NO121542B - - Google Patents

Download PDF

Info

Publication number
NO121542B
NO121542B NO15821265A NO15821265A NO121542B NO 121542 B NO121542 B NO 121542B NO 15821265 A NO15821265 A NO 15821265A NO 15821265 A NO15821265 A NO 15821265A NO 121542 B NO121542 B NO 121542B
Authority
NO
Norway
Prior art keywords
alloys
percent
solder
strength
cobalt
Prior art date
Application number
NO15821265A
Other languages
Norwegian (no)
Inventor
J Jaubert
Original Assignee
Boussois Souchon Neuvesel Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boussois Souchon Neuvesel Sa filed Critical Boussois Souchon Neuvesel Sa
Publication of NO121542B publication Critical patent/NO121542B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/062Easels, stands or shelves, e.g. castor-shelves, supporting means on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/48Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets

Description

Hårdlocldemetall for vanskelig loddbare materialer. Braze metal for difficult-to-solder materials.

Bestemmende for om en legering er egnet som loddemiddel til forbindelse av me-talliske materialer er en hel rekke egenskaper som loddemidlet bør forene i seg på optimal måte. Til disse egenskaper hører spesielt flyteforholdet og fukteevnen av det smeltede loddemiddel, dets arbeidstemperatur og undertiden dets styrkeegenska-per ved forhøyede temperaturer. Endelig må loddelegeringen selv være lett å forar-beide, slik at den kan fremstilles i pas-sende form, f. eks. som tråd eller blikk. Determining whether an alloy is suitable as a solder for joining metallic materials is a whole series of properties that the solder should combine in an optimal way. These properties include in particular the fluidity and wettability of the molten solder, its working temperature and sometimes its strength properties at elevated temperatures. Finally, the solder alloy itself must be easy to process, so that it can be produced in a suitable form, e.g. as thread or tin.

Ved lodding av vanskelig loddbare materialer, som kromnikkelstål, meget varmefaste legeringer, stellitter og hardmetaller og liknende, har det hittil vist seg umulig å oppfylle på tilfredsstillende måte alle de krav som stilles til loddemidlet. Det fin-nes riktignok en hel rekke loddemidler for stål og hårdmetaller, men brukbare resultater ved anvendelse av disse kan i almin-nelighet bare oppnås ved at man samtidig i mer eller mindre vidtgående grad renon-serer på en eller annen i og for seg ønske-lig funksjon hos loddelegeringen. For å oppheve disse ulemper har man i loddelegeringene innført tallrike ytterligere me-tallkomponenter, hvilke tilsetninger skulle bevirke en forbedring av flyteevnen og fukteevnen. Undertiden skulle tilsetnin-gene også bevirke en nedsettelse av arbeidstemperaturen, men i de fleste tilfelle opp-trådte da samtidig en nedsettelse av styrken i varm tilstand. When soldering difficult-to-solder materials, such as chrome-nickel steel, very heat-resistant alloys, stellites and hard metals and the like, it has so far proved impossible to satisfactorily fulfill all the requirements placed on the solder. It is true that there is a whole range of brazing agents for steel and hard metals, but usable results when using these can generally only be achieved by at the same time, to a greater or lesser extent, renouncing one or the other in and of itself as desired -like function of the solder alloy. In order to eliminate these disadvantages, numerous additional metal components have been introduced into the solder alloys, which additions should effect an improvement in flowability and wetting ability. Sometimes the additions would also cause a reduction in the working temperature, but in most cases a reduction in the strength in the hot state occurred at the same time.

Sammensetningen av de kjente loddemidler for stål og hårdmetaller viser at man på den ovenfor skildrede måte er kommet til meget komplisert oppbyggede legeringer bestående av mange stoffer. Således er det eksempelvis blitt forsøkt å anvende som loddemiddel for rustbestandige stål og hårdmetaller, kobber- eller kobber-nikkel-legeringer med tilsetninger av mangan, jern, krom eller sølv, uten at man med disse legeringer, hvis arbeidstemperaturer ligg ved 1050—1100° og derover, kunne oppnå helt ut tilfredsstillende resultater. Ved tilsetninger av sink kunne man riktignok nedsette arbeidstemperaturen • av legeringer av den nevnte art, men samtidig ble derved styrken i varm tilstand samt utmatningsstyrken nedsatt. En annen gruppe av loddemidler som har relativt lave arbeidstemperaturer og liten varmestyrke er oppbygget på basis av sølv-kobber-sink; det ble forsøkt å forbedre disses flyteforhold, fukteevne og styrke ved til-legering av opp til 25 pst. mangan og nikkel. The composition of the known brazing agents for steel and hard metals shows that, in the manner described above, very complicated alloys consisting of many substances have been arrived at. For example, attempts have been made to use copper or copper-nickel alloys with additions of manganese, iron, chromium or silver as solders for rust-resistant steels and hard metals, without using these alloys, whose working temperatures are at 1050-1100° and above, could achieve completely satisfactory results. By adding zinc, the working temperature • of alloys of the type mentioned could indeed be lowered, but at the same time the strength in the hot state and the yield strength were thereby reduced. Another group of solders that have relatively low working temperatures and low heat strength are based on silver-copper-zinc; attempts were made to improve their fluidity, wettability and strength by adding up to 25 per cent manganese and nickel.

Loddemidler med arbeidstemperaturer på ca. 1100° har i de fleste tilfelle en tilstrekkelig varmestyrke, men som følge av den høye arbeidstemperatur blir arbeids-stykkene som skal loddes utglødet for sterkt og det kommer til dannelse av grove korn med alle disses ulemper. Dessuten forstyr-rer den ved den høye arbeidstemperatur opptredende sterke oksydasjon og skall-dannelse. Solders with working temperatures of approx. In most cases, 1100° has a sufficient heat strength, but as a result of the high working temperature, the workpieces to be soldered are annealed too strongly and coarse grains are formed with all these disadvantages. Moreover, it interferes with the strong oxidation and shell formation occurring at the high working temperature.

Hos loddemidler med høyt kobberinn-hold opptrer, likesom ved rent kobber, en ytterligere ulempe: utvidelsen synker sterkt ved temperaturer på 400—600° (varmsprø-het) og stiger først igjen ved høyere temperaturer. With solders with a high copper content, as with pure copper, a further disadvantage occurs: the expansion drops sharply at temperatures of 400-600° (hot brittleness) and only rises again at higher temperatures.

Ved de lavtflytende loddemidler med arbeidstemperatur mellom ca. 600 og 850° er undertiden den allerede ved temperaturer på 200—300° nedsatte styrke uheldig. Dessuten er de lavtflytende loddemidlers fukteevne i mange tilfeller utilstrekkelig. In the case of the low-flowing solders with a working temperature between approx. 600 and 850°, the already reduced strength at temperatures of 200-300° is sometimes unfortunate. In addition, the wetting ability of the low-flowing solders is insufficient in many cases.

I motsetning til den hittil anvendte vei, nemlig ved kombinering av et stort an-tall metaller å skaffe brukbare loddemidler for stål og andre vanskelige loddbare materialer, har oppfinnerne overraskende funnet at legeringer av trestoffsystemet kobolt-kobber-mangan med 1—10 pst. kobolt, 55—95 pst. kobber og 4—35 pst. mangan er meget godt egnet som loddemiddel for legert stål, hårdmetaller og andre vanskelig loddbare materialer. Gode resultater oppnås med legeringer av sammensetningen 2,5—7,5 pst. kobolt, 70—90 pst. kobber og 5—25 pst. mangan, og spesielt har legeringer med 2,5—6 pst. kobolt, 80—90 pst. kobber og 7,5—15 pst. mangan vist seg gode. Området av de anvendbare legeringer er vist i fig. 1 på tilstandsdiagrammet for det ternære system kobber-kobolt-mangan. In contrast to the path used until now, namely by combining a large number of metals to obtain usable solders for steel and other difficult solderable materials, the inventors have surprisingly found that alloys of the wood material system cobalt-copper-manganese with 1-10 percent cobalt , 55-95 per cent copper and 4-35 per cent manganese is very well suited as a brazing agent for alloyed steel, hard metals and other difficult-to-solder materials. Good results are obtained with alloys of the composition 2.5-7.5 percent cobalt, 70-90 percent copper and 5-25 percent manganese, and in particular alloys with 2.5-6 percent cobalt, 80-90 percent .copper and 7.5-15 per cent manganese proved to be good. The range of the applicable alloys is shown in fig. 1 on the state diagram for the copper-cobalt-manganese ternary system.

De nevnte legeringer viser med hensyn til høyden av deres arbeidstemperaturer og deres flyteevne, og også på grunn av loddesømimens overraskende store styrke, vesentlig heldigere forhold enn de hittil kjente stål- og hårdmetall-loddemidler. Hertil kommer dessuten at deres smelte-område er snevert; som følge derav bevirker legeringene ved sin anvendelse som loddemiddel ingen tilbøyelighet til dannelse av krympnings-hmkere. With respect to the height of their working temperatures and their fluidity, and also due to the surprisingly great strength of the solder seam, the aforementioned alloys show significantly better conditions than the hitherto known steel and hard metal solders. In addition, their melting range is narrow; as a result, when used as a solder, the alloys cause no tendency to form shrinkage cracks.

Trestoffsystemet kobolt-kobber-mangan er allerede for lengere tid siden blitt The cobalt-copper-manganese wood material system has long since become

undersøkt i området opptil 40 pst. mangan (W. Koster og E. Wagner, Z. Metallkde. Bd. 30 (1938) S. 352/353). Det fremgår imid-lertid ikke av de der angitte resultater at det i dette system foreligger legeringer av bestemt sammensetning som alle på optimal måte forener i seg de egenskaper som kreves i et loddemiddel for vanskelig loddbare materialer. examined in the range up to 40 per cent manganese (W. Koster and E. Wagner, Z. Metallkde. Bd. 30 (1938) S. 352/353). However, it does not appear from the results stated there that there are alloys of a specific composition in this system which all optimally combine the properties required in a solder for difficult-to-solder materials.

Det har vist seg at de legeringer som skal anvendes i henhold til oppfinnelsen foruten tilstrekkelig stor hårdhet har en utmerket seighet og at de som loddemiddel på stål, hårdmetaller og andre vanskelig loddbare materialer fukter og fyller ut godt. Legeringene har dessuten en tilstrekkelig varmestyrke og kan valses og trekkes koldt. Dessuten kan de underkastes en herdning; deres mekaniske egenskaper kan derunder ytterligere forbedres ved en enkel varme-behandling. Deres arbeidstemperaturer lig-ger i området mellom 1050 og 900°. Luken i arbeidstemperaturene mellom de foran-nevnte to grupper av hårdloddemidler er derved utfylt og dessuten har legeringene i henhold til oppfinnelsen ikke de mangler som hefter ved de meget høyt smeltende og de relativt lavt flytende loddemidler, og ytterligere byr de også på økonomiske fordeler fremfor loddemidler som inneholder edelmetall. It has been shown that the alloys to be used according to the invention, in addition to being sufficiently hard, have an excellent toughness and that as a solder on steel, hard metals and other difficult-to-solder materials, they moisten and fill in well. The alloys also have a sufficient heat strength and can be rolled and cold drawn. Moreover, they can be subjected to a hardening; their mechanical properties can then be further improved by a simple heat treatment. Their working temperatures lie in the range between 1050 and 900°. The gap in the working temperatures between the above-mentioned two groups of brazing agents has thereby been filled, and furthermore, the alloys according to the invention do not have the shortcomings associated with the very high-melting and the relatively low-flowing solders, and furthermore they also offer economic advantages over solders containing precious metal.

Den nedenstående tabell 1 gir noen eksempler på smelteområdene for de loddelegeringer som skal anvendes i henhold til oppfinnelsen. Tabellen inneholder også angivelse over legeringenes hårdhet, som er bestemt etter bråkjøling av prøvene fra 800° i vann. Table 1 below gives some examples of the melting ranges for the solder alloys to be used according to the invention. The table also contains an indication of the hardness of the alloys, which is determined after quenching the samples from 800° in water.

Legeringenes udmerkede styrke i varm tilstand fremgår særlig tydelig av fig. 2, hvor det for sammenliknings skyld er med-tatt noen hårdloddemidler som i stort om-fang anvendes til lodding av stål og hårdmetaller (LAg 45, LAg 49, LAg 27 (etter DIN 1734), loddemiddel med 85 pst. Ag, 15 pst. Mn). På abscissen er inntegnet avrivningsstyrken i pst. av utgangsstyrken og på ordinaten prøvetemperaturen (prø-vevarighet: 15 min.). The alloys' excellent strength in the hot state is particularly clear from fig. 2, where, for the sake of comparison, some brazing agents are included which are widely used for brazing steel and hard metals (LAg 45, LAg 49, LAg 27 (according to DIN 1734), brazing agent with 85% Ag, 15% .Mn). On the abscissa is the tear-off strength in percent of the initial strength and on the ordinate the test temperature (test duration: 15 min.).

Styrken hos loddelegeringer i henhold ti] oppfinnelsen avtar først ved temperaturer over 300° og utgjør selv ved 600° fremdeles 20 pst. av utgangsstyrken. Til forskjell herfra faller avrivningsstyrken av loddemidlene LAg 45, LAg 49 og LAg 27 sterkt allerede ved ca. 200°; den utgjør ved 500° i det høyeste 10 pst. av utgangsver-dien. Selv loddemidlet 85 Ag, 15 Mn, som anvendes ved lodding av gassturbiner og hvis varmestyrke hittil ble ansett som tilstrekkelig, overtreffes langt av legeringene i henhold til oppfinnelsen. The strength of solder alloys according to the invention first decreases at temperatures above 300° and even at 600° still constitutes 20 per cent of the initial strength. In contrast to this, the tear-off strength of the solders LAg 45, LAg 49 and LAg 27 falls sharply already at approx. 200°; at 500° it makes up at most 10 percent of the initial value. Even the solder 85 Ag, 15 Mn, which is used when soldering gas turbines and whose heat strength was hitherto considered sufficient, is far surpassed by the alloys according to the invention.

Legeringene som skal anvendes i henhold til oppfinnelsen er herdbare; noen eksempler herpå bringer tabell 2: The alloys to be used according to the invention are hardenable; Table 2 provides some examples of this:

Avrivningsstyrken av loddsømmen når det anvendes legeringer i henhold til oppfinnelsen overstiger loddelegeringenes egenstyrke. Noen eksempler for lodding av prøver av 18/8-stål er angitt i tabell 3: The tear-off strength of the solder seam when alloys according to the invention are used exceeds the intrinsic strength of the solder alloys. Some examples for brazing samples of 18/8 steel are given in Table 3:

Styrken av loddesømmen med loddemidler i henhold til oppfinnelsen kommer altså' nær opptil avrivningsstyrken av det loddede materiale. The strength of the solder seam with solders according to the invention therefore comes close to the tear-off strength of the soldered material.

Overlegenheten av legeringer i henhold, til oppfinnelsen over de loddemidler The superiority of alloys according to the invention over the solders

som vanlig anvendes for p<l>ålodding av hårdmetaller fremgår særlig tydelig av tabell 4. Nettopp ved vanskelig fuktbare hårdme-tallsorter som har lite koboltinnhold kan det oppnås skjærestyrkeverdier som er overraskende høye. which is commonly used for p<l>alo brazing of hard metals is particularly clear from table 4. It is precisely with difficult-to-wet hard metal types that have a low cobalt content that cutting strength values that are surprisingly high can be achieved.

Til legeringene som i henhold til oppfinnelsen skal anvendes som loddemidler, kan det for bestemt anvendelsesformål ytterligere settes krom, nikkel, jern, silicium, paladium, sølv og eventuelt også gull, titan og vanadium. Paladium og gull befordrer fuktingen av overflater som inneholder. krom, wolfram eller molybden, og paladium utøver dessuten også en meget gunstig inn-virkning på varmestyrken. Mengden av disse tilsetninger skal samlet ikke være mere enn 5 pst., og den skal dessuten ikke overstige koboltinnholdet i vedkommende lofi-delegering. To the alloys which according to the invention are to be used as solders, chromium, nickel, iron, silicon, palladium, silver and possibly also gold, titanium and vanadium can be added for specific purposes. Palladium and gold promote the wetting of containing surfaces. chromium, tungsten or molybdenum, and palladium also have a very favorable effect on heat strength. The amount of these additives must not be more than 5 per cent in total, and it must also not exceed the cobalt content of the lofi alloy in question.

Loddelegeringene i henhold til oppfinnelsen egner seg, som nevnt, til lodding The soldering alloys according to the invention are, as mentioned, suitable for soldering

av legert og ulegert stål av enhver art, of alloyed and unalloyed steel of any kind,

varmefaste materialer, hurtigstållegerin-ger og hårdmetaller. Spesielt er det fordel-aktig å anvende dem véd verktøy som skal heat-resistant materials, high-speed steel alloys and hard metals. In particular, it is advantageous to use them with tools that should

påloddes hårdmetaller og som anvendes til cemented carbides and which are used for

bearbeidelse av sten og i bergindustrien, processing of stone and in the rock industry,

f. eks. rømmeverktøy og slagbor, hvor lod-deforbindelsen utsettes for særlig store mekaniske og termiske påkjenninger. e.g. reaming tools and impact drills, where the solder connection is exposed to particularly large mechanical and thermal stresses.

Claims (4)

1. Anvendelse av legeringer med 1—101. Application of alloys with 1-10 pst. kobolt, 55—95 pst. kobber og 4—35 pst. mangan som hårdloddemiddel, spesielt for vanskelig loddbare materialer som f. eks. kromnikkelstål, varmefaste materialer, ste- litter og hårdmetaller. percent cobalt, 55-95 percent copper and 4-35 percent manganese as a brazing agent, especially for difficult-to-solder materials such as e.g. chrome-nickel steel, heat-resistant materials, stellites and hard metals. 2. Anvendelse av legeringer med 2,5— 7,5 pst. kobolt, 70—90 pst. kobber og 5—25 pst. mangan for de i påstand 1 nevnte formål.'2. Use of alloys with 2.5-7.5 per cent cobalt, 70-90 per cent copper and 5-25 per cent manganese for the purposes mentioned in claim 1.' 3. Anvendelse av legeringer med 2,5— 7,5 pst. kobolt, 80—90 pst. kobber og 7,5— 15 pst. mangan for de i påstand 1 nevnte formål. 3. Use of alloys with 2.5-7.5 percent cobalt, 80-90 percent copper and 7.5-15 percent manganese for the purposes mentioned in claim 1. 4. Anvendelse av legeringer i henhold til påstand 1—3, som inneholder tilsetninger av opp til i alt 5 pst. krom, nikkel, jern, silicium, sølv, palladium og eventuelt gull, titan, vanadium, hvorunder mengden av tilsetninger ikke skal overstige koboltinnholdet, for de i påstand 1 nevnte formål.4. Use of alloys according to claims 1-3, which contain additions of up to a total of 5 percent chromium, nickel, iron, silicon, silver, palladium and possibly gold, titanium, vanadium, under which the amount of additions must not exceed the cobalt content, for the purposes mentioned in claim 1.
NO15821265A 1964-05-26 1965-05-25 NO121542B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR975837A FR1405317A (en) 1964-05-26 1964-05-26 Apparatus for handling, transporting and storing sheet material

Publications (1)

Publication Number Publication Date
NO121542B true NO121542B (en) 1971-03-08

Family

ID=8830868

Family Applications (1)

Application Number Title Priority Date Filing Date
NO15821265A NO121542B (en) 1964-05-26 1965-05-25

Country Status (8)

Country Link
AT (1) AT253424B (en)
CH (1) CH419967A (en)
DE (2) DE1486365B1 (en)
DK (1) DK114926B (en)
ES (1) ES313239A1 (en)
FR (1) FR1405317A (en)
NL (1) NL6506233A (en)
NO (1) NO121542B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653707A (en) * 1969-10-03 1972-04-04 Libbey Owens Ford Co Flat glass shipping case
US4014435A (en) * 1974-07-31 1977-03-29 Ppg Industries, Inc. Collapsible rack for shipping and/or storing glass sheets
FR2307709A1 (en) * 1975-04-17 1976-11-12 Devianne Duquesnoy Stand for transport and storage of glass sheets - has retaining bars which slide on base members and have movable locking pins
DE2702408A1 (en) * 1977-01-21 1978-07-27 Juergens Walter Glass pane transport frame - has sliding supports for pants mounted at any suitable point on pallet
FR2394469A1 (en) * 1977-06-18 1979-01-12 Kerschgens Stahlkonstruktionen BUILDING IN THE FORM OF METAL BEAMS, TO RECEIVE FLAT GLASS PLATES
US4302041A (en) * 1979-12-17 1981-11-24 Ppg Industries, Inc. Sheet retainer for a sheet transporter
DE3002021C2 (en) * 1980-01-21 1983-11-03 Vereinigte Glaswerke Gmbh, 5100 Aachen Device for transporting and storing packages of glass panes
DE3632282C1 (en) * 1986-09-23 1988-02-11 Bayer Isolierglasfab Kg Device for storing spacer frames for insulating glass panes
NL1001088C2 (en) * 1995-08-29 1997-03-04 Den Born Carrosserie Van Transport truck for glass panes (panels)
CN107720520B (en) * 2017-10-17 2019-03-12 湖南黄花建设集团股份有限公司 One kind is for building to hang the fixed device of glazing protection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978270A (en) * 1958-12-17 1961-04-04 Union Des Verreries Mecaniques Horse for the transport of sheet materials

Also Published As

Publication number Publication date
FR1405317A (en) 1965-07-09
DK114926B (en) 1969-08-18
NL6506233A (en) 1965-11-29
DE1486365B1 (en) 1970-12-23
CH419967A (en) 1966-08-31
ES313239A1 (en) 1965-07-16
AT253424B (en) 1967-04-10
DE1924788U (en) 1965-09-30

Similar Documents

Publication Publication Date Title
EP0847829B1 (en) Lead-free solder composition
US4340650A (en) Multi-layer composite brazing alloy
KR20010021383A (en) Cadmium-free brazing alloys
NO121542B (en)
US4837108A (en) Austenitic free cutting stainless steels
US4507264A (en) Nickel base brazing alloy and method
US4357299A (en) Brazing alloy filler for joining cemented carbide to steel
EP0135603B1 (en) Ductile low temperature brazing alloy
US2330062A (en) Silver-copper solder alloy
EP0011649A1 (en) Padding alloys based on nickel
US5183636A (en) Braze filler metal with enhanced corrosion resistance
US4049434A (en) Brazing alloy
US2138638A (en) Alloys
US3663217A (en) Brazing alloy for elevated temperature service
JPS5831275B2 (en) Brazing filler metal for fluxless brazing of WC-Co cemented carbide
EP0058206A1 (en) Cu-Ag base alloy brazing filler material
US3515545A (en) Refractory and ceramic brazing alloys
US2554233A (en) Brazing alloys
US3925070A (en) Brazing alloy
US3782929A (en) Fluxless aluminum brazing
US3220808A (en) Alloys
JPS6216749B2 (en)
US1221769A (en) Alloy.
JPS63154290A (en) Low melting silver brazing filler metal
JPS