NO123351B - - Google Patents

Download PDF

Info

Publication number
NO123351B
NO123351B NO253869A NO253869A NO123351B NO 123351 B NO123351 B NO 123351B NO 253869 A NO253869 A NO 253869A NO 253869 A NO253869 A NO 253869A NO 123351 B NO123351 B NO 123351B
Authority
NO
Norway
Prior art keywords
reaction
dialkyl
hydroxybenzyl
ester
sulfuric acid
Prior art date
Application number
NO253869A
Other languages
Norwegian (no)
Inventor
J Cornforth
N Daly
V Moffatt
Original Assignee
Shell Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB4712568A external-priority patent/GB1202762A/en
Application filed by Shell Nv filed Critical Shell Nv
Publication of NO123351B publication Critical patent/NO123351B/no

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte for fremstilling av Method of manufacture of

1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroksybenzyl)-benzener. 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroxybenzyl)benzenes.

Denne oppfinnelse angår en forbedret fremgangsmåte for fremstilling av visse polyfenolisk substituerte benzener som er 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroksybenzyl)-benzener, særlig 1,3,5-trimetyl-2,4,6-tris(3,5-di-t-butyl-4-hydroksybenzyl)-benzen, hvilken forbindelse er kjent som "IONOX-330". Fremgangs-måten er hovedsakelig en to-trinns prosess ved hvilken visse benzylestere anvendes som mellomprodukter. This invention relates to an improved process for the preparation of certain polyphenolically substituted benzenes which are 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroxybenzyl)-benzenes, in particular 1,3,5 -trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)-benzene, which compound is known as "IONOX-330". The procedure is mainly a two-stage process in which certain benzyl esters are used as intermediates.

1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroksybenzyl) benzener er nyttige antioksydasjonsmidler for brennstoffer, smøre-midler, elastomere og termoplastiske polymerer, så som syntetiske 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroxybenzyl)benzenes are useful antioxidants for fuels, lubricants, elastomeric and thermoplastic polymers, such as synthetic

gummier, polyetylener eller polypropylener. Fra britisk patent 920,476 er det kjent å fremstille disse polyfenolisk substituerte benzener ved omsetning av 3,5-dialkyl-4-hydroksybenzyl-alkoholer med 1,3,5-trialkyl-benzener i nærvær av svovelsyre og et inert organisk oppldsningsmiddel. Nevnte benzylalkoholer kan være frem-stilt ved omdannelse av 3,5-dialkyl-4-hydroksy-toluener som er foreslått i britisk patent 889,321, under anvendelse av det tilsvarende benzaldehyd som mellomprodukt (erholdt ved innvirkning av brom) som deretter reduseres til den onskede benzylalkohol. rubbers, polyethylenes or polypropylenes. From British patent 920,476 it is known to prepare these polyphenolically substituted benzenes by reacting 3,5-dialkyl-4-hydroxybenzyl alcohols with 1,3,5-trialkyl benzenes in the presence of sulfuric acid and an inert organic solvent. Mentioned benzyl alcohols can be prepared by converting 3,5-dialkyl-4-hydroxytoluenes as proposed in British patent 889,321, using the corresponding benzaldehyde as an intermediate (obtained by the action of bromine) which is then reduced to the desired benzyl alcohol.

En tre-trinns syntese av de polyfenolisk substituerte benzener fra 3,5-dialkyl-4-hydroksytoluener via benzaldehyd- og benzylalkohol-mellomproduktene er beheftet med flere ulemper. A three-step synthesis of the polyphenolically substituted benzenes from 3,5-dialkyl-4-hydroxytoluenes via the benzaldehyde and benzyl alcohol intermediates is fraught with several disadvantages.

Den er tungvint og tidskrevende og er basert på utgangsmaterialer som er dyre og ikke lett tilgjengelige. Videre er to-trinns-omdannelsen av 3,5-dialkyl-4-hydroksytoluener til den tilsvarende benzylalkohol vanskelig, og den totale omdannelse og selektivitet for denne kombinerte to-trinnsreaksjon er ikke meget gunstig. It is cumbersome and time-consuming and is based on starting materials that are expensive and not readily available. Furthermore, the two-step conversion of 3,5-dialkyl-4-hydroxytoluenes to the corresponding benzyl alcohol is difficult, and the overall conversion and selectivity for this combined two-step reaction is not very favorable.

