NO124145B - - Google Patents

Download PDF

Info

Publication number
NO124145B
NO124145B NO143368A NO143368A NO124145B NO 124145 B NO124145 B NO 124145B NO 143368 A NO143368 A NO 143368A NO 143368 A NO143368 A NO 143368A NO 124145 B NO124145 B NO 124145B
Authority
NO
Norway
Prior art keywords
weight percent
electrode
coating
oxidation
thickness
Prior art date
Application number
NO143368A
Other languages
Norwegian (no)
Inventor
T Yoshimura
Original Assignee
Mitsubishi Steel Manufacturing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Manufacturing filed Critical Mitsubishi Steel Manufacturing
Publication of NO124145B publication Critical patent/NO124145B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

Grafitt- eller kullelektrode forsynt med oksydasjonsbestandig beskyttelsesovertrekk samt fremgangsmåte til overtrekking av en elektrode med et slikt beskyttelsesovertrekk . Graphite or carbon electrode provided with an oxidation-resistant protective coating and method for coating an electrode with such a protective coating.

Foreliggende oppfinnelse angår en grafitt- eller kullelektrode for elektriske lysbueovner eller elektrotermiske prosesser der det brukes elektriske lysbuer, hvilken elektrode er forsynt med minst et oksydasjonsbestandig eller oksydasjonsfor-hindrende, elektrisk ledende overtrekk som beskytter elektrodens flate fra å oksyderes, idet overtrekket i det'vesentlige utgjøres av metaller, legeringer eller blandinger av disse og inneholder Fe, Al og Si og, eventuelt, mindre mengde av et eller flere av grunnstoffene Mn,B, Ti, Zr og P, og den totale tykkelsen på overtrekket er minst o,l mm. Oppfinnelsen angår også en fremgangsmåte til overtrekking av en elektrode med et slikt beskyttelsesovertrekk. The present invention relates to a graphite or carbon electrode for electric arc furnaces or electrothermal processes where electric arcs are used, which electrode is provided with at least one oxidation-resistant or oxidation-preventing, electrically conductive coating that protects the surface of the electrode from being oxidized, the coating essentially consists of metals, alloys or mixtures thereof and contains Fe, Al and Si and, possibly, a smaller amount of one or more of the elements Mn, B, Ti, Zr and P, and the total thickness of the coating is at least o.1 mm . The invention also relates to a method for coating an electrode with such a protective coating.

Elektroder av grafitt eller annet carbonholdig materiale brukes i alminnelighet i elektriske lysbueovner og i .elektrotermiske prosesser der elektriske lysbuer utnyttes, for eksempel ved smelteovner for stål. Ved bruk av slike elektroder har det vist seg at elektrodene i stor utstrekning raskt forbrukes p.g.a. oksydasjon på de flater som utsettes, for den hete atmosfæren i deb indre av ovnen. Dette tap av elektrodemateriale utgjør en stor ulempe, ettersom elektrodenes: driftstid forkortes i høy grad.. Electrodes of graphite or other carbon-containing material are generally used in electric arc furnaces and in electrothermal processes where electric arcs are used, for example in melting furnaces for steel. When using such electrodes, it has been shown that the electrodes to a large extent are quickly consumed due to oxidation on the surfaces exposed to the hot atmosphere inside the oven. This loss of electrode material is a major disadvantage, as the electrodes' operating time is greatly shortened.

Hensikten med foreliggende oppfinnelse er å fremskaffe The purpose of the present invention is to provide

en elektrode som oppviser gode egenskaper i det minste når det gjelder antioksydasjon, antiflatesplitting, lav spesifikk mot-stand, lav elastisitetsmodul og høy mekanisk styrke. an electrode which exhibits good properties at least in terms of anti-oxidation, anti-surface splitting, low specific resistance, low modulus of elasticity and high mechanical strength.

