NO121957B - - Google Patents

Download PDF

Info

Publication number
NO121957B
NO121957B NO1922/69A NO192269A NO121957B NO 121957 B NO121957 B NO 121957B NO 1922/69 A NO1922/69 A NO 1922/69A NO 192269 A NO192269 A NO 192269A NO 121957 B NO121957 B NO 121957B
Authority
NO
Norway
Prior art keywords
solution
chlorine dioxide
chlorate
reaction
tower
Prior art date
Application number
NO1922/69A
Other languages
Norwegian (no)
Inventor
W Krause
K Rupert
Original Assignee
Virginia Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virginia Chemicals Inc filed Critical Virginia Chemicals Inc
Publication of NO121957B publication Critical patent/NO121957B/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0016Ejectors for creating an oil recirculation

Description

Fremgangsmåte til fremstilling av klordioksyd. Process for the production of chlorine dioxide.

Foreliggende oppfinnelse angår en fremgangsmåte til fremstilling av klordioksyd. The present invention relates to a method for producing chlorine dioxide.

Det er kjent at klordioksyd kan fremstilles ved reaksjon mellom en vandig opp-løsning inneholdende treverdig krom og et alkalimetallklorat. Den treverdige krom tjener da til å redusere metallkloratet, hvorved klordioksydet frigjøres og kromet oksyderes til seksverdig krom. En fremgangsmåte av denne art beskrives f. eks. i U S. patent nr. 2.376.935. It is known that chlorine dioxide can be produced by reaction between an aqueous solution containing trivalent chromium and an alkali metal chlorate. The trivalent chromium then serves to reduce the metal chlorate, whereby the chlorine dioxide is released and the chromium is oxidized to hexavalent chromium. A method of this kind is described, e.g. in U. S. Patent No. 2,376,935.

Ved normal utførelse av denne fremgangsmåte holdes en oppløsning inneholdende treverdig krom på en temperatur under 40° C, og natriumklorat tilsettes derpå i slik mengde, at det tilsatte klorat ut-gjør vesentlig mere enn 3 mol klorat pr. mol treverdig krom. Typiske kloratforbin-delser, som herved brukes er alkalimetall-kloratene, som kaliumklorat eller natriumklorat. Når denne oppløsning er fremstil-let, oppvarmes den til en temperatur over 40° C, i alminnelighet til 80—100° C, og bringes i kontakt med en inert gass for å fraskille og bortlede dannet klordioksyd fra oppløsningen. Deretter avkjøles opp-løsningen til en lavere temperatur f. eks. til 10—30° C, hvorpå krystallisasjon av kali-umsulfattiohydrat inntreffer. Disse krys-taller fraskilles og den gjenværende opp-løsning behandles med et passende reduksjonsmiddel som svoveldioksyd ved en temperatur under 40° C for å redusere seksverdig krom i oppløsningen til treverdig. Oppløsningen føres derpå tilbake til frem-stillingsprosessen. In the normal implementation of this method, a solution containing trivalent chromium is kept at a temperature below 40° C, and sodium chlorate is then added in such an amount that the added chlorate amounts to substantially more than 3 mol of chlorate per moles of trivalent chromium. Typical chlorate compounds used here are the alkali metal chlorates, such as potassium chlorate or sodium chlorate. When this solution has been prepared, it is heated to a temperature above 40° C, generally 80-100° C, and brought into contact with an inert gas to separate and remove the chlorine dioxide formed from the solution. Then the cooling solution is cooled to a lower temperature, e.g. to 10-30° C, whereupon crystallization of potassium sulfate thiohydrate occurs. These crystals are separated and the remaining solution is treated with a suitable reducing agent such as sulfur dioxide at a temperature below 40° C to reduce hexavalent chromium in the solution to trivalent. The solution is then returned to the manufacturing process.