Det tredje trinn av den totale syntese, som er omsetningen av benzylalkoholen med 1,3,5-trialkylbenzen, omfatter normalt et hoyt forbruk av svovelsyre, og utbyttet er temmelig lavt. Det foreligger således et behov for forbedring av fremstillingsmåten for nevnte polyfenolisk substituerte benzener. The third step of the total synthesis, which is the reaction of the benzyl alcohol with 1,3,5-trialkylbenzene, normally involves a high consumption of sulfuric acid, and the yield is rather low. There is thus a need to improve the production method for said polyphenolically substituted benzenes.

En slik forbedring tilveiebringes i henhold til fore-liggende oppfinnelse, som angår en fremgangsmåte for fremstilling av l,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroksybenzyl)-benzener som omfatter fremstilling av en ester av 3,5-dialkyl-4-hydroksybenzyl)alkohol ved omsetning av en 2,6-dialkylfenol med formaldehyd eller en polymer derav, et sekundært amin og en kar. boksylsyre, og deretter omdannes benzylesteren til 1,3,5-trialkyl-2,4,6-tris-(3,5-dialkyl-4-hydroksybenzyl)-benzener ved omsetning av esteren med et 1,3,5-trialkylbenzen i nærvær av svovelsyre og et inert organisk oppldsningsmiddel. Such an improvement is provided according to the present invention, which relates to a method for the production of 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroxybenzyl)-benzenes which comprises the preparation of an ester of 3,5-dialkyl-4-hydroxybenzyl) alcohol by reaction of a 2,6-dialkylphenol with formaldehyde or a polymer thereof, a secondary amine and a vat. carboxylic acid, and then the benzyl ester is converted to 1,3,5-trialkyl-2,4,6-tris-(3,5-dialkyl-4-hydroxybenzyl)-benzenes by reaction of the ester with a 1,3,5-trialkylbenzene in presence of sulfuric acid and an inert organic solvent.

Denne metode har viktige fordeler. Den er i alt vesentlig en enkel to-trinns metode som går ut fra 2,6-dialkylfenoler som er billigere og lettere tilgjengelig enn 3,5-dialkyl«4-hyd-roksytoluener, og både forste og annet trinn finner sted med fordelaktig hoye utbytter. En annen vesentlig fordel er at annet trinn, d.v.s. omdannelsen av benzylesteren, kan utfores under anvendelse av meget mindre svovelsyre enn den mengde som er nød-vendig for omdannelsen av de tilsvarende benzylalkoholer i henhold til de tidligere kjente metoder. Andre fordeler vil bli omtalt i det folgende. This method has important advantages. It is essentially a simple two-step method starting from 2,6-dialkylphenols, which are cheaper and more readily available than 3,5-dialkyl«4-hydroxytoluenes, and both the first and second steps take place with advantageous high dividends. Another significant advantage is that the second step, i.e. the conversion of the benzyl ester can be carried out using much less sulfuric acid than the amount necessary for the conversion of the corresponding benzyl alcohols according to the previously known methods. Other advantages will be discussed below.