Det er imidlertid forholdsvis vanskelig, men- ikke umulig, å oppnå samtlige av de ovennevnte egenskaper. Etter som de to egen-skapene, antioksydasjon og anti flatesplitting, står i motsetnings-forhold til hverandre, kan en sterkere og mindre voluminøs elektrode motstå oksydering, men ikke flatesplitting, mens en porøs og voluminøs elektrode kan motstå flatesplitting men ikke oksydering samtidig. Ethvert forsøk på å fremstille elektroder med samtlige ovennevnte egenskaper innebærer derfor økte fremstil-lingsomkostninger p:g.a.man må bruke ytterst rent materiåle og nøyaktig kontrollerte fremstillingsprosesserv However, it is relatively difficult, but not impossible, to achieve all of the above-mentioned properties. As the two properties, antioxidation and anti surface splitting, are in opposition to each other, a stronger and less voluminous electrode can resist oxidation, but not surface splitting, while a porous and voluminous electrode can resist surface splitting but not oxidation at the same time. Any attempt to produce electrodes with all of the above-mentioned properties therefore entails increased production costs because you have to use extremely clean materials and precisely controlled manufacturing processes.

Det er tidligere foreslått å beskytte elektrodene mot oksydasjon ved å overtrekke, flatene med et lag åv varmeresistent materiale^ bestående av aluminium sammen med. bor, silisium, titan,, zirkonium, krom eller molybden. Laget kan pålegges på elektrodene ved at aluminium smeltes på en av kobber' fremstilt elektrodehol-der. Aluminium har imidlertid en tendens til på sine flater å oksyderes til Ai20^ og et slikt oksydert flatelag utgjør en dårlig elektrisk leder som kan være til hinder for den elektrotermiske prosessen og kan være årsak til gnister som i sin tur kan resul-tere i defekter i aluminiumslaget og skader på elektrodeholderen, hvilket innebærer at laget får minsket beskyttelseseffekt. De tidligere forsøkene på å fremstille funksjonsdyktige elektroder har derfor hittil ikke vært vellykkede og disse elektroder har av denne grunn ikke blitt akseptert innen industrien. It has previously been proposed to protect the electrodes against oxidation by coating the surfaces with a layer of heat-resistant material consisting of aluminum together with boron, silicon, titanium, zirconium, chromium or molybdenum. The layer can be applied to the electrodes by melting aluminum on an electrode holder made of copper. However, aluminum has a tendency on its surfaces to oxidize to Al20^ and such an oxidized surface layer constitutes a poor electrical conductor which can hinder the electrothermal process and can be the cause of sparks which in turn can result in defects in the aluminum layer and damage to the electrode holder, which means that the layer has a reduced protective effect. The previous attempts to produce functional electrodes have therefore so far not been successful and these electrodes have therefore not been accepted within the industry.

Ved hjelp av foreliggende oppfinnelse har man lykkes å eliminere eller redusere ovennevnte ulemper til et minimum, ved at man bruker et lag som er basert på Fe istedetfor Al. Jern har den ytterligere fordel at det kan pålegges på en enkel og billi-gere måte. With the help of the present invention, one has succeeded in eliminating or reducing the above-mentioned disadvantages to a minimum, by using a layer which is based on Fe instead of Al. Iron has the further advantage that it can be applied in a simple and cheaper way.

Elektroden ifølge foreliggende oppfinnelse er karakterisert ved at det påførte beskyttelsesovertrekk inneholder 15-75 vektprosent Fe, 0,2-15 vektprosent Si, 0,2-30 vektprosent Al og 4-60 vektprosent Cr, eventuelt 0,2-10 vektprosent av ett eller flere av grunnstoffene Mn, B, Ti, Zr, Ni, Mo, W, V, Nb, Hf, Y, Co, Cu og Be og 0,005-0,2 vektprosent P og/eller 0,01-4,5 vektprosent The electrode according to the present invention is characterized in that the applied protective coating contains 15-75 weight percent Fe, 0.2-15 weight percent Si, 0.2-30 weight percent Al and 4-60 weight percent Cr, possibly 0.2-10 weight percent of one or several of the elements Mn, B, Ti, Zr, Ni, Mo, W, V, Nb, Hf, Y, Co, Cu and Be and 0.005-0.2 weight percent P and/or 0.01-4.5 weight percent

C, dessuten eventuelt 0,01-0,1 vektprosent N^, og at den totale tykkelse av beskyttelsesovertrekket på elektrodeflaten er maksimalt 1,0 mm. C, in addition possibly 0.01-0.1 weight percent N^, and that the total thickness of the protective coating on the electrode surface is a maximum of 1.0 mm.

