvekt: 400.000) og 2 vekt% glyoxal, og hvis pH var 8. 15 vektdeler polyacrylamid ble anvendt til 1000 vektdeler kullstov. Coal briquettes were produced by treating coal dust with an aqueous solution containing 2% by weight polyacrylamide (average molecular weight: 400,000) and 2% by weight glyoxal, and whose pH was 8. 15 parts by weight of polyacrylamide were used to 1000 parts by weight of coal dust.

Agglomereringsgradene var 100%. Kullbrikettene ble fremstilt ved stoping. The degrees of agglomeration were 100%. The charcoal briquettes were produced by stoking.

Claims (5)

1. Fremgangsmåte ved agglomerering av faste partikler, f. eks- ved avstiving av jord og agglomerering av sandpartikler og kull-stovpartikler, hvor det part ikke 1 formige materiale behandles med en vandig losning på basis av polyacrylamid, karakterisert ved at det anvendes en opplosning som ytterligere inneholder et alifatisk aldehyd med 2-5 carboriatomer.1. Procedure for agglomeration of solid particles, e.g. e.g. by bracing soil and agglomeration of sand particles and coal dust particles, where the non-1-shaped material is treated with an aqueous solution based on polyacrylamide, characterized by the use of a solution which additionally contains an aliphatic aldehyde with 2-5 carbon atoms . 2. Fremgangsmåte ifolge krav 1, karakterisert ved at det som dialdehyd anvendes glyoxal.2. Process according to claim 1, characterized in that glyoxal is used as dialdehyde. 3. Fremgangsmåte ifolge krav 1-2, karakterisert ved at dialdehydet anvendes i en mengde som ikke overskrider en aldehydgruppe for hver amidgruppe i acrylamidpolymeren.3. Method according to claims 1-2, characterized in that the dialdehyde is used in an amount that does not exceed one aldehyde group for each amide group in the acrylamide polymer. 4. Fremgangsmåte ifolge krav 1 - 35karakterisert ved at dialdehydet anvendes i en mengde tilsvarende 0,25 til IO vekt-% av den torre polymer.4. Process according to claims 1 - 35, characterized in that the dialdehyde is used in an amount corresponding to 0.25 to 10% by weight of the dry polymer. 5. Fremgangsmåte ifolge krav 1 - 4> karakterisert ved at det anvendes en opplosning med en pH-verdi mellom 7 og 11.5. Method according to claims 1 - 4> characterized in that a solution with a pH value between 7 and 11 is used.
NO00297/71A 1970-10-07 1971-01-28 NO129505B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE94827 1970-10-07

Publications (1)

Publication Number Publication Date
NO129505B true NO129505B (en) 1974-04-22

Family

ID=3841410

Family Applications (1)

Application Number Title Priority Date Filing Date
NO00297/71A NO129505B (en) 1970-10-07 1971-01-28

Country Status (14)

Country Link
JP (1) JPS5128073B1 (en)
AT (1) AT327807B (en)
AU (1) AU456751B2 (en)
BE (1) BE757161A (en)
CA (1) CA935589A (en)
CH (1) CH520523A (en)
DE (1) DE2108811C3 (en)
DK (1) DK135792B (en)
ES (1) ES388325A0 (en)
FR (1) FR2078744A5 (en)
GB (1) GB1311392A (en)
IL (1) IL36113A (en)
NL (1) NL7103937A (en)
NO (1) NO129505B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340775U (en) * 1976-09-10 1978-04-08
CH635126A5 (en) * 1979-07-31 1983-03-15 Isaflex Ag METHODS FOR IMPROVING WATER MANAGEMENT AND REMOVAL OF DESERT SOIL AND POTTED SOIL AND MEANS FOR IMPLEMENTING THESE.
US4681597A (en) * 1981-06-15 1987-07-21 Byrne Larry D Method for agglomerating powdered coal by compaction
LU84729A1 (en) * 1983-04-01 1984-11-28 Labofina Sa PROCESS FOR IMPROVING SOIL STRUCTURE
GB8725096D0 (en) * 1987-10-27 1987-12-02 Allied Colloids Ltd Polymeric processes & conversions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928116A (en) * 1972-07-17 1974-03-13

Also Published As

Publication number Publication date
DE2108811C3 (en) 1978-11-30
AU456751B2 (en) 1975-01-16
DK135792C (en) 1977-11-28
IL36113A (en) 1974-01-14
CA935589A (en) 1973-10-16
CH520523A (en) 1972-03-31
NL7103937A (en) 1972-04-11
IL36113A0 (en) 1971-04-28
GB1311392A (en) 1973-03-28
AT327807B (en) 1976-02-25
DK135792B (en) 1977-06-27
BE757161A (en) 1971-03-16
FR2078744A5 (en) 1971-11-05
ES388325A0 (en) 1973-05-01
JPS5128073B1 (en) 1976-08-17
DE2108811B2 (en) 1978-04-06
ATA248371A (en) 1975-04-15
AU3381771A (en) 1973-03-29
DE2108811A1 (en) 1972-04-13

Similar Documents

Publication Publication Date Title
US5642783A (en) Process for treating oil-bearing formation
US3759197A (en) Process for the agglomeration of particulate materials
US6196317B1 (en) Method and compositions for reducing the permeabilities of subterranean zones
US5617920A (en) Method for modifying gelation time of organically crosslinked, aqueous gels
US4521452A (en) Gel-forming compositions and the use thereof
US4461351A (en) Process for partially or completely plugging permeable zones in a subterranean formation
US5478802A (en) Gelling compositions useful for oil field applications
US4928766A (en) Stabilizing agent for profile control gels and polymeric gels of improved stability
EP1369551A1 (en) Composition and method for reducing the permeability of a subterranean zone
EP0566028B1 (en) Gelable compositions of water soluble polymers
CN102453473B (en) Organogel blocking agent for water blocking and profile control, and preparation method and application thereof
US3875697A (en) Cross linking of acrylamide polymers
NO313252B1 (en) Composition and method for the adjustment of oil and gas fields
NO148683B (en) PROCEDURE FOR AA PREVENTING INFLUENCE OF Borehole Water
CN113234191B (en) Temperature-resistant salt-resistant cationic polyacrylamide and preparation method thereof
US5028344A (en) Stabilizing agent for profile control gels and polymeric gels of improved stability
NO129505B (en)
US4712617A (en) Method for controlling the flow of liquids through a subterranean formation
US5277830A (en) pH tolerant heteropolysaccharide gels for use in profile control
US3686872A (en) Soil grouting process
US3973629A (en) Injection profiles with radiation induced copolymers
CN113337267A (en) Application of biological enzyme gel breaker in high-salinity water-based fracturing fluid product and fracturing fluid product
CN106928952B (en) Delayed crosslinking polymer system
US5156214A (en) Method for imparting selectivity to polymeric gel systems
CN113088269A (en) Organic-inorganic composite water shutoff agent