Formaldehyd er en gass, og det er derfor vanligvis hensiktsmessig å anvende den i form av en vandig opplosning (forma-lin) eller som den faste polymer paraformaldehyd, idet sistnevnte foretrekkes. Egnede sekundære aminer omfatter dialkylaminer i hvilke alkyl-gruppene har fra 1-8 karbonatomer, så som di-iso-propylamin, diheksylamin, dibutylamin eller propylpentylamin. Generelt foretrekkes dietylamin av okonomiske grunner og generell hensiktsmessighet. Av okonomiske grunner og på grunn av tilgjeng-eligheten er det vanligvis hensiktsmessig å anvende eddiksyre som karboksylsyre, men andre alifatiske monokarboksylsyrer med fra 1-12 karbonatomer, f.eks. propionsyre, smorsyre, maursyre, cykloheksan-karboksylsyre eller dekansyre, kan også anvendes. Omsetningen av fenolen med de forskjellige reagerende stoffer og inerte opplosningsmidler utfores mest hensiktsmessig ved oppvarm-ning av reaksjonsblandingen, fortrinnsvis til en temperatur på mellom 80 og 120°C, i flere timer, mens de foretrukne mengdeforhold av de reagerende stoffer er en mol-ekvivalent (basert på fenolen) eller et svakt molart overskudd av formaldehyd eller polymer derav, et molart overskudd av karboksylsyre og en mindre mengde sekundært amin. Mengdeforhold som er funnet å være særlig gunstige, basert på et mol av den anvendte fenol, er 1,1 mol formaldehyd eller paraformaldehyd, 4-5 mol karboksylsyre og 0,1-0,2 mol sekundært amin. Den foretrukne fenol er 2,6-di-t-butylfenol, men andre 2,6-dialkylfenoler kan også anvendes, f.eks. di-isopropyl-, dicykloheksyl-, di-metylcykloheksyl-, di-t-pentyl-eller di-t-oktyl-fenol. Formaldehyde is a gas, and it is therefore usually appropriate to use it in the form of an aqueous solution (formalin) or as the solid polymer paraformaldehyde, the latter being preferred. Suitable secondary amines include dialkylamines in which the alkyl groups have from 1-8 carbon atoms, such as diisopropylamine, dihexylamine, dibutylamine or propylpentylamine. In general, diethylamine is preferred for reasons of economy and general convenience. For economic reasons and due to availability, it is usually appropriate to use acetic acid as a carboxylic acid, but other aliphatic monocarboxylic acids with from 1-12 carbon atoms, e.g. propionic acid, succinic acid, formic acid, cyclohexane-carboxylic acid or decanoic acid, can also be used. The reaction of the phenol with the various reacting substances and inert solvents is most conveniently carried out by heating the reaction mixture, preferably to a temperature of between 80 and 120°C, for several hours, while the preferred quantity ratio of the reacting substances is a molar equivalent (based on the phenol) or a slight molar excess of formaldehyde or polymer thereof, a molar excess of carboxylic acid and a minor amount of secondary amine. Quantity ratios which have been found to be particularly favorable, based on one mole of the phenol used, are 1.1 moles of formaldehyde or paraformaldehyde, 4-5 moles of carboxylic acid and 0.1-0.2 moles of secondary amine. The preferred phenol is 2,6-di-t-butylphenol, but other 2,6-dialkylphenols can also be used, e.g. di-isopropyl, dicyclohexyl, dimethylcyclohexyl, di-t-pentyl or di-t-octyl phenol.

Det vil ses at det sekundære amin bare er nodvendig i små mengder, og av dette fremgår at dets rolle vesentlig er kata-lytisk. Det antas at enkelt-trinns-omdannelsen av fenolen til benzylesteren omfatter to suksessive reaksjoner, d.v.s. en forste reaksjon ved hvilken fenolen reagerer med formaldehyd og aminet for å gi et N,N-dialkyl-3,5-dialkyl-4-hydroksybenzyl-amin med dannelse av vann, og en påfolgende reaksjon ved hvilken benzylaminet reagerer med karboksylsyren for å gi benzylesteren ved dannelse av sekundært amin. Det sekundære amin blir således regenerert i den annen reaksjon og anvendes på ny i den forste reaksjon. Etter omdannelsen av 3,5-dialkylfenolen kan benzylesteren, som generelt oppnås i et fordelaktig hdyt utbytte, isoleres fra reaksjonsblandingen, og videre rensning kan utfores ved gjentatt krystallisasjon. Den rensete benzylester kan deretter omdannes til det onskede polyfenolisk substituerte benzen ved omsetning med et 1,3,5-trialkylbenzen i nærvær av svovelsyre og et inert organisk oppldsningsmiddel. Det foretrukne trialkylbenzen er mesitylen (1,3,5-trimetylbenzen), men omsetningen kan også utfores med andre 1,3,5-trialkylbenzener inneholdende alkyl-grupper med opp til 6 karbonatomer, så som etyly, propyl-, n-butyl- og lineære eller forgren-ete heksyl-grupper. It will be seen that the secondary amine is only required in small amounts, and from this it appears that its role is essentially catalytic. It is believed that the single-step conversion of the phenol to the benzyl ester involves two successive reactions, i.e. a first reaction in which the phenol reacts with formaldehyde and the amine to give an N,N-dialkyl-3,5-dialkyl-4-hydroxybenzylamine with the formation of water, and a subsequent reaction in which the benzylamine reacts with the carboxylic acid to give the benzyl ester by formation of secondary amine. The secondary amine is thus regenerated in the second reaction and used again in the first reaction. After the conversion of the 3,5-dialkylphenol, the benzyl ester, which is generally obtained in advantageously high yield, can be isolated from the reaction mixture, and further purification can be accomplished by repeated crystallization. The purified benzyl ester can then be converted to the desired polyphenolically substituted benzene by reaction with a 1,3,5-trialkylbenzene in the presence of sulfuric acid and an inert organic solvent. The preferred trialkylbenzene is mesitylene (1,3,5-trimethylbenzene), but the reaction can also be carried out with other 1,3,5-trialkylbenzenes containing alkyl groups with up to 6 carbon atoms, such as ethyl, propyl-, n-butyl- and linear or branched hexyl groups.