Fremgangsmåten til overtrekking av en elektrode ifølge oppfinnelsen er karakterisert ved at man ved sprøytebelegg bru- The method for coating an electrode according to the invention is characterized by the fact that, with spray coating,

ker en sammensatt tråd som omfatter en ytre mantel av Fe eller ker a composite wire comprising an outer mantle of Fe or

F legering eller Al og en indre kjerne av pulver av metaller som F alloy or Al and an inner core of powder of metals such as

har dårligere bearbeidelsesevne enn mantelen, hvilken tråd totalt inneholder 15-75 vektprosent Fe, 4~60 vektprosent Cr, 0,2-15 vektprosent Si og 0,2-30 vektprosent Al, samt eventuelt dessuten minst 0,2 vektprosent av et eller flere av grunnstoffene Ni, Mn, Mo, W, B, Ti, Zr, V, Nb, Hf, Y, Co, Cu og"Be samt eventuelt minst 0,01 vektprosent N?, minst 0,005 vektprosent P og/eller minst 0,01 vektprosent C og at beskyttelsesovertrekket påføres elektroden til en tykkelse mellom 0,1-1,0 mm. has poorer machinability than the mantle, which wire contains a total of 15-75% by weight Fe, 4~60% by weight Cr, 0.2-15% by weight Si and 0.2-30% by weight Al, and possibly also at least 0.2% by weight of one or more of the elements Ni, Mn, Mo, W, B, Ti, Zr, V, Nb, Hf, Y, Co, Cu and "Be and optionally at least 0.01 weight percent N?, at least 0.005 weight percent P and/or at least 0, 01 weight percent C and that the protective coating is applied to the electrode to a thickness between 0.1-1.0 mm.

Det metalliske antioksydasjonslaget kan fremstilles ved at man på elektroden sprøyter metallpulver som i det vesentlige består av krom, så som metallisk krom, en legering av ferrokrom, silisiumkrom, mangankrom, aluminiumkrom og/eller nikkelkrom. The metallic antioxidation layer can be produced by spraying onto the electrode metal powder which essentially consists of chromium, such as metallic chromium, an alloy of ferrochrome, silicon chrome, manganese chrome, aluminum chrome and/or nickel chrome.

En kromlegerings antioksyderende egenskap forbedres A chromium alloy's antioxidant property is improved

når krominnholdet overstiger 4 $ ° og den blir meget markant når krominnholdet overstiger 20 "?<>. when the chromium content exceeds 4 $ ° and it becomes very marked when the chromium content exceeds 20 "?<>.

Ved tilsetning av aluminium og silicium til de ovennevnte By adding aluminum and silicon to the above

legeringer økes den antioksyderende egenskap vesentlig. alloys, the antioxidant property is significantly increased.

Det finnes to metoder for metallisering, nemlig tråd-sprøyting og pulversprøyting. Trådsprøytingsmetoden er imidlertid meget. There are two methods of metallization, namely wire spraying and powder spraying. However, the wire spraying method is very

kostbar p.g.a. trådens dårlige formbarhet. En legering som f.eks. inneholder 30-40 # krom, 4-8 % aluminium, I-3 $ silicium og resten jern, oppviser således en så dårlig formbarhet at det trådformede produkt ikke kan fremstilles til en lav pris på en enkel måte. Det er derfor økonomisk motivert å påføre overtrekksmetiallene på elektroden ved pulversprøyting, hvorved det også er mulig å bestemme metallkomposisjonen utelukkende under hensyntagen til d-e antioksyde-rende egenskaper, uten at noen som helst hensyn behøves å tas til formbarheten i trådform. Oppfinnelsen kan derfor utnyttes til for-bedring av grafittelektrodens antioksyderende egenskaper ved at dens flate metalliseres med metallpulver som inneholder minst 4 f° Cr og/ eller o,2 - 3° f° Al og/eller minst o,2 fo Si og eventuelt minst o,2 fo av ett eller flere av grunnstoffene Ni, Mn, Mo, W, B, Ti, Zr, V, Nb, Hf, Ta, Y, Co, Cu og Be, idet den resterende mengde Fe inneholder minst o,ol % N^ og/eller minst 0,005 $ P og/eller minst o,ol$ C. expensive due to poor malleability of the thread. An alloy such as contains 30-40 # chromium, 4-8% aluminum, I-3 $ silicon and the rest iron, thus exhibits such poor formability that the wire-shaped product cannot be produced at low cost in a simple manner. It is therefore economically motivated to apply the coating metals to the electrode by powder spraying, whereby it is also possible to determine the metal composition solely taking into account d-e antioxidant properties, without any consideration having to be given to the formability in wire form. The invention can therefore be used to improve the graphite electrode's antioxidant properties by metallizing its surface with metal powder containing at least 4 f° Cr and/or o.2 - 3° f° Al and/or at least o.2 fo Si and possibly at least o.2 fo of one or more of the elements Ni, Mn, Mo, W, B, Ti, Zr, V, Nb, Hf, Ta, Y, Co, Cu and Be, the remaining amount of Fe containing at least o.ol % N^ and/or at least 0.005$ P and/or at least o.ol$ C.

