NO122236B - - Google Patents

Download PDF

Info

Publication number
NO122236B
NO122236B NO156216A NO15621665A NO122236B NO 122236 B NO122236 B NO 122236B NO 156216 A NO156216 A NO 156216A NO 15621665 A NO15621665 A NO 15621665A NO 122236 B NO122236 B NO 122236B
Authority
NO
Norway
Prior art keywords
platinum
layer
bath
platinized
platinization
Prior art date
Application number
NO156216A
Other languages
Norwegian (no)
Inventor
Fromont Marguerite
Fromont Michel
Original Assignee
Fromont Marguerite
Fromont Michel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR965908A external-priority patent/FR1399600A/en
Priority claimed from FR973464A external-priority patent/FR85692E/en
Priority claimed from FR979448A external-priority patent/FR1407777A/en
Priority claimed from FR996720A external-priority patent/FR90955E/en
Application filed by Fromont Marguerite, Fromont Michel filed Critical Fromont Marguerite
Publication of NO122236B publication Critical patent/NO122236B/no

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/20Repeater circuits; Relay circuits
    • H04L25/205Repeater circuits; Relay circuits using tuning forks or vibrating reeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B43/00Cooling beds, whether stationary or moving; Means specially associated with cooling beds, e.g. for braking work or for transferring it to or from the bed
    • B21B43/10Cooling beds with other work-shifting elements projecting through the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G25/00Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement
    • B65G25/04Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement the carrier or impeller having identical forward and return paths of movement, e.g. reciprocating conveyors
    • B65G25/08Conveyors comprising a cyclically-moving, e.g. reciprocating, carrier or impeller which is disengaged from the load during the return part of its movement the carrier or impeller having identical forward and return paths of movement, e.g. reciprocating conveyors having impellers, e.g. pushers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/04Charging, supporting, and discharging the articles to be cooled by conveyors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/22Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace on rails, e.g. under the action of scrapers or pushers
    • F27B9/225Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace on rails, e.g. under the action of scrapers or pushers the charge being subjected to an additional manipulation along the path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/48Coupling means therefor
    • H03H9/50Mechanical coupling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/20Repeater circuits; Relay circuits
    • H04L25/202Repeater circuits; Relay circuits using mechanical devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D2099/0085Accessories
    • F27D2099/0093Means to collect ashes or dust, e.g. vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Baking, Grill, Roasting (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Fremgangsmåte til elektrolytisk platinering av metaller. Process for electrolytic platinization of metals.

Oppfinnelsen angår en fremgangsmåte The invention relates to a method

til forholdsvis hurtig toelegning av metall-gjenstander, spesielt med molybdentråd, med et tett, godt vedhengende, rent platinalag som eventuelt kan ha en betydelig tykkelse. for relatively quick coating of metal objects, especially with molybdenum wire, with a dense, well-adherent, pure platinum layer which can possibly have a considerable thickness.

Platinering av metaller, særlig av molybden, har vist seg å være forholdsvis vanskelig, slik at man med de kjente elektro-lytiske fremgangsmåter ikke kunne få noe godt vedhengende, rent platinalag. Platination of metals, particularly of molybdenum, has proven to be relatively difficult, so that with the known electrolytic methods no well-adherent, pure platinum layer could be obtained.