Det er også funnet at ved bruk av benzylesteren som mellomprodukt ved fremstilling av polyfenolisk substituerte benzener i henhold til oppfinnelsen, kan isoleringen og den vidre rensning av benzylesteren som omtalt ovenfor, fullstendig utelat-es, hvilket betyr at det er mulig å utfore den påfdlgende omdannelse av benzylesteren til det dnskede polyfenolisk substituerte benzen ved omsetning med 1,3,5-trimetylbenzen i nærvær av den totale reaksjonsblanding erholdt ved fremstillingen av benzylester -mellomproduktet. Dette er overraskende ettersom konsentra-sjonen av benzylesteren i reaksjonsblandingen er forholdsvis lav. Således inneholder denne reaksjonsblanding en vesentlig mengde uomdannet karboksylsyre som anvendes i et vesentlig molart overskudd som omtalt ovenfor. Videre inneholder reaksjonsblandingen udnskede forbindelser som dannes som et resultat av noen bi-reaksjoner og etterfølgende reaksjoner som finner sted sammen med omdannelsen av 3,5-dialkylfenolen til den dnskede benzylester. It has also been found that when using the benzyl ester as an intermediate in the production of polyphenolically substituted benzenes according to the invention, the isolation and further purification of the benzyl ester as mentioned above can be completely omitted, which means that it is possible to carry out the following conversion of the benzyl ester to the desired polyphenolically substituted benzene by reaction with 1,3,5-trimethylbenzene in the presence of the total reaction mixture obtained in the preparation of the benzyl ester intermediate. This is surprising as the concentration of the benzyl ester in the reaction mixture is relatively low. Thus, this reaction mixture contains a substantial amount of unconverted carboxylic acid which is used in a substantial molar excess as discussed above. Furthermore, the reaction mixture contains undesired compounds which are formed as a result of some side reactions and subsequent reactions which take place along with the conversion of the 3,5-dialkylphenol to the desired benzyl ester.

Ved en særlig foretrukket utfdrelsesform for annet trinn av den totale to-trinns-reaksjon fremstilles således et l,3,5-trialkyl-2,4,5-tris-(3,5-dialkyi-4-hydroksybenzyl)-benzen ved omsetning av en 3,5-dialkyl-4-hydroksybenzylester som er til-stede i reaksjonsblandingen og er erholdt ved omsetning av en 2,6-dialkylfenol med en karboksylsyre, et sekundært amin og formaldehyd eller en polymer derav, med et 1,3,5-trialkylbenzen i nærvær av svovelsyre og et inert organisk oppldsninisiriddel. In a particularly preferred form of production for the second stage of the overall two-stage reaction, a 1,3,5-trialkyl-2,4,5-tris-(3,5-dialkyl-4-hydroxybenzyl)-benzene is thus prepared by reaction of a 3,5-dialkyl-4-hydroxybenzyl ester which is present in the reaction mixture and is obtained by reacting a 2,6-dialkylphenol with a carboxylic acid, a secondary amine and formaldehyde or a polymer thereof, with a 1,3, 5-trialkylbenzene in the presence of sulfuric acid and an inert organic solvent.

Med denne sistnevnte utfdrelsesform settes således svovelsyre, et 1,3,5-trialkylbenzen og et inert organisk oppldsningsmiddel til reaksjonsblandingen erholdt ved fullførelse av omdannelsen av en 2,6-dialkylfenol til 3,5-dialkylhydroksybenzyl-ester, hvoretter omsetningen av benzylesteren med det tilsatte 1,3,5-dialkylbenzen til det endelige polyfenolisk substituerte benzen får skje* Ytterligere forbedringer kan oppnås ved denne særlige utfdrelsesform når reaksjonsblandingen inneholdende 3,5-dialkyl-4-hydroksybenzylesteren forst fortynnes med et inert, ikke-vannblandbart organisk oppldsningsmiddel, og den fortynnede blanding ekstraheres med vann for benzylesteren omsettes med 1,3, 5-trialkylbenzen. With this latter formulation, sulfuric acid, a 1,3,5-trialkylbenzene and an inert organic solvent are thus added to the reaction mixture obtained upon completion of the conversion of a 2,6-dialkylphenol to 3,5-dialkylhydroxybenzyl ester, after which the reaction of the benzyl ester with the added 1,3,5-dialkylbenzene until the final polyphenolically substituted benzene is allowed to occur* Further improvements can be achieved in this particular form of feeding when the reaction mixture containing the 3,5-dialkyl-4-hydroxybenzyl ester is first diluted with an inert, non-water-miscible organic solvent, and the diluted mixture is extracted with water for the benzyl ester is reacted with 1,3,5-trialkylbenzene.

