NO128747B - - Google Patents
Download PDFInfo
- Publication number
- NO128747B NO128747B NO70970A NO97070A NO128747B NO 128747 B NO128747 B NO 128747B NO 70970 A NO70970 A NO 70970A NO 97070 A NO97070 A NO 97070A NO 128747 B NO128747 B NO 128747B
- Authority
- NO
- Norway
- Prior art keywords
- alloy
- zirconium
- temperature
- alloys
- zirkaloy
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 229910001093 Zr alloy Inorganic materials 0.000 claims description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PRVKLYVQRIDKIC-UHFFFAOYSA-N [Mo].[Cu].[Zr] Chemical compound [Mo].[Cu].[Zr] PRVKLYVQRIDKIC-UHFFFAOYSA-N 0.000 description 1
- QZLJNVMRJXHARQ-UHFFFAOYSA-N [Zr].[Cr].[Cu] Chemical compound [Zr].[Cr].[Cu] QZLJNVMRJXHARQ-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G19/00—Table service
- A47G19/26—Butter or cheese dishes or covers, with or without cooling or heating devices; Protective covers for food containers
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
- Closures For Containers (AREA)
- Packages (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Zirkoniumlegering. Zirconium alloy.
Foreliggende oppfinnelse angår legeringer som bl. a. er egnet til bruk ved høye temperaturer i en atmosfære av kulldioksyd. The present invention relates to alloys such as a. is suitable for use at high temperatures in an atmosphere of carbon dioxide.
I kjernene av grafittmodererte kjerne-fysiske reaktorer der kulldioksyd benyttes til kjøling og varmeekstraksjon, oppstår det forhold hvor metalliske deler under drift blir brakt i kontakt med kulldioksyd ved en høy temperatur. Materialer med normal struktur som f. eks. stål, kan ikke anvendes under disse forhold på grunn av deres sto-re absorpsjon av nøytroner. In the cores of graphite-moderated nuclear reactors where carbon dioxide is used for cooling and heat extraction, conditions arise where metallic parts during operation are brought into contact with carbon dioxide at a high temperature. Materials with a normal structure such as e.g. steel, cannot be used under these conditions due to their greater absorption of neutrons.
Bruken av legeringer av zirkonium i slike reaktorer er blitt viet oppmerksom-het. En kjent legering av zirkonium, «Zir-caloy-2», som inneholder 1,3—1,6 % tinn, 0,07—0,2 % jern, 0,05—0,15 % krom og 0,03 —0,08 % nikkel har god styrke og et lavt nøytronabsorpsjonstverrsnitt. Ved temperaturer som ligger over 400° C er imidlertid denne legerings motstand mot korrosjon fra kulldioksyd utilstrekkelig. Attention has been paid to the use of alloys of zirconium in such reactors. A known alloy of zirconium, "Zir-caloy-2", containing 1.3-1.6% tin, 0.07-0.2% iron, 0.05-0.15% chromium and 0.03 — 0.08% nickel has good strength and a low neutron absorption cross section. However, at temperatures above 400° C, this alloy's resistance to corrosion from carbon dioxide is insufficient.
Det har imidlertid nå vist seg at en legering av zirkonium med kobber og mo- However, it has now been shown that an alloy of zirconium with copper and mo-
lybden eller krom, både er korrosjonsbe-standig og har større motstand mot siging når denne legering benyttes i kontakt med kulldioksyd ved temperaturer på opp til 600° C. lybdenum or chrome, both are corrosion-resistant and have greater resistance to seepage when this alloy is used in contact with carbon dioxide at temperatures of up to 600°C.
Zirkoniumlegeringer i henhold til oppfinnelsen inneholder 0,5—1,5 vektsprosent av kobber og fra 0,25—1,5 vektsprosent av molybden eller krom, mens resten helt ut består av zirkonium, bortsett fra uunngåelige urenheter som normalt finnes i det kommersielle materiale som kalles zirko-niumsvamp og som fortrinnsvis benyttes som zirkoniumkilde i legeringen. Zirconium alloys according to the invention contain 0.5-1.5% by weight of copper and from 0.25-1.5% by weight of molybdenum or chromium, while the rest consists entirely of zirconium, apart from unavoidable impurities which are normally found in the commercial material which is called zirconium sponge and which is preferably used as a source of zirconium in the alloy.