Oppfinnelsen skal i det følgende forklares nærmere ved hjelp av nedenstående eksempler. In the following, the invention will be explained in more detail using the examples below.

De inngående bestanddelene blandes, smeltes i en smelte-ovn og nedkjøles, hvoretter metallblandingen blir malt til pulver i en kullkvern. Det oppnådde metallpulver blir deretter sprøytet på en elektrodes periferiflate ved hjelp av en sprøytepistol (type Metco 2P) på følgende måte: Etterat flaten på en 400 mm tykk grafittelektrode først var rengjort for derved å fjerne, olje, fett, maling og fremmed-stoffer, ble elektroden anbragt i en roterende anordning, f.eks. en dreiebenk. Det fremstilte metallpulver ble deretter sprøytet på flaten av den roterende elektroden ved hjelp av ovenfor angitte sprøytepistol som var anordnet i en avstand på omkring 150 mm fra elektroden. Elektroden med det således frembrakte overtrekk som oppviser en tykkelse på 0,25 mm blebrukt i en 30 tonns ovn og det viste seg at 2,6 kg elektrode ble forbrukt pr.tonn støp. Som sammenligning med dette viser det seg at en elektrode uten noe overtrekk ble forbrukt med 5,4 kg.pr.tonn støpemasse. En sammenligning mellom disse to resultater viser at det er oppnådd en be-merkelsesverdig minskning av elektrodeforbruket med elektroden ifølge oppfinnelsen. The constituents are mixed, melted in a melting furnace and cooled, after which the metal mixture is ground into powder in a coal mill. The obtained metal powder is then sprayed onto the peripheral surface of an electrode using a spray gun (type Metco 2P) in the following way: After the surface of a 400 mm thick graphite electrode had first been cleaned to thereby remove oil, grease, paint and foreign substances, was the electrode placed in a rotating device, e.g. a lathe. The produced metal powder was then sprayed onto the surface of the rotating electrode by means of the above-mentioned spray gun which was arranged at a distance of about 150 mm from the electrode. The electrode with the coating thus produced, which exhibits a thickness of 0.25 mm, was used in a 30 tonne furnace and it turned out that 2.6 kg of electrode was consumed per tonne of casting. As a comparison with this, it turns out that an electrode without any coating was consumed with 5.4 kg per tonne of casting compound. A comparison between these two results shows that a remarkable reduction in electrode consumption has been achieved with the electrode according to the invention.

De ovennevnte metallpulvere ble blandet godt- i blande-apparat for deretter å bli sprøytet på flaten av en grafittelektrode i overensstemmelse med eksempel 1. Den på elektrodeflaten anbrakte film oppviste en tykkelse på 0,25 mm. Den metallover-trukne elektroden ble innført i en 30 tonns ovn og det viste seg at elektrodeforbruket var 2,4 kg pr.tonn støp. The above-mentioned metal powders were mixed well in a mixing apparatus and then sprayed onto the surface of a graphite electrode in accordance with Example 1. The film placed on the electrode surface had a thickness of 0.25 mm. The metal-over drawn electrode was introduced into a 30 tonne furnace and it turned out that the electrode consumption was 2.4 kg per tonne cast.