En vanskelighet ved utførelsen av denne fremgangsmåte, skyldes den omstendighet, at en stor mengde oppløsning først må oppvarmes og derpå avkjøles. Dette er en tidskrevende og arbeidskrevende operasjon. Dertil kan lokaloverhetning i en del av oppløsningen gi denne en tilbøyelighet til å danne klordioksyd i eksplosive konsentrasjoner, så at man får en farlig risiko. A difficulty in carrying out this method is due to the fact that a large amount of solution must first be heated and then cooled. This is a time-consuming and labor-intensive operation. In addition, local overheating in a part of the solution can give it a tendency to form chlorine dioxide in explosive concentrations, so that you get a dangerous risk.

Ved hjelp av foreliggende oppfinnelse unngås disse ulemper. fDe karakteriske hovedtrekk ved fremgangsmåten ifølge oppfinnelsen er at en sur oppløsning som oppløst inneholder treverdig krom og klorat bringes i kontakt med et varmt inert gassformig stoff i en mengde, som er tilstrekkelig til å oppvarme oppløsningen så at klordioksyd utvikles og å medrive den ut-viklede klordioksyd fra oppløsningen. Herved dannes en fortynnet blanding av klordioksyd og den inerte gass, som altså tjener som fortyningsmiddel. Et gassformig medium som er særlig fordelaktig for dette formål er vanndamp. Imidlertid kan der ifølge oppfinnelsen også brukes andre kondenserbare eller ikke kondenserbare inerte gassformige stoffer som bl. a. luft, nitro-gen, kulldioksyd og lignende stoffer. By means of the present invention, these disadvantages are avoided. The main characteristic features of the method according to the invention are that an acidic solution which contains dissolved trivalent chromium and chlorate is brought into contact with a hot inert gaseous substance in an amount sufficient to heat the solution so that chlorine dioxide is evolved and to drive the evolved chlorine dioxide from the solution. This creates a diluted mixture of chlorine dioxide and the inert gas, which thus serves as a diluent. A gaseous medium which is particularly advantageous for this purpose is water vapour. However, according to the invention, other condensable or non-condensable inert gaseous substances can also be used, such as a. air, nitrogen, carbon dioxide and similar substances.

Fremgangsmåten ifølge oppfinnelsen utføres meget enkelt ved å bringe vanndamp eller annen varm gass i intim kontakt med oppløsningen, fortrinsvis i mot-strøm i et tårn med fyll-legemer eller med klokkebunner hvor en intim kontakt mellom en gass og en væske oppnås. I denne fremgangsmåte oppvarmer dampen samtidig oppløsningen til reaksjonstempera-turen og river med seg utviklet klordioksyd fra oppløsningen i hovedsaken like raskt, som det dannes. Man får således fortynnet klordioksyd. Dette er fordelaktig, da man derved unngår dannelse av klordioksyd i eksplosive konsentrasjoner, da den varme gass automatisk fortynner klordioksydet, så snart det er dannet. The method according to the invention is carried out very simply by bringing water vapor or other hot gas into intimate contact with the solution, preferably in counter-flow in a tower with packing bodies or with bell bottoms where an intimate contact between a gas and a liquid is achieved. In this method, the steam simultaneously heats the solution to the reaction temperature and drags developed chlorine dioxide from the solution essentially as quickly as it is formed. You thus get diluted chlorine dioxide. This is advantageous, as it avoids the formation of chlorine dioxide in explosive concentrations, as the hot gas automatically dilutes the chlorine dioxide as soon as it is formed.

Oppfinnelsen vil i det følgende bli for-klart nærmere under henvisning til ved-føyede tegning som skjematisk viser en an-orning som er egnet til utførelse av fremgangsmåten ifølge oppfinnelsen. In the following, the invention will be explained in more detail with reference to the attached drawing which schematically shows an arrangement which is suitable for carrying out the method according to the invention.