To legeringer som er foretrukne innenfor oppfinnelsens ramme er: Eksempel (1): Cu, 0,5% Mo, 0,5%, Two alloys that are preferred within the scope of the invention are: Example (1): Cu, 0.5% Mo, 0.5%,
rest Zr. rest Zr.
Eksempel (2): Cu, 1,0% Mo, 1,5%, Example (2): Cu, 1.0% Mo, 1.5%,
rest Zr. rest Zr.
De følgende mekaniske egenskaper for den forbedrede legering sammenliknet med zirkonium og «Zirkaloy-2» er følgende: The following mechanical properties of the improved alloy compared to zirconium and "Zirkaloy-2" are as follows:
menliknet med zirkonium og «Zirkaloy-2». Hårdhetsprøver ved en temperatur på 500° C med lengre perioder av belastning og sammenliknet med «Zirkaloy-2» viste de følgende resultater: but compared to zirconium and "Zirkaloy-2". Hardness tests at a temperature of 500° C with longer periods of loading and compared to "Zirkaloy-2" showed the following results:
Prøvene av begge legeringer ble glø-det ved 820° C i vakuum før prøvene ble utført. The samples of both alloys were annealed at 820° C in a vacuum before the tests were carried out.
Prøver utført ved 475° C viste at legeringen i eksempel 1 var noe hårdere for den lengste periode av belastning og noe mindre hård for de kortere belastnings-perioder enn «Zirkaloy-2». Tests carried out at 475° C showed that the alloy in example 1 was somewhat harder for the longest period of loading and somewhat less hard for the shorter loading periods than "Zirkaloy-2".
Strekkfastheten for de forbedrede zirkoniumlegeringer i henhold til oppfinnelsen ved romtemperatur etter gløding ved 820° C viste økning i forhold til strekkfastheten for «Zirkaloy-2». The tensile strength of the improved zirconium alloys according to the invention at room temperature after annealing at 820° C showed an increase in relation to the tensile strength of "Zirkaloy-2".
Prøver av legeringen i eksempel (1) Samples of the alloy in example (1)
var omtrent 20 % bedre og av legeringen i eksempel (2) omtrent 80 % bedre enn prø-ver av «Zirkaloy-2», mens den prosentvise forlengelse av prøvene av legeringene i eksempel 1 var omtrent det samme som for «Zirkaloy-2», mens den prosentvise forlengelse for legeringen i eksempel (2) var omtrent % av den prosentvise forlengelse av «Zirkaloy-2». Denne forbedring øket når prøvene ble prøvet ved 375° C. was about 20% better and of the alloy in Example (2) about 80% better than samples of "Zirkaloy-2", while the percentage elongation of the samples of the alloys in Example 1 was about the same as for "Zirkaloy-2" , while the percentage elongation for the alloy in example (2) was about % of the percentage elongation of "Zirkaloy-2". This improvement increased when the samples were tested at 375° C.
Sigeprøver med en spenning på 422 kg/cm<2> på prøvestykkene ble prøvet i en atmosfære av argon og viste følgende resultater: Seepage samples with a stress of 422 kg/cm<2> on the test pieces were tested in an atmosphere of argon and showed the following results:
Økningen i sigemotstanden for de forbedrede legeringer i forhold til «Zirkaloy-2» var større jo større den prosentvise forlengelse var. The increase in creep resistance for the improved alloys compared to "Zirkaloy-2" was greater the greater the percentage elongation.
Virkningen overfor korrosjon fra CO2 er vist ved de resultater som er gjengitt nedenfor av prøver ved 700° C og ved en atmosfæres gasstrykk. The effect on corrosion from CO2 is shown by the results reproduced below of samples at 700° C and at a gas pressure of one atmosphere.