Eksempel 3. Example 3.

Vektprosent Ferrokrom (Cr 62,7 1°> Si 6,7 fo, rest Fe) 100 Weight percentage Ferrochrome (Cr 62.7 1°> Si 6.7 fo, rest Fe) 100

Jernkromlegeringen ble malt i en kulekvern og sprøytet på flaten av en elektrode til en film med ca. o,2 mm tykkelse. Dessuten ble det sprøytet på flaten en 3>2 mm tykk aluminium-tråd ( 33,% Al) ved hjelp av en sprøytepistol, idet det oppnådde belegg oppviste en tykkelse på o,2 mm. Den med dobbelt metall-filmer forsynte elektroden, som således hadde en indre film av jernkrom og en ytre film av aluminium ble brukt i en 30 tonns ovn. Det viste seg herved at 2,9 kg.elektrode ble forbrukt pr. tonn støpemasse. The ferrochromium alloy was ground in a ball mill and sprayed onto the surface of an electrode to a film of approx. o.2 mm thickness. In addition, a 3>2 mm thick aluminum wire (33.% Al) was sprayed onto the surface by means of a spray gun, the resulting coating having a thickness of 0.2 mm. The double metal film supplied electrode, thus having an inner film of ferrochromium and an outer film of aluminium, was used in a 30 ton furnace. It turned out that 2.9 kg of electrode was consumed per tons of molding compound.

Med hensyn til at en på krom basert legering har over-legne antioksyderende egenskaper, men en liten formbarhet i trådform og ettersom en elektrisk sprøyteprosess er effektivere enn en gassprosess, kan man ifølge en foretrukket utførelsesform for oppfinnelsen sprøytebelegge elektrodens flate ved hjelp av en metalltråd på mer økonomisk måte, hvilket oppnås ved å inneslutte et pulver av en legering vesentlig bestående av krom inne i en omhylning av et metallblikk, bestående av stål eller aluminium. With regard to the fact that a chrome-based alloy has superior antioxidant properties, but a small formability in wire form and as an electric spray process is more efficient than a gas process, according to a preferred embodiment of the invention, one can spray coat the surface of the electrode by means of a metal wire of more economical way, which is achieved by enclosing a powder of an alloy essentially consisting of chromium inside an envelope of a metal sheet, consisting of steel or aluminum.

Ved at man rundt den pulveriserte legeringen anbringer en omhylning av et metallblikk bestående av stål eller aluminium, hvilken legering oppviser god antioksydasjonsegenskaper, men liten formbarhet i trådform, kan en pulverisert legering innesluttet, i den spesielle trådformen brukes mer effektivt for sprøyting ved hjelp av elektrisitet som varmekilde enn-.: sammenlignet med pulver- By placing around the powdered alloy an envelope of a metal sheet consisting of steel or aluminum, which alloy exhibits good anti-oxidation properties, but little formability in wire form, a powdered alloy enclosed in the special wire form can be used more effectively for spraying by means of electricity as a heat source than-.: compared to powder-

spr#fcing. spr#fcing.

Eksempel 4. Example 4.