På tegningen betegner 1 et blandekar i hvilket en passende reaksjonsoppløsning kan fremstilles. Dette kan skje meget enkelt ved å blande et alkalimetallklorat, som kaliumklorat med kromsulfat i et vannholdig medium. For å oppnå en rask reaksjon har det vist seg å være fordelaktig å innstille oppløsningens syrekonsentrasj on på minst to mol svovelsyre eller annen ekvivalent syre pr. liter. Den beste syrekonsentrasj on ligger mellom grensene 2 og 4 mol syre pr. liter. Imidlertid kan i visse tilfelle også høyere syrekonsentrasj oner brukes. Det vil forstås, at også fosforsyre eller kromsyre eller annen syre av lignende art kan brukes, forutsatt at denne syre ikke oksyderes av klor og klordioksyd. Svovelsyre er imidlertid å foretrekke. Opp-løsningen fremstilles i alminnelighet ved temperaturer under 40° C, og om nødvendig kan man bruke en passende kjøleanord-ning for å overholde en slik temperatur. In the drawing, 1 denotes a mixing vessel in which a suitable reaction solution can be prepared. This can be done very easily by mixing an alkali metal chlorate, such as potassium chlorate with chromium sulphate in an aqueous medium. In order to achieve a fast reaction, it has proven to be advantageous to set the acid concentration of the solution to at least two moles of sulfuric acid or other equivalent acid per litres. The best acid concentration lies between the limits of 2 and 4 mol of acid per litres. However, in certain cases higher acid concentrations can also be used. It will be understood that phosphoric acid or chromic acid or another acid of a similar nature can also be used, provided that this acid is not oxidized by chlorine and chlorine dioxide. However, sulfuric acid is preferred. The solution is generally prepared at temperatures below 40° C, and if necessary a suitable cooling device can be used to maintain such a temperature.

Fremgangsmåten lar seg utføre under anvendelse av store overskudd av klorat, men det har vist seg å være mest fordelaktig med hensyn til reaksjonsresultatene og reaksj onshastigheten å bruke et overskudd på den forbindelse som inneholder treverdig krom. Dette innebærer, at i den følgende reaksjon mellom kromioner og klorationer vil en mol treverdige kromioner reagere med 3 mol klorationer under dannelse av klordioksyd. Derfor bør mengden av de treverdige kromioner som er tilstede i oppløsningen fortrinsvis være mere enn 1 mol pr 3 mol klorationer. Størrelsen av dette overskudd kan varieres noe. Imidlertid viser det seg at de mest tilfredsstillende resultater oppnås, når overskuddet av Cr+<:! >utgjør 20—120 pst. av den teoretiske mengde, idet et overskudd på mellom 50 og 100 pst. er den optimale verdi. The process can be carried out using large excesses of chlorate, but it has been found to be most advantageous in terms of reaction results and reaction rate to use an excess of the compound containing trivalent chromium. This means that in the following reaction between chromium ions and chlorine ions, one mole of trivalent chromium ions will react with 3 moles of chlorine ions to form chlorine dioxide. Therefore, the amount of the trivalent chromium ions present in the solution should preferably be more than 1 mol per 3 mol of chlorine ions. The size of this surplus can be varied somewhat. However, it turns out that the most satisfactory results are obtained, when the excess of Cr+<:! >constitutes 20-120 per cent of the theoretical quantity, with an excess of between 50 and 100 per cent being the optimum value.

Når reaksj onsblandingen er fremstil-let som ovenfor angitt kan man iaktta at en meget liten reaksjon finner sted ved temperaturer under 40° C. Oppløsningen kan derfor anses å være en oppløsning av krom (3) klorat. When the reaction mixture is prepared as indicated above, it can be observed that a very small reaction takes place at temperatures below 40° C. The solution can therefore be considered to be a solution of chromium (3) chlorate.