Ved en temperatur på 600° C med det samme gasstrykk var de forbedringer som ble funnet ved 700° C enda mer frem-tredende. Disse tilbøyeligheter hadde ma-terialet dessuten både ved lave temperaturer og høyere gasstrykk. At a temperature of 600°C with the same gas pressure, the improvements found at 700°C were even more prominent. The material also had these tendencies both at low temperatures and higher gas pressure.
Herdeegenskapene for arbeidsstykker av de forbedrede legeringer viste også en forbedring sammenliknet med «Zirkaloy-2». Workpiece hardening properties of the improved alloys also showed an improvement compared to "Zirkaloy-2".
Absorpsjonstverrsnittet for termiske nøytroner for zirkonium med et lavt haf-niumirinhold påvirkes bare svakt ved til-setning av kobber og molybden innenfor det angitte område, f. eks. hvis det mak-roskopiske tverrsnitt for zirkonium av re-aktorrenhet settes til 0,010428 cm-<1> i forhold til et tverrsnitt i barns/atom på 0,20, vil de tilsvarende tverrsnitt i eksempel (1) og (2) henholdsvis være 0,012386 cm-<1>, og 0,015126 cm-'. The absorption cross-section for thermal neutrons for zirconium with a low hafnium content is only slightly affected by the addition of copper and molybdenum within the specified range, e.g. if the macroscopic cross-section for zirconium of reactor purity is set to 0.010428 cm-<1> in relation to a cross-section in barns/atom of 0.20, the corresponding cross-sections in example (1) and (2) will respectively be 0.012386 cm-<1>, and 0.015126 cm-'.
De mekaniske egenskaper av zirkonium kobbermolybden og zirkonium-kobber-krom-legeringene som er nevnt oven-for ved høyere temperatur kan ytterligere forbedres ved varmebehandling som består i å varme legeringen til en temperatur på 850° C—950° C og å opprettholde denne temperatur i en bestemt tid før brå-kjølingen for hurtig å redusere legeringens temperatur. Denne behandling kan deretter følges av en anløpningsbehandling som består i på nytt å varme opp legeringen i en bestemt tid til en temperatur under 850° C. The mechanical properties of the zirconium copper-molybdenum and the zirconium-copper-chromium alloys mentioned above at higher temperature can be further improved by heat treatment which consists in heating the alloy to a temperature of 850°C—950°C and maintaining this temperature for a certain time before the quench to quickly reduce the temperature of the alloy. This treatment can then be followed by a tempering treatment which consists of reheating the alloy for a specific time to a temperature below 850°C.
På grunn av zirkoniummetallets evne til å oksydere og til å absorbere atmosfæ-riske og andre urenheter ved høye temperaturer bør legeringens bestanddeler smel-tes i vakuum i en lysbueovn. Bortsett fra denne begrensning kan legeringene i henhold til oppfinnelsen lett bearbeides på vanlig måte. Urenheter i den anvendte zir-koniumsvamp bør holdes så lav som mu-lig. De mest skadelige urenheter når det gjelder korrosjonsmotstand er aluminium, silicium, hydrogen, oksygen, nitrogen og titan. Aluminiuminnholdet bør ligge la-vere enn 150 deler pr. million, mens nitrogen og titan ikke er så skadelig og i det sistnevnte tilfelle kan titaniuminnholdet være så høyt som 1000 deler pr. million, uten i særlig grad å påvirke legeringenes korrosjonsmotstand. Due to the zirconium metal's ability to oxidize and to absorb atmospheric and other impurities at high temperatures, the alloy's components should be melted in a vacuum in an electric arc furnace. Apart from this limitation, the alloys according to the invention can be easily processed in the usual way. Impurities in the zirconium sponge used should be kept as low as possible. The most harmful impurities in terms of corrosion resistance are aluminium, silicon, hydrogen, oxygen, nitrogen and titanium. The aluminum content should be lower than 150 parts per million, while nitrogen and titanium are not so harmful and in the latter case the titanium content can be as high as 1000 parts per million, without particularly affecting the corrosion resistance of the alloys.