En kjerne av ferrokrompulver ( 62,7 f° Cr, 6,7 % Si, rest Fe) med mindre partikkelstørrelse enn 5° mesh (ca.o,3 ram) hvilket pulver ble fremstilt i en kulekvern, ble anbrakt inne i en mantel av et sylindrisk bøyd båndstål (med 15 mm bredde og o,2o mm tykkelse) av mykt karbonstål (o,l % C og 0,04 $ Si). Av kjernen og det med kjernen kombinerte båndstål ble det fremstilt en 3>2 mm tykk tråd som deretter ble metallisert på en grafittelektrodes flate ved hjelp av en sprøytepistol (Arcos S.A.,type SPRAYOMATIC) på følgende måte: Grafittelektrodens flate ble rengjort først, for å fjerne fett, olje, maling og fremmedstoffer, samt ble deretter anbrakt i en roterende anordning, f.eks. en dreiebenk, hvoretter ovennevnte metalltråd ble metallisert ved hjelp av en sprøytepistol som ble anordnet i en avstand av ca.250 mm fra elektroden. Det derved dan-nede beskyttelsesovertrekk eller-film hadde en tykkelse på 0,3 mm. Den overtrukne elektrode ble brukt i en 3° tonns ovn, og det viste seg at elektrodeforbruket gikk opp til 2,9 kg pr.tonn støpemasse. A core of ferrochrome powder (62.7 f° Cr, 6.7% Si, rest Fe) with a particle size smaller than 5° mesh (ca.o.3 ram) which powder was produced in a ball mill, was placed inside a mantle of a cylindrical bent strip steel (of 15 mm width and o.2o mm thickness) of mild carbon steel (o.l% C and 0.04 $ Si). From the core and the strip steel combined with the core, a 3>2 mm thick wire was produced which was then metallized on the surface of a graphite electrode using a spray gun (Arcos S.A., type SPRAYOMATIC) in the following way: The surface of the graphite electrode was cleaned first, in order to remove grease, oil, paint and foreign substances, and was then placed in a rotating device, e.g. a lathe, after which the above-mentioned metal wire was metallized by means of a spray gun which was arranged at a distance of approx. 250 mm from the electrode. The protective cover or film thus formed had a thickness of 0.3 mm. The coated electrode was used in a 3° ton furnace, and it turned out that the electrode consumption went up to 2.9 kg per tonne of casting compound.

En ikke overtrukket elektrode ble forbrukt med 5j4 kg.pr.tonn stø-pemasse. Forbruket av den ifølge oppfinnelsen overtrukne elektrode var således vesentlig mindre. An uncoated electrode was consumed with 5.4 kg per tonne of casting compound. The consumption of the coated electrode according to the invention was thus significantly less.

Eksempel 5. Example 5.

En kjerne av metallisk krompulver (99 fo) ble anordnet inn A core of metallic chromium powder (99 fo) was arranged

i en mantel av rustfritt stål (18 fo Cr, 8 fo Ni, rest Fe), og mantelen ble formet som et sylindrisk bøyd båndstål frned 15 mm bredde og o,2 mm tykkelse).Kjernen og den med denne kombinerte stålmantelen ble formet til en 3|2 mm tykk tråd som deretter ble sprøytet på flaten av en elektrode med 45° mm diameter.Det således oppnådde metallag oppviste en tykkelse på 0,3 mm.Forbruket av den overtrukne elektrode gikk opp til 2,6 kg.pr.tonn støpemasse. in a jacket of stainless steel (18 fo Cr, 8 fo Ni, rest Fe), and the jacket was shaped as a cylindrical bent strip steel frnd 15 mm width and o.2 mm thickness).The core and the with this combined steel jacket were shaped to a 3|2 mm thick wire which was then sprayed onto the surface of an electrode with a 45° mm diameter. The metal layer thus obtained had a thickness of 0.3 mm. The consumption of the coated electrode went up to 2.6 kg per tons of molding compound.

Eksempel 6. Example 6.

En kjerne av ferrokrompulver (62,7 f° Cr> 6,7 f> Si, rest Fe) ble anordnet inn i en mantel av rustfritt stål (18 fo Cr, 8 fo Ni, rest som ble formet av et båndstål med en bredde på 15 mm og o,2 mm tykkelse . Kjernen og den med denne kombinerte mantelen ble formet til en 3i2mm tykk tråd som deretter ved sprøyting ble påført flaten på en elektrode for dannelse av et overtrekk med en tykkelse på ca. o,25 mm. Deretter ble det anbrakt ytterligere et lag på elektroden ved at en 3>2~ mm tykk metalltråd av aluminium (99$) ble sprøytet på flaten til en tykkelse av ca.o,15 mm. 2,4 kg av denne elektroden ble forbrukt pr.tonn støpemasse. A core of ferrochromium powder (62.7 f° Cr> 6.7 f> Si, residue Fe) was arranged into a jacket of stainless steel (18 fo Cr, 8 fo Ni, residue which was formed from a strip steel of a width of 15 mm and 0.2 mm thickness The core and with this combined sheath was formed into a 3.2 mm thick wire which was then sprayed onto the surface of an electrode to form a coating of about 0.25 mm thickness. An additional layer was then placed on the electrode by spraying a 3>2~ mm thick metal wire of aluminum ($99) onto the surface to a thickness of about 0.15 mm. 2.4 kg of this electrode was consumed per .ton of molding compound.