Reaksjonsoppløsningen ledes gjennom en rørledning 5 til den øvre del av et passende tårn 3 med fyllegemer eller et lignende tårn hvor der finner sted en intim kontakt mellom en gass og en væske. Vanndamp eller annet varmt inert gassformig stoff tilføres tårnets bunnparti gjennom en ledning 7, stiger oppover i tårnet 3 i motstrøms kontakt med den nedover strøm-mende reaksjonsoppløsning, oppvarmer denne til reaksj onstemperaturen og med-river samtidig klordioksyd fra oppløsnin-gen omtrent like raskt som klordioksydet dannes. Blandingen av vanndamp og klordioksyd går ut fra tårnet gjennom en ledning 9. Der brukes en tilstrekkelig mengde damp eller annet fortynningsmiddel til å oppvarme reaksj onsoppløsningen og danne en blanding av klordioksyd og fortynningsmiddel. Blandingen bør inneholde minst 5 og fortrinsvis 9 eller flere volumdeler for-tynningsmidler pr. volumdel klordioksyd. The reaction solution is led through a pipe line 5 to the upper part of a suitable tower 3 with filler cells or a similar tower where an intimate contact between a gas and a liquid takes place. Water vapor or other hot inert gaseous substance is supplied to the bottom part of the tower through a line 7, rises up in the tower 3 in countercurrent contact with the downward flowing reaction solution, heats this to the reaction temperature and at the same time entrains chlorine dioxide from the solution approximately as fast as chlorine dioxide is formed. The mixture of water vapor and chlorine dioxide leaves the tower through a line 9. A sufficient amount of steam or other diluent is used there to heat the reaction solution and form a mixture of chlorine dioxide and diluent. The mixture should contain at least 5 and preferably 9 or more parts by volume of diluents per volume part chlorine dioxide.

Den oppløsning som går ut fra tårnets 3 bunnparti strømmer gjennom en ledning 15 til en samlebeholder 18, i hvilken oppløs-ningen regenereres ved reduksjon for ytter-ligere anvendelse. Denne oppløsning består hovedsakelig av vann, svovelsyre og seksverdig krom. Hvis der er brukt et overskudd av klorat, inneholder oppløsningen dess-uten klorat. Når imidlertid fremgangsmåten utføres på den ovenfor angitte mest fordelaktige måte, vil den oppløsning som strømmer gjennom ledningen 15 ikke inneholde klorat i noen merkbar konsentrasjon. The solution that exits from the bottom part of the tower 3 flows through a line 15 to a collection container 18, in which the solution is regenerated by reduction for further use. This solution consists mainly of water, sulfuric acid and hexavalent chromium. If an excess of chlorate has been used, the solution still contains chlorate. However, when the method is carried out in the most advantageous manner indicated above, the solution flowing through the line 15 will not contain chlorate in any appreciable concentration.

Oppløsningen regenereres ved kontakt med svoveldioksyd eller hermed ekvivalent reduksjonsmiddel til reduksjon av det seks-verdige krom eller i det minste en del av dette til treverdig krom. Svoveldioksyd til-føres da oppløsningen gjennom en ledning The solution is regenerated by contact with sulfur dioxide or an equivalent reducing agent to reduce the hexavalent chromium or at least part of it to trivalent chromium. Sulfur dioxide is then added to the solution through a line

17. Denne reduksjon kan utføres ved en 17. This reduction can be carried out by a

hvilken som helst temperatur, hvor en rask any temperature, where a fast

reduksjon inntrer. Da klorat ikke er tilstede ved reaksjonen, behøver man ikke å ta særlige forholdsregler for å holde tem-peraturen lav. Som følge . herav kan den kjøling som er nødvendig når man bruker et overskudd av klorat helt sløyfes. På den annen side må, når klorat er tilstede, rege-nereringen utføres ved en lavere temperatur enn den, ved hvilken klordioksyd utvikles, dvs. ved en temperatur under 40° C. reduction occurs. As chlorate is not present during the reaction, there is no need to take special precautions to keep the temperature low. As a result . of this, the cooling that is necessary when using an excess of chlorate can be completely bypassed. On the other hand, when chlorate is present, the regeneration must be carried out at a lower temperature than that at which chlorine dioxide is developed, i.e. at a temperature below 40°C.