Ved slike fremgangsmåter blir metall-gjenstanden anbrakt i et elektrolyttbad som inneholder en platinaforbindelse og som oftest er tilsatt et salt av et annet metall for å forhøye badets virkningsgrad. Platina utfelles da i form av et lag av platinasvart som etterpå sintres ved opphet-ning til ca. 1000° C og omdannes til platina. Derunder fordamper det medutfelte fremmede metall for den største del fra laget. Fullstendig fjernelse av slike fremmede metaller har imidlertid vist seg særlig vanskelig, spesielt når platinalaget har en betydelig tykkelse, slik at disse metaller ved anvendelse av den platinerte gjenstand i høyt vakuum og ved høy temperatur kan fordampe og derved bevirke en utfelning av metall på ikke ønskede steder. Spesielt ved gjenstander av molybden, som f. eks. kan anvendes som elektroder i senderrør, har de nevnte ulemper vist seg meget uhel-dige. De til slike bad satte metallsalter er som oftest blyforbindelser, slik at bly blir tilstede som forurensning i platinalaget. Dette bly blir nemlig under sintring av platinasvartlaget, ved ca. 1000°, ikke fjer-net fullstendig og fører derfor etterpå til de ovennevnte ulemper. Dessuten har de kjente fremgangsmåter den ulempe at virkningsgraden som regel er forholdsvis lav, slik at det tar forholdsvis lang tid før laget som skal påføres har den ønskede tykkelse. Ennvidere kan lagtykkelsen som oppnåes ved disse fremgangsmåter bare bli noen få mikron, for hvis lagene blir tyk-kere kan de fremmede metaller praktisk talt ikke fjernes lenger. In such methods, the metal object is placed in an electrolyte bath which contains a platinum compound and which most often has a salt of another metal added to increase the efficiency of the bath. Platinum is then precipitated in the form of a layer of platinum black which is then sintered by heating to approx. 1000° C and is converted into platinum. Underneath, the co-precipitated foreign metal for the most part evaporates from the layer. However, the complete removal of such foreign metals has proven to be particularly difficult, especially when the platinum layer has a significant thickness, so that when the platinized object is used in a high vacuum and at a high temperature, these metals can evaporate and thereby cause a precipitation of metal on undesired places. Especially with objects made of molybdenum, such as e.g. can be used as electrodes in transmitter tubes, the aforementioned disadvantages have proven to be very unfortunate. The metal salts added to such baths are usually lead compounds, so that lead is present as a contaminant in the platinum layer. This lead becomes during sintering of the platinum black layer, at approx. 1000°, not completely removed and therefore subsequently leads to the above-mentioned disadvantages. In addition, the known methods have the disadvantage that the efficiency is usually relatively low, so that it takes a relatively long time before the layer to be applied has the desired thickness. Furthermore, the layer thickness achieved by these methods can only be a few microns, because if the layers become thicker, the foreign metals can practically no longer be removed.

De nevnte ulemper kan unngåes fullstendig ved elektrolytisk belegning av en metallgjenstand med et platinalag under anvendelse av et platinaholdig bad, fra hvilket platina utfelles på gjenstanden i form av et lag av platinasvart som deretter sintres ved ca. 1000° C og omdannes til platina, hvis man i henhold til oppfinnelsen anbringer gjenstanden minst en gang i et bad som består av en vandig opp-løsning av 150—300 g platinklorvannstoff-syre (H^PtClu) og 1—15 g kvikksølvklorid (HgClj) pr. liter, fortrinnsvis under anvendelse av en høy strømtetthet. Det viser seg at det samtidig med platinasvart utfelte kvikksølv fordamper nesten fullstendig fra laget ved sintringen. The aforementioned disadvantages can be completely avoided by electrolytically coating a metal object with a platinum layer using a platinum-containing bath, from which platinum is precipitated on the object in the form of a layer of platinum black which is then sintered at approx. 1000° C and is converted into platinum, if, according to the invention, the object is placed at least once in a bath consisting of an aqueous solution of 150-300 g of platinum hydrochloric acid (H^PtClu) and 1-15 g of mercuric chloride ( HgClj) per litres, preferably using a high current density. It turns out that the mercury precipitated at the same time as platinum black evaporates almost completely from the layer during sintering.

Badet inneholder fortrinnsvis 240 g H-PtClo og 7 g HgCli' pr. liter og strømstyr-ken utgjør ca. 50—150 amp./dm- eller så meget som tillatelig uten at gjenstanden som skal belegges blir beskadiget. På den-ne måte er det mulig å påføre platinalag som har en vilkårlig totaltykkelse uten at laget begynner å skalle av, blir porøst eller inneholder kvikksølv eller andre fremmede metaller. Da kvikksølvforbindelsen forhøy-er badets virkningsgrad betydelig skjer ut-felningen av et lag av bestemt tykkelse forholdsvis hurtig. The bath preferably contains 240 g H-PtClo and 7 g HgCl' per liters and the current strength is approx. 50-150 amp./dm - or as much as is permissible without damaging the object to be coated. In this way, it is possible to apply a platinum layer which has an arbitrary total thickness without the layer starting to peel off, becoming porous or containing mercury or other foreign metals. As the mercury compound increases the efficiency of the bath significantly, the precipitation of a layer of a certain thickness takes place relatively quickly.