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80818269A | 1969-03-18 | 1969-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO128747B true NO128747B (en) | 1974-01-07 |
Family
ID=25198088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO70970A NO128747B (en) | 1969-03-18 | 1970-03-17 |
Country Status (16)
Country | Link |
---|---|
US (1) | US3709397A (en) |
AT (1) | AT311586B (en) |
BE (1) | BE747473A (en) |
BR (1) | BR7017520D0 (en) |
CA (1) | CA924655A (en) |
CH (1) | CH522542A (en) |
DE (1) | DE2009628A1 (en) |
ES (1) | ES156920Y (en) |
FI (1) | FI51042C (en) |
FR (1) | FR2035047A1 (en) |
GB (1) | GB1308981A (en) |
IE (1) | IE34054B1 (en) |
MY (1) | MY7500264A (en) |
NL (1) | NL7003815A (en) |
NO (1) | NO128747B (en) |
SE (1) | SE365394B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE790831A (en) * | 1971-11-02 | 1973-04-30 | Dart Ind Inc | MEAT STORAGE CONTAINER |
GB1524116A (en) * | 1974-12-19 | 1978-09-06 | World Inventions Ltd | Container for foodstuffs or the like |
US4502598A (en) * | 1981-11-20 | 1985-03-05 | Dysan Corporation | Holder for magnetic disks |
US5947295A (en) * | 1996-04-08 | 1999-09-07 | Lutin; Matthew | Liner dispenser for waste containers |
US6241091B1 (en) * | 1996-11-04 | 2001-06-05 | Gregory Moore | Decorative container for storing plunger |
US20040163510A1 (en) * | 2003-02-24 | 2004-08-26 | Weisfeld Jules Arnold | Slanted butter dish and method for using same |
USD743740S1 (en) * | 2014-07-10 | 2015-11-24 | Helen Of Troy Limited | Butter dish |
IT201700014432A1 (en) * | 2017-02-09 | 2018-08-09 | Munus Int Italia Srl | KITCHEN KITS TO LIMIT THE HEAT DISPERSION OF A LIVING ROOM |
USD1001579S1 (en) * | 2020-11-02 | 2023-10-17 | Shenzhen Taolefu Trading Co., Ltd. | Butter dish and cover assembly |
USD1038707S1 (en) * | 2021-11-10 | 2024-08-13 | Hattie Belches | Cake caddy |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191411966A (en) * | 1914-05-15 | 1914-12-10 | William Bull | Improvements in and relating to Plates and the like and Covers therefor. |
US1561943A (en) * | 1922-01-10 | 1925-11-17 | Vollrath Co | Dish and cover |
US2080283A (en) * | 1935-10-10 | 1937-05-11 | Lowenfels Albert | Butter dish |
FR822434A (en) * | 1936-06-03 | 1937-12-30 | Improvements to cooling containers for butter or other similar substances | |
US2695645A (en) * | 1950-05-08 | 1954-11-30 | Earl S Tupper | Bread server or analogous seal tight container |
US2765831A (en) * | 1952-12-23 | 1956-10-09 | Earl S Tupper | Food storer and dispenser |
DK120966B (en) * | 1962-03-07 | 1971-08-09 | Rexall Drug Chemical | Plastic container for storing perishable goods in freezer compartments. |
GB1024469A (en) * | 1963-12-24 | 1966-03-30 | Judge Internat Ltd | Improvements in combined cake tray and storage devices |
US3246786A (en) * | 1964-02-03 | 1966-04-19 | Holley Plastics Company | Coaster-cup lid |
US3307603A (en) * | 1965-08-02 | 1967-03-07 | Rexall Drug Chemical | Container |
US3418141A (en) * | 1965-11-15 | 1968-12-24 | Procter & Gamble | Package including dish and cover |
-
1969
- 1969-03-18 US US00808182A patent/US3709397A/en not_active Expired - Lifetime
-
1970
- 1970-02-26 CA CA076019A patent/CA924655A/en not_active Expired
- 1970-03-02 DE DE19702009628 patent/DE2009628A1/en active Pending
- 1970-03-11 GB GB1168570A patent/GB1308981A/en not_active Expired
- 1970-03-11 IE IE320/70A patent/IE34054B1/en unknown
- 1970-03-17 SE SE03509/70A patent/SE365394B/xx unknown
- 1970-03-17 NO NO70970A patent/NO128747B/no unknown
- 1970-03-17 BR BR217520/70A patent/BR7017520D0/en unknown
- 1970-03-17 BE BE747473D patent/BE747473A/en not_active IP Right Cessation
- 1970-03-17 CH CH402070A patent/CH522542A/en not_active IP Right Cessation
- 1970-03-17 FI FI700730A patent/FI51042C/en active
- 1970-03-17 FR FR7009574A patent/FR2035047A1/fr active Pending
- 1970-03-18 NL NL7003815A patent/NL7003815A/xx unknown
- 1970-03-18 ES ES1970156920U patent/ES156920Y/en not_active Expired
- 1970-03-18 AT AT251370A patent/AT311586B/en active
-
1975
- 1975-12-30 MY MY264/75A patent/MY7500264A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CH522542A (en) | 1972-06-30 |
US3709397A (en) | 1973-01-09 |
NL7003815A (en) | 1970-09-22 |
IE34054L (en) | 1970-09-18 |
ES156920U (en) | 1971-03-16 |
FR2035047A1 (en) | 1970-12-18 |
SE365394B (en) | 1974-03-25 |
CA924655A (en) | 1973-04-17 |
IE34054B1 (en) | 1975-01-22 |
DE2009628A1 (en) | 1970-10-01 |
GB1308981A (en) | 1973-03-07 |
ES156920Y (en) | 1971-08-01 |
MY7500264A (en) | 1975-12-31 |
BE747473A (en) | 1970-09-17 |
FI51042B (en) | 1976-06-30 |
AT311586B (en) | 1973-11-26 |
FI51042C (en) | 1976-10-11 |
BR7017520D0 (en) | 1973-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4536119B2 (en) | Elements for use in nuclear reactors, comprising a zirconium-based alloy having creep resistance and corrosion resistance to water and water vapor, and a method for producing the same | |
Lenning et al. | Constitution and mechanical properties of titanium-hydrogen alloys | |
Simpson et al. | Delayed hydrogen embrittlement in Zr-2.5 wt% Nb | |
Barth et al. | Evaluation of hydrogen embrittlement mechanisms | |
NO128747B (en) | ||
CA2867563C (en) | Cr-containing austenitic alloy and method for producing the same | |
JP3923557B2 (en) | Zirconium-based alloy tube for nuclear fuel assemblies and method for producing the same | |
US3567522A (en) | Method of producing zirconium base alloys | |
KR20140137451A (en) | Cr-containing austenitic alloy | |
US2240940A (en) | Aluminum alloy | |
US2887420A (en) | Surface treatments for articles made from heat resisting alloys | |
WO2022213544A1 (en) | Zirconium alloy and fabrication method therefor, cladding tube, and fuel assembly | |
US3133839A (en) | Process for improving stress-corrosion resistance of age-hardenable alloys | |
Cupp | The effect of neutron irradiation on the mechanical properties of zirconium-2.5% niobium alloy | |
US3341373A (en) | Method of treating zirconium-base alloys | |
US2679466A (en) | Surface decarburization of carboncontaining alloys | |
US2924518A (en) | Zirconium alloys | |
US2691578A (en) | Iron-molybdenum titanium base alloys | |
Long et al. | The mechanism of stress—corrosion cracking in pure Fe-base alloys | |
US2153906A (en) | Method of heat treating chromiumcontaining corrosion and/or heat resisting steels | |
JPH0154427B2 (en) | ||
KR20080065749A (en) | Zirconium alloys having excellent resistance property in both water and steam reaction | |
US2926113A (en) | Heat treated u-mo alloy | |
US3498854A (en) | Precipitation hardened tantalum base alloy | |
US2693412A (en) | Alloy steels |