Etter reduksjonen til treverdig krom føres oppløsningen tilbake gjennom en ledning 19 til blandingsbeholderen 1, hvor kaliumklorat tilsettes og de øvrige reak-sjonsbestanddeler bringes på den opprinne-lige konsentrasjon. After the reduction to trivalent chromium, the solution is fed back through a line 19 to the mixing container 1, where potassium chlorate is added and the other reaction components are brought to the original concentration.

Den gassformige blanding av vanndamp og klordioksyd som går ut gjennom The gaseous mixture of water vapor and chlorine dioxide that exits through

ledningen 9, føres til en gassvasker 25, som the line 9 is led to a gas scrubber 25, which

kjøles med passende midler for å kondensere dampen. Det vann som herved dannes cooled by suitable means to condense the vapor. The water that is thereby formed

oppløser klordioksydet og fører dette fra dissolves the chlorine dioxide and removes it

gassvaskerens bundel gjennom en ledning the gas scrubber's bundle through a line

29 til en forrådstank 31 for klordioksyd-oppløsningen. For å unngå dannelsen av 29 to a storage tank 31 for the chlorine dioxide solution. To avoid the formation of

vakuum som følge av oppløsning eller kon-densasjon av fortynningsmiddel og derved vacuum as a result of dissolution or condensation of diluent and thereby

forhindre herav resulterende lokale eksplosive konsentrasjoner av klordioksyd ledes luft inn gjennom en ledning 21 til gassvaskerens øvre parti. Det er også mulig å to prevent local explosive concentrations of chlorine dioxide resulting from this, air is led in through a line 21 to the upper part of the gas scrubber. It is also possible to

lede vann nedover gjennom gassvaskeren. direct water downwards through the gas scrubber.

Vannet ledes da inn gjennom ledningen 21 The water is then led in through line 21

for å kondensere dampen og oppløse klordioksydet. Overskudd av luft går ut gjennom en ledning 23 til et passende utløp. to condense the steam and dissolve the chlorine dioxide. Excess air exits through a line 23 to a suitable outlet.

En forsøksserie ble utført i et tårn med A series of experiments was carried out in a tower with

klokkebunner med 11 seksjoner av Bruun-tyden og koblet til vakuum. Reaksj onsopp-løsningen for fremstilling av klordioksyd bell bottoms with 11 sections of the Bruun tyden and connected to vacuum. The reaction solution for the production of chlorine dioxide

ble ledet inn i dette tårn. En tilførselsbe-holder for oppløsningen var forbundet med tårnet i dets øvre parti og et uttak ved tårnets høyere parti var forbundet med en kondensorgassvasker. Denne gassvasker bestod av et vannkjølet vertikalt tårn med 35 mm diameter og 180 mm høyde som was led into this tower. A supply container for the solution was connected to the tower in its upper part and an outlet at the higher part of the tower was connected to a condenser gas scrubber. This gas scrubber consisted of a water-cooled vertical tower with a diameter of 35 mm and a height of 180 mm which

var fylt med Berle-sadler (hver enkelt med størrelse 6,35 mm) og en over kondensator - tårnet anbragt vannkjølet kjøler. was filled with Berle saddles (each with a size of 6.35 mm) and a water-cooled radiator placed above the condenser - the tower.

På det nærmeste mettet vanndamp ble ledet inn i tårnets bunndel og reaksjons-oppløsning ledet inn i dets overdel med en hastighet, som fremgår av nedenstående tabell. Blandingen av vanndamp og klordioksyd ble kondensert i gassvaskeren ved å bringes til å passerer tårnet i oppadret-tet motstrøm med en nedovergående strøm av vann. Dette vann ble ledet inn i kondensatortårnets overdel og ble bragt til å risle nedover fyllegemene. Den klordi-oksydoppløsning man herved fikk ble tatt ut fra kondensatortårnets bunnparti. Ta-bellen angir betingelsene ved de forskjel-lige driftsforsøk og de resultater som ble oppnådd ved disse. At the closest saturated water vapor was led into the bottom part of the tower and reaction solution was led into its upper part at a rate, which appears in the table below. The mixture of water vapor and chlorine dioxide was condensed in the gas scrubber by being made to pass the tower in upward countercurrent with a downward flow of water. This water was led into the upper part of the condenser tower and was made to trickle down the filling chambers. The chlorine dioxide solution thus obtained was taken out from the bottom of the condenser tower. The table indicates the conditions of the various operating tests and the results obtained from these.

Claims (1)

Fremgangsmåte til fremstilling av klor-dioxyd ved omsetning av salter av 3-verdigProcess for the production of chlorine dioxide by reacting salts of 3-valent krom med klorat i vandig oppløsning ved forhøyet temperatur og under tilførsel av en inert gass, med hvilken reaksj onspro-duktet fortynnes og fjernes fra reaksjons-kammerne, karakterisert ved at man omsetter oppløsningen i en kolonne med fyll-legemer eller med klokkebunner og at man oppvarmer oppløsningen sam-men med den i varm tilstand tilførte inerte gass til reaksj onstemperaturen og holder den på denne temperatur.chromium with chlorate in aqueous solution at an elevated temperature and under the supply of an inert gas, with which the reaction product is diluted and removed from the reaction chambers, characterized by reacting the solution in a column with filler bodies or with bell bottoms and that the solution is heated together with the inert gas added in a hot state to the reaction temperature and kept at this temperature.
NO1922/69A 1968-07-05 1969-05-09 NO121957B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74263468A 1968-07-05 1968-07-05

Publications (1)

Publication Number Publication Date
NO121957B true NO121957B (en) 1971-05-03

Family

ID=24985631

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1922/69A NO121957B (en) 1968-07-05 1969-05-09

Country Status (11)

Country Link
US (1) US3483714A (en)
BE (1) BE732265A (en)
CH (1) CH494382A (en)
DE (1) DE1928984A1 (en)
ES (1) ES366454A1 (en)
FR (1) FR2012335A1 (en)
GB (1) GB1261944A (en)
IE (1) IE32879B1 (en)
IL (1) IL32004A (en)
NL (1) NL6909706A (en)
NO (1) NO121957B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754409A (en) * 1972-03-06 1973-08-28 Virginia Chemicals Inc Liquid trapping suction accumulator
JPS49117550U (en) * 1973-02-02 1974-10-08
JPS50106216A (en) * 1973-08-02 1975-08-21
DE2602582C2 (en) * 1976-01-21 1983-03-31 Erich Schultze KG, 1000 Berlin Liquid separator for refrigeration systems
DE2650935C3 (en) * 1976-11-08 1981-10-15 Danfoss A/S, 6430 Nordborg Refrigeration machine with encapsulated motor compressor
US4231230A (en) * 1979-04-11 1980-11-04 Carrier Corporation Refrigerant accumulator and method of manufacture thereof
FR2518720A1 (en) * 1981-12-18 1983-06-24 Refrigeration Cie Caladoise MOTORIZED REFRIGERATOR CIRCUIT, AND HEAT PUMP PROVIDED WITH SUCH A CIRCUIT
US4593752A (en) * 1984-08-10 1986-06-10 Hussmann Corporation Combined refrigerated and heated food service table
DE3434044A1 (en) * 1984-09-17 1986-03-27 TYLER Refrigeration GmbH, 6250 Limburg SUCTION SUCTION PIPE FOR REFRIGERATION PLANTS AND HEAT PUMPS
GB2239193A (en) * 1989-12-19 1991-06-26 William David Blenkinsop Liquid-gas separator
DE19533666A1 (en) * 1995-09-12 1997-03-13 Hansa Metallwerke Ag Accumulator for air conditioning unit using orifice principle
US6557371B1 (en) * 2001-02-08 2003-05-06 York International Corporation Apparatus and method for discharging fluid
FI120893B (en) * 2006-10-16 2010-04-15 Vahterus Oy Arrangement and method for separating droplets from a vaporized refrigerant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2121253A (en) * 1936-04-06 1938-06-21 Kold Hold Mfg Company Heat exchanger and accumulator
US3111819A (en) * 1961-11-03 1963-11-26 Bell & Gossett Co Evaporator with oil return means
US3212289A (en) * 1963-02-12 1965-10-19 Refrigeration Research Combination accumulator and receiver
US3180567A (en) * 1963-04-12 1965-04-27 Coleman Co Compressor anti-slugging device
US3370440A (en) * 1966-01-06 1968-02-27 Ac & R Components Inc Suction accumulator

Also Published As

Publication number Publication date
GB1261944A (en) 1972-01-26
US3483714A (en) 1969-12-16
IL32004A (en) 1971-12-29
IE32879B1 (en) 1974-01-09
CH494382A (en) 1970-07-31
ES366454A1 (en) 1971-04-16
IE32879L (en) 1970-01-05
IL32004A0 (en) 1969-06-25
NL6909706A (en) 1970-01-07
FR2012335A1 (en) 1970-03-20
BE732265A (en) 1969-10-01
DE1928984A1 (en) 1970-01-15

Similar Documents

Publication Publication Date Title
NO121957B (en)
US4764308A (en) Process for the production of phosgene with simultaneous generation of steam
US3839550A (en) Closed-cycle thermochemical process for the decomposition of water
DK159246B (en) CONTINUOUS PROCEDURE FOR GETTING A GAS PRODUCT OUT OF A FLUID AND APPARATUS FOR EXERCISING THE PROCEDURE
NO139455B (en) WASTE HEATER FOR COOLING SOOTHING GAS OBTAINED BY INCOMPLETE COMBUSTION OF FUEL
TWI447065B (en) Process for the production of chlorine dioxide
NO148485B (en) PLASTIC CONTAINER, SPECIAL FOR STORAGE OF FUEL OIL AND LIKE.
US5458858A (en) Integrated procedure for high yield production of chlorine dioxide
NO148410B (en) PROCEDURE FOR THE PREPARATION OF CHLORODIOXIDE, CHLORINE AND AN ALKALIMETAL SALT.
FI72107B (en) FRAMSTAELLNING AV KLORDIOXID UNDER ANVAENDANDE AV EN SYRABLANDNING SAOSOM INMATNING
CN211255246U (en) Ultra-clean high-purity reagent hydrochloric acid production system
GB895690A (en) Improvements in or relating to the preparation of sodium carbonate
JP5629776B2 (en) Method for producing chlorine dioxide
US20180334384A1 (en) Systems, reactors, methods and compositions for producing chlorine dioxide
US9340422B2 (en) Process for the production of chlorine dioxide
NO154364B (en) ELECTRICAL SOCKET.
US3365270A (en) Process for production of alkaline cyanides
Gregory et al. Carbon dioxide scrubbing by amine solutions
NO152645B (en) PROCEDURE FOR THE PREPARATION OF CHLORODIOXIDE
CN218665415U (en) Equipment for preparing hydrobromic acid by distillation with finished liquid as raw material
NO136353B (en)
FI79078B (en) FOERFARANDE FOER FRAMSTAELLNING AV KLORDIOXID.
US2765215A (en) Method of making chlorine dioxide
US2007758A (en) Method of making bromides
US1047576A (en) Solid compound of nitric and sulfuric anhydrids and process of making same.