Det har for frembringelse av et tykt lag vist seg særlig fordelaktig å påføre flere tynne platinalag på hverandre, slik at gjenstanden altså blir elektrolytisk be-lagt og opphetet flere ganger. Særlig når det gjelder molybden er det av viktighet at det første lag velgeis meget tynt (f. eks. 0,5 til 0,7 |x), da det ellers er fare for at laget oppviser risser etter sintringen. På dette første lag kan det så anbringes et annet, tykt lag. In order to produce a thick layer, it has proved particularly advantageous to apply several thin platinum layers on top of each other, so that the object is thus electrolytically coated and heated several times. Especially when it comes to molybdenum, it is important that the first layer is chosen very thin (e.g. 0.5 to 0.7 |x), as otherwise there is a risk of the layer showing cracks after sintering. A second, thick layer can then be placed on top of this first layer.

Oppfinnelsen skal forklares nærmere i forbindelse med et utførelseseksempel. The invention shall be explained in more detail in connection with an exemplary embodiment.

En molybdentråd som har en tykkelse av 175 (.i blir med en hastighet av 20— 120 meter pr. time, alt etter hvor tykt lag som skal påføres — ført gjennom et elektrolyttbad som har den ovennevnte sam-mensetning. Tråden går inn i en lengde av 30 cm gjennom badet og den elektriske strømstyrke er 1,5 amp. og den negative pol er forbundet med tråden. Ved en gjen-nomløpshastighet på 120 meter pr. time blir tykkelsen av det platinalag som fåes etter sintringen ved 1000° 0,5—0,7 \ i. Det har vist seg mulig å påføre ytterligere lag på dette første lag, inntil en samlet tykkelse på 10 [.i. Et sådant av to rør eller flere tynne lag oppbygget platinalag kan praktisk talt består av rent platina, har en tett struktur og ingen tilbøyelighet til å skalle av. Oppfinnelsen beror altså på den egenskap hos kvikksølv at det forhøyer badets virkningsgrad betydelig, kombinert med kvikksølvets forholdsvis store flyktighet. En slik plati-nert moybdenrtåd egner seg særlig for fremstilling av gittere for senderrør. A molybdenum wire having a thickness of 175 (.i) is passed through an electrolyte bath having the above-mentioned composition at a speed of 20-120 meters per hour, depending on how thick a layer is to be applied. The wire enters a length of 30 cm through the bath and the electric current strength is 1.5 amp. and the negative pole is connected to the wire. At a recirculation speed of 120 meters per hour, the thickness of the platinum layer obtained after sintering at 1000° is 0, 5—0.7 \ in. It has been found possible to apply further layers to this first layer, up to a total thickness of 10 [.in. Such a platinum layer made up of two tubes or several thin layers can practically consist of pure platinum , has a dense structure and no tendency to peel off. The invention is therefore based on the property of mercury that it significantly increases the efficiency of the bath, combined with mercury's relatively high volatility. Such platinized moybden wire is particularly suitable for the production of grids for transmitter tubes .

Claims (3)

1. Fremgangsmåte til elektrolytisk platinering av en metallgjenstand under anvendelse av et elektrolytbad fra hvilket platina utfelles på gjenstanden i form av et lag av platinasvart, hvor laget av platinasvart deretter overføres til platina ved sintring ved ca. 1000° C, karakterisert ved at gjenstanden platineres minst en gang i et elektrolytbad som består av en vandig oppløsning av 150—300 g/l platinklorvann-stoffsyre (H2PtClo) og 1—15 g/l kvikksølv-klorid (HgCb), fortrinnsvis under anvendelse av en høystrømtettihet, idet belegget på kjent måte sintres etter hver platinering.1. Method for electrolytic platinization of a metal object using an electrolyte bath from which platinum is deposited on the object in the form of a layer of platinum black, where the layer of platinum black is then transferred to platinum by sintering at approx. 1000° C, characterized by the object being platinized at least once in an electrolyte bath consisting of an aqueous solution of 150-300 g/l platinic hydrochloric acid (H2PtClo) and 1-15 g/l mercuric chloride (HgCb), preferably under application of a high current density, the coating being sintered in a known manner after each platinization. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at badet inneholder 250 g/l H2PtClc og 7 g/l HgCl2 og at 'strøm-tettheten utgjør 50—150 amp./dm<2>.2. Method according to claim 1, characterized in that the bath contains 250 g/l H2PtClc and 7 g/l HgCl2 and that the current density amounts to 50-150 amp./dm<2>. 3. Fremgangsmåte ifølge påstand 1 eller 2, karakterisert ved at en gjenstand som i alle fall på overflaten består av molybden, platineres minst to ganger idet gjenstanden ved den første platineringen på-føres et meget tynt platinalag (0,5—0,7 \ i) som ved en eller flere etterfølgende plati-neringer gis den ønskede tykkelse.3. Method according to claim 1 or 2, characterized in that an object, which at least on the surface consists of molybdenum, is platinized at least twice, with a very thin layer of platinum (0.5-0.7 \ i) which is given the desired thickness by one or more subsequent platings.
NO156216A 1964-03-03 1965-01-05 NO122236B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR965908A FR1399600A (en) 1964-03-03 1964-03-03 Advance devices with successive rotations of the material to be treated in thermal appliances, refrigerators, ovens, dryers, ovens and the like
FR973464A FR85692E (en) 1964-03-03 1964-05-06 Advancement devices with successive rotations of the material to be treated in thermal appliances, refrigerators, ovens, dryers, ovens and the like
FR973940A FR85724E (en) 1964-03-03 1964-05-11 Advancement devices with successive rotations of the material to be treated in thermal appliances, refrigerators, ovens, dryers, ovens and the like
FR974792A FR85749E (en) 1964-03-03 1964-05-15 Advancement devices with successive rotations of the material to be treated in thermal appliances, refrigerators, ovens, dryers, ovens and the like
FR979448A FR1407777A (en) 1964-06-24 1964-06-24 Advancement devices with successive rotations of the material to be treated in thermal appliances, refrigerators, ovens, dryers, ovens and the like
FR996720A FR90955E (en) 1964-06-24 1964-11-28 Advancement devices with successive rotations of the material to be treated in thermal appliances, refrigerators, ovens, dryers, ovens and the like