Omdannelsen av benzylesteren til det polyfenolisk substituerte benzen utfores hensiktsmessig ved en temperatur fra 0 til 100°C, fortrinnsvis fra 10 - 40°C, uavhengig av om den spe-sielle utforelsesform for to-trinns-reaksjonen anvendes. Trykket er normalt atmosfærisk, selv om bruk av underatmosfærisk eller overatmosfærisk trykk ikke er utelukket. Svovelsyren anvendes i mengder som kan variere mellom 0,3 og 20 mol pr. mol 1,3,5-trialkylbenzen. Forholdsvis små mengder, f.eks. 0,5-2 mol pr. mol trialkylbenzen, eller enda mindre, er mulig og meget hensiktsmesT sig når det anvendes rensete benzylestere eller fortynnede mellomprodukt-reaksjonsblandinger som er ekstrahert med vann. Ekstra-her ingen med vann kan eventuelt gjentas en eller flere ganger og utfores generelt ved romtemperatur eller ved en hoyere temperatur på f.eks. opp til 60 eller 70°C, under anvendelse av 0,1 - 10 liter vann pr. liter fortynnet blanding, fortrinnsvis fra 0,2 til 0,8 liter vann pr. liter blanding. The conversion of the benzyl ester to the polyphenolically substituted benzene is conveniently carried out at a temperature from 0 to 100°C, preferably from 10 to 40°C, regardless of whether the special embodiment for the two-stage reaction is used. The pressure is normally atmospheric, although the use of sub-atmospheric or super-atmospheric pressure is not excluded. Sulfuric acid is used in amounts that can vary between 0.3 and 20 mol per moles of 1,3,5-trialkylbenzene. Relatively small amounts, e.g. 0.5-2 mol per moles of trialkylbenzene, or even less, is possible and very convenient when using purified benzyl esters or dilute intermediate reaction mixtures which have been extracted with water. Extra-here none with water can possibly be repeated one or more times and is generally carried out at room temperature or at a higher temperature of e.g. up to 60 or 70°C, using 0.1 - 10 liters of water per liters of diluted mixture, preferably from 0.2 to 0.8 liters of water per liter of mixture.

Egnede inerte organiske opplosningsmidler og ikke-vann-blandbare opplosningsmidler er parafiner så som pentan, cykloheksan, iso-oktan eller dekan, etere så som metyletyleter og me-tyl-isobutyleter, og fortrinnsvis halogenerte hydrokarboner, f. eks. kloroform, metylbromid, propylklorid eller etylendi-klorid. Metylenklorid er det mest foretrukne oppldsningsmiddel. Suitable inert organic solvents and water-immiscible solvents are paraffins such as pentane, cyclohexane, iso-octane or decane, ethers such as methyl ethyl ether and methyl isobutyl ether, and preferably halogenated hydrocarbons, e.g. chloroform, methyl bromide, propyl chloride or ethylene dichloride. Methylene chloride is the most preferred solvent.

Oppfinnelsen skal illustreres i de fdlgende eksempler hvor 2,6-di-t-butylfenol er betegnet 2,6-B, 3,5-di-t-butyl-4-hydroksybenzyl-acetat er betegnet 3,5-B-acetat, og 1,3,5-trimetyl-2,4,6-tris(3,5-di-t-butyl-4-hydroksybenzyl)-benzen er betegnet "IONOX-330". The invention is to be illustrated in the following examples where 2,6-di-t-butylphenol is denoted 2,6-B, 3,5-di-t-butyl-4-hydroxybenzyl acetate is denoted 3,5-B-acetate, and 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)-benzene is designated "IONOX-330".

EKSEMPEL I EXAMPLE I

2,6-B(20,6 g) paraformaldehyd (3,3 g), eddiksyre (30 ml) og dietylamin (1 ml) ble omrdrt sammen i 6 timer i et bad ved 100°C. Vann og eter ble tilsatt, og eteren ble vasket fri for eddiksyre under anvendelse av NaHCOj. 16,2 g av 3,5-B-acetat, sm.p. 103 - 105°C» ble erholdt fra eteroppldsningen ved inndampning og omkrystallisering fra lett-bensin. Identiteten av forbindelsen 3,5-B-acetat ble bestemt ved infra-rod analyse. 2,6-B (20.6 g) paraformaldehyde (3.3 g), acetic acid (30 ml) and diethylamine (1 ml) were stirred together for 6 hours in a bath at 100°C. Water and ether were added and the ether was washed free of acetic acid using NaHCO 3 . 16.2 g of 3,5-B-acetate, m.p. 103 - 105°C" was obtained from the ether solution by evaporation and recrystallization from light petrol. The identity of the compound 3,5-B-acetate was determined by infrared analysis.

EKSEMPEL II EXAMPLE II

2,6-B (1643 g), eddiksyre (2 liter) og paraformaldehyd (250 g) ble omrort i en 5 liters kolbe i en varmekappe. Oppvarming ble igangsatt, og dietylamin (100 ml) ble tilsatt i lopet av 10 - 15 minutter. Blandingen ble oppvarmet til 90°C under omrdring og holdt nær denne temperatur i d\ time. Blandingen krystalliserte ved avkjoling, og krystallene ble oppsamlet og suget så torre som mulige uten vasking. Moderluten ble oppvarmet til 110 - 115°C i 2 timer, og ytterligere krystallisasjon fant da sted ved avkjoling. Begge porsjoner ble vasket med vandig eddiksyre (forst 757.-ig og deretter mer fortynnet) og med vann og torret. En ytterligere oljeaktig porsjon ble erholdt ved fortynning av filtratet og vas-kevæskene, og denne ble vasket med kold lett-bensin. Det totale utbytte av 3,5-B-acetat var 1790 g (80,7% basert på 2,6-B). 2,6-B (1643 g), acetic acid (2 liters) and paraformaldehyde (250 g) were stirred in a 5 liter flask in a heating jacket. Heating was initiated and diethylamine (100 mL) was added over 10-15 minutes. The mixture was heated to 90°C with stirring and kept close to this temperature for 1 hour. The mixture crystallized on cooling, and the crystals were collected and suctioned as dry as possible without washing. The mother liquor was heated to 110 - 115°C for 2 hours, and further crystallization then took place on cooling. Both portions were washed with aqueous acetic acid (first 757.-ig and then more diluted) and with water and dried. A further oily portion was obtained by diluting the filtrate and the washing liquids, and this was washed with cold light petrol. The total yield of 3,5-B-acetate was 1790 g (80.7% based on 2,6-B).

EKSEMPEL III EXAMPLE III

516 g (2,5 mol) 2,6-B, 870 g (14,5 mol) iseddik, 112,5 g (3,75 mol) paraformaldehyd og 32,3 g (0,44 mol)-dietylamin) ble omrort sammen under tilbakeldpskjdling under nitrogen i 5 timer ved 99°C. Reaksjonsblandingen ble deretter avkjolt til romtemperatur, og videre bearbeidelse ble foretatt som beskrevet i eksempel II. Utbyttet av 3,5-B-acetat var 77, 57, basert på 2,6-B. 516 g (2.5 mol) 2,6-B, 870 g (14.5 mol) glacial acetic acid, 112.5 g (3.75 mol) paraformaldehyde and 32.3 g (0.44 mol) diethylamine) were stirred together under reflux under nitrogen for 5 hours at 99°C. The reaction mixture was then cooled to room temperature, and further processing was carried out as described in example II. The yield of 3,5-B-acetate was 77.57, based on 2,6-B.

EKSEMPEL IV EXAMPLE IV

Eksempel III ble gjentatt, og for avkjoling av reaksjonsblandingen ble en prove på 58,6 g av reaksjonsblandingen iso-lert. Til denne prove ble tilsatt 50 ml metylenklorid og 3 g (0,025 mol) mesitylen. Mens omroring deretter ble foretatt under nitrogen ved 3°C, ble 18,8 ml 80 vekt-7o-ig svovelsyre (0,25 mol) tilsatt dråpevis i lopet av 90 minutter, hvoretter temperaturen fikk stige til 20°C i 3 timer. Etter henstand natten over ble blandingen fortynnet med 40 ml iso-oktan og underkastet fasesepa-rering med fjernelse av den vandige fase. Den gjenværende organiske fase ble vasket med vann, 15 vekt-7» ammoniakk og igjen med vann. Metylenklorid ble fjernet ved destillasjon, og under destil-leringen begynte "I0N0X-330" å krystallisere fra den varme opplosning. Fullstendig krystallisasjon ble oppnådd ved avkjoling til 3°C. Example III was repeated, and for cooling the reaction mixture, a sample of 58.6 g of the reaction mixture was isolated. 50 ml of methylene chloride and 3 g (0.025 mol) of mesitylene were added to this sample. While stirring was then carried out under nitrogen at 3°C, 18.8 ml of 80 wt-70-mg sulfuric acid (0.25 mol) was added dropwise over 90 minutes, after which the temperature was allowed to rise to 20°C for 3 hours. After standing overnight, the mixture was diluted with 40 ml of iso-octane and subjected to phase separation with removal of the aqueous phase. The remaining organic phase was washed with water, 15 wt-7" ammonia and again with water. Methylene chloride was removed by distillation, and during the distillation "I0NOX-330" began to crystallize from the hot solution. Complete crystallization was achieved by cooling to 3°C.

Det krystalliserte "IONOX-330" ble vasket med kold iso-oktan og torret i vakuum. Utbyttet var 787. basert på 3,5-B-acetat. The crystallized "IONOX-330" was washed with cold iso-octane and dried in vacuo. The yield was 787. based on 3,5-B-acetate.

EKSEMPEL V EXAMPLE V

En annen prove av den rå reaksjonsblanding anvendt som utgangsmaterialet ved forsoket beskrevet i eksempel IV, ble fortynnet med metylenklorid og deretter ekstrahert med vann (3 ganger under anvendelse av 0,3 liter vann pr. liter fortynnet blanding). Den organiske fase ble deretter tørret over magnesiumsulfat før ytterligere omsetning av 3,5-B-acetat med mesitylen og svovelsyre. Ved den sistnevnte omsetning var be-tingelsene og bearbeidelsen som beskrevet i eksempel IV, bortsett fra at mengden av svovelsyre nå var 2 mol pr. mol mesitylen, og reaksjonstiden var bare 5 timer. Another sample of the crude reaction mixture used as the starting material in the experiment described in Example IV was diluted with methylene chloride and then extracted with water (3 times using 0.3 liters of water per liter of diluted mixture). The organic phase was then dried over magnesium sulfate before further reaction of 3,5-B-acetate with mesitylene and sulfuric acid. In the latter reaction, the conditions and processing were as described in example IV, except that the amount of sulfuric acid was now 2 mol per mol of mesitylene, and the reaction time was only 5 hours.

Utbyttet av "IONOX-330" var 79%, hvilket illustrerer at sammenlignet med eksempel IV hvor ingen ekstrahering ble anvendt, kan et tilsvarende utbytte av det ønskede produkt oppnåes på kortere tid og under anvendelse av meget mindre svovelsyre (i forhold til mesitylen). The yield of "IONOX-330" was 79%, which illustrates that compared to Example IV where no extraction was used, a similar yield of the desired product can be obtained in a shorter time and using much less sulfuric acid (compared to the mesitylene).

Claims (5)

1. Fremgangsmåte for fremstilling av et 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroksybenzyl)-benzen, karakterisert ved at den består av to trinn, hvor i første trinn en ester av en 3,5-dialkyl-4-hydroksybenzylalkohol fremstilles ved omsetning av en 2,6-dialkylfenol med formaldehyd eller en polymer derav, et sekundært amin og en karboksylsyre, og i annet trinn omdannes den erholdte ester (eventuelt etter konsentrering eller isolering fra reaksjonsblandingen) til det ønskede 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroksybenzyl)-benzen ved omsetning av esteren med et 1,3,5-trialkylbenzen i nærvær av svovelsyre og et inert organisk oppløsningsmiddel.1. Process for the production of a 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroxybenzyl)-benzene, characterized in that it consists of two steps, where in the first step a ester of a 3,5-dialkyl-4-hydroxybenzyl alcohol is produced by reacting a 2,6-dialkylphenol with formaldehyde or a polymer thereof, a secondary amine and a carboxylic acid, and in a second step the concentrated ester is converted (possibly after isolation or isolation from the reaction mixture) to the desired 1,3,5-trialkyl-2,4,6-tris(3,5-dialkyl-4-hydroxybenzyl)-benzene by reacting the ester with a 1,3,5-trialkylbenzene in the presence of sulfuric acid and an inert organic solvent. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at første reaksjonstrinn utføres ved en temperatur i området fra 80 til 120°C.2. Method as stated in claim 1, characterized in that the first reaction step is carried out at a temperature in the range from 80 to 120°C. 3. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at reaksjonsblandingen erholdt etter første reaksjonstrinn fortynnes med et ikke-vannblandbart organisk oppløsningsmiddel, og den fortynnede blanding ekstraheres med vann før annet reaksjonstrinn utføres.3. Method as stated in one of the preceding claims, characterized in that the reaction mixture obtained after the first reaction step is diluted with a non-water-miscible organic solvent, and the diluted mixture is extracted with water before the second reaction step is carried out. 4. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at annet reaks jonstrinn utføres ved en temperatur i området fra 10 til 40°c.4. Method as stated in one of the preceding claims, characterized in that the second reaction step is carried out at a temperature in the range from 10 to 40°c. 5. Fremgangsmåte som angitt i et av de foregående krav, karakterisert ved at i annet reaksjonstrinn anvendes svovelsyre i eri mengde i området fra 0,5 til 2,0 mol pr. mol av 1,3,5-trialkylbenzenet.5. Method as stated in one of the preceding claims, characterized in that in the second reaction step sulfuric acid is used in an amount in the range from 0.5 to 2.0 mol per moles of the 1,3,5-trialkylbenzene.
NO253869A 1968-06-21 1969-06-19 NO123351B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB4712568A GB1202762A (en) 1968-06-21 1968-06-21 Esters of substituted benzyl alcohols and polyphenols prepared from said esters
GB2967168 1968-06-21
GB2967169 1969-05-09

Publications (1)

Publication Number Publication Date
NO123351B true NO123351B (en) 1971-11-01

Family

ID=27258833

Family Applications (1)

Application Number Title Priority Date Filing Date
NO253869A NO123351B (en) 1968-06-21 1969-06-19

Country Status (2)

Country Link
IE (1) IE32891B1 (en)
NO (1) NO123351B (en)

Also Published As

Publication number Publication date
IE32891L (en) 1969-12-21
IE32891B1 (en) 1974-01-09

Similar Documents

Publication Publication Date Title
Cardellicchio et al. Functionalized ketones by iron mediated reaction of grignard reagents with acyl chlorides
US2863878A (en) Synthesis of alpha-alpha-dimethyl-beta-hydroxy-propionaldehyde and alpha-hydroxy-beta-beta-dimethyl-gamma-butyrolactone
US5728892A (en) Method for preparing an alpha-alkycinnamaldehyde
US2638479A (en) Method for the preparation of esters of beta-oxy aldehydes
NO123351B (en)
US2224809A (en) Method of making isopropyl esters of aliphatic acids
US2932665A (en) Preparation of nu, nu-diethyltoluamides
US2504680A (en) Preparation of alkoxy-substituted aldehydes
US4152530A (en) Process for preparing allylic alcohols from allylic halides
US3211781A (en) Production of e-aminocaproic acid esters from e-aminocaprolactam
US2761877A (en) Production of phenols and carbonyl compounds
US2763691A (en) Process for production of 2,4,5-trihydroxyacetophenone
US2508257A (en) Process of preparing acetals of
Brecknell et al. Some simple cyanoformaldehyde phenylhydrazones
US2584664A (en) Synthesis of many-membered cyclic ketones
KR100229128B1 (en) Process for the production of cyclopropylmethylketone
US3317582A (en) Dibenzocycloheptene compounds and processes for preparing the same
CN111039917A (en) Preparation method of 1, 4-cyclohexanedione mono-ketal
US3504036A (en) Process for the production of cycloalkane-1,3-diones
EP0704423B1 (en) Process for the preparation of the tert-butyle ester of chloroacetic acid
US4675449A (en) Process for producing 6-hydroxy-2-naphthones
JPH0119370B2 (en)
US3544634A (en) Production of 3-ketobutanol-(1)
US3458560A (en) Process for preparing 2,6-dichlorobenzonitrile
US2510364A (en) Reaction of beta-lactones with organic magnesium halides