Med de i ovenstående beskrivelser og etterfølgende pa-tentkrav angitte prosentdeler menes vektprosent. The percentages stated in the above descriptions and subsequent patent claims mean percentage by weight.

Claims (2)

1. ' Grafitt-eller kullelektrode for elektriske lysbueovner eller elektrotermiske prosesser, der det brukes elektriske lysbuer, hvilken elektrode er forsynt med et oksydasjonsbestandig eller oksy-das jonsforhind-rende, elektrisk ledende overtrekk som har en tykkelse, på minst 0,1 mm og består av et eller flere, lag som vesentlig ut-gjøres av metaller, legeringer, eller blandinger av disse og inneholder Fe, Al og Si og eventuelt mindre mengder av ett eller flere av grunnstoffene Mn, B, Ti, Zr og P, karakterisert ved at det påførte-beskyttélsesovertrekk inneholder 15-75 vektprosent Fe, 0,2 - 15 vektprosent Si, 0,2 - 30 vektprosent Al og 4-6O vektprosent Cr, eventuelt 0,2 - 10 vektprosent av ett eller flere av grunnstoffene Mn, B, Tri, Zr, Ni, Mo, W, V, Nb, Hf, Y, Co, Cu og Be, og 0,005 - 0,2 vektprosent P og/eller 0,01 - 4>5 vektprosent C, dessuten eventuelt 0,01 - 0,1 vektprosent Ng, og at den totale tykkelse av beskyttelsesovertrekket på elektrodeflaten er maksimalt 1,0 mm.1. Graphite or carbon electrode for electric arc furnaces or electrothermal processes, where electric arcs are used, which electrode is provided with an oxidation-resistant or oxidation-preventing, electrically conductive coating having a thickness of at least 0.1 mm and consists of one or more layers which essentially consist of metals, alloys, or mixtures thereof and contain Fe, Al and Si and possibly smaller amounts of one or more of the elements Mn, B, Ti, Zr and P, characterized by that the applied protective coating contains 15-75 weight percent Fe, 0.2 - 15 weight percent Si, 0.2 - 30 weight percent Al and 4-60 weight percent Cr, possibly 0.2 - 10 weight percent of one or more of the elements Mn, B , Tri, Zr, Ni, Mo, W, V, Nb, Hf, Y, Co, Cu and Be, and 0.005 - 0.2 weight percent P and/or 0.01 - 4>5 weight percent C, in addition optionally 0, 01 - 0.1 weight percent Ng, and that the total thickness of the protective coating on the electrode surface is a maximum of 1.0 mm. 2. Fremgangsmåte til ved sprøyting å belegge grafitt-eller karbonelektrode med et oksydasjonsbeskyttende, elektrisk ledende og vesentlig av metall bestående overtrekk for fremstilling a-v den med beskyttelsesovertrekket forsynte elektrode ifølge krav 1, karakterisert ved at man ved sprøytebelegging bruker en sammensatt tråd som omfatter en ytre mantel av Fe eller Fe-legering eller Al og en indre- kjerne av pulver av metaller som har dårligere bearbeidelsesevne enn mantelen, hvilken tråd inneholder 15-75 vektprosent Fe, 4-60 vektprosent Cr, "0,2-15 vektprosent Si og 0,2-30 vektprosent Al, samt eventuelt 0,2-10 vektprosent av ett eller flere av grunnstoffene Ni, Mn, Mo, W, B, Ti, Zr, V, Nb, Hf, Y, Co, Cu og Be og eventuelt 0,01-0,1 vektprosent Ng minst 0,005-0,2 vektprosent P og/eller minst 0,01-4,5 vektprosent C, og at beskyttelsesovertrekket påføres elektroden til en tykkelse av mellom 0,1 og 1,0 mm.2. Process for coating graphite or carbon electrodes by spraying with an oxidation-protective, electrically conductive and essentially metal-based coating for the production of the electrode provided with the protective coating according to claim 1, characterized in that during spray coating, a wire composite is used which comprises an outer sheath of Fe or Fe alloy or Al and an inner core of powder of metals having poorer machinability than the sheath, which wire contains 15-75 wt.% Fe, 4-60 wt.% Cr, "0.2-15 wt.% Si and 0 .2-30 weight percent Al, as well as optionally 0.2-10 weight percent of one or more of the elements Ni, Mn, Mo, W, B, Ti, Zr, V, Nb, Hf, Y, Co, Cu and Be and optionally 0.01-0.1 weight percent Ng at least 0.005-0.2 weight percent P and/or at least 0.01-4.5 weight percent C, and that the protective coating is applied to the electrode to a thickness of between 0.1 and 1.0 mm.
NO143368A 1967-04-17 1968-04-16 NO124145B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2405967 1967-04-17
JP2405867 1967-04-17
JP5318267 1967-08-19
JP5318167 1967-08-19

Publications (1)

Publication Number Publication Date
NO124145B true NO124145B (en) 1972-03-06

Family

ID=27458081

Family Applications (1)

Application Number Title Priority Date Filing Date
NO143368A NO124145B (en) 1967-04-17 1968-04-16

Country Status (6)

Country Link
BE (1) BE713795A (en)
CH (1) CH512170A (en)
DE (1) DE1758169A1 (en)
FR (1) FR1569922A (en)
GB (1) GB1218662A (en)
NO (1) NO124145B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA728359B (en) * 1971-11-26 1973-08-29 Foseco Int Protection of graphite electrodes
EP0080463A1 (en) * 1981-05-15 1983-06-08 Max Schafferer High performance split electrode circuit for arc furnaces
JPS60118762A (en) * 1983-11-30 1985-06-26 Sumitomo Metal Ind Ltd High-temperature oxidation-proof coating for electrode
JPS6133819A (en) * 1984-07-24 1986-02-17 Naotake Mori Electric discharge machining electrode
BG41809A1 (en) * 1984-08-13 1987-08-14 Peev Protective coating on graphite electrodes
DE3446286A1 (en) * 1984-12-19 1986-06-19 Sigri GmbH, 8901 Meitingen METHOD FOR COATING CARBON AND GRAPHITE BODIES
FR2606037B1 (en) * 1986-11-04 1989-02-03 Total Petroles METAL COATING MADE ON A MINERAL SUBSTRATE
DE4136823C2 (en) * 1991-11-08 2000-09-14 Contech C Conradty Technika Co Carbon electrode for arc furnaces and method for producing such a carbon electrode

Also Published As

Publication number Publication date
BE713795A (en) 1968-09-16
GB1218662A (en) 1971-01-06
CH512170A (en) 1971-08-31
FR1569922A (en) 1969-06-06
DE1758169A1 (en) 1971-01-14

Similar Documents

Publication Publication Date Title
US3428442A (en) Coated spray-weld alloy powders
RU2446930C1 (en) Flux-cored wire
US4381943A (en) Chemically homogeneous microcrystalline metal powder for coating substrates
GB1042708A (en) High temperature flame spray powder and process
MXPA01004916A (en) Weld wire with enhanced slag removal.
US4162392A (en) Hard facing of metal substrates
US2961312A (en) Cobalt-base alloy suitable for spray hard-facing deposit
JPWO2012063512A1 (en) Wear-resistant cobalt base alloy and engine valve
NO124145B (en)
CN102764940A (en) Submerged-arc welding flux-cored wire
US4503085A (en) Amorphous metal powder for coating substrates
US4055742A (en) Hard facing rod
US3445624A (en) Cobalt alloy and welding electrode based upon this alloy
US3340049A (en) Copper base alloy
CA1114690A (en) Hard facing of metal substrates
JPH0317899B2 (en)
CN86105893B (en) Plasma spraying process of coating under atmospheric pressure
US2121194A (en) Welding rod
GB1018900A (en) An improved welding electrode
CN109420770A (en) Vanadium carbide titanium ceramic powders and its production method
EP2414106B1 (en) Chromium-free metallic coating, method of forming thereof and composite wire
US2632835A (en) Coated welding electrode
US3395030A (en) Carbide flame spray material
CN101412169A (en) Explosive core raw material composing component of heat-resisting wear-resistant flux-cored wire
US2944890A (en) Aluminum bronze alloy having improved wear resistance by the addition of cobalt and chromium