Publications (1)

Publication Number Publication Date
NO122236B true NO122236B (en) 1971-06-01

Family

ID=27546256

Family Applications (1)

Application Number Title Priority Date Filing Date
NO156216A NO122236B (en) 1964-03-03 1965-01-05

Country Status (7)

Country Link
BE (2) BE659947A (en)
DE (1) DE1431657B2 (en)
GB (1) GB1087706A (en)
LU (1) LU48088A1 (en)
NL (2) NL6501677A (en)
NO (1) NO122236B (en)
SE (1) SE315618B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014008767A1 (en) * 2014-06-12 2015-12-17 Audi Ag Process system for processing a component

Also Published As

Publication number Publication date
NL133612C (en)
DE1431657A1 (en) 1969-03-20
SE315618B (en) 1969-10-06
GB1087706A (en) 1967-10-18
DE1431657B2 (en) 1970-01-22
NL6501677A (en) 1965-09-06
BE483969A (en)
BE659947A (en) 1965-06-16
LU48088A1 (en) 1965-04-26

Similar Documents

Publication Publication Date Title
NO137324B (en) PROCEDURES FOR PRODUCING ELECTRODES SUITABLE FOR USE IN ELECTROLYTICAL PROCESSES.
CN103361692B (en) The method of mesohigh electric aluminum foil galvanic deposit disperse tin nucleus
CN101984145A (en) Method for preparing two-way porous aluminium oxide template with adjustable aperture
CN106340404B (en) A kind of preparation method of the high dielectric nano complex oxide film anode foils of low-voltage aluminum electrolytic capacitor
CN105386061A (en) Method for preparing Bi2S3/TiO2 nanorod composite-film photo-anodes
JP2009138229A (en) Method for forming protective film
JP7078232B2 (en) Electroplating process on the surface of refractory metal or stainless steel with an electroplating layer on the surface, and refractory metal or stainless steel
US4008144A (en) Method for manufacturing of electrode having porous ceramic substrate coated with electrodeposited lead dioxide and the electrode manufactured by said method
JP2000348984A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2000073198A (en) Method and electrolyte for anodic treatment of valve metal
NO122236B (en)
JP2010215930A (en) Method of producing porous gold film and porous gold film
CN107490652B (en) A kind of construction method of single-orientated yttrium oxide nano-array preparation and membrane electrode
US2847372A (en) Method of electrolytically coating a metallic object with platinum
CN103305890A (en) Preparation method of three-dimensional penetrating anode aluminum oxide template
CN109741951A (en) A kind of Fabrication of High Specific Capacitance encashment ratio middle-high voltage electrode foil chemical synthesizing method
JP4754404B2 (en) Method for producing electrode foil for electrolytic capacitor
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
JP2007217780A (en) Method for producing electrolytic metal powder
Behrouznejad et al. Metal-based bracken-like single-sided dye-sensitized solar cells with horizontal separation
JP2847087B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
KR20030080536A (en) Electrode and its manufacturing method using rare earth element
SE186167C1 (en)
JPH0566005B2 (en)
JPS61139695A (en) Post treatment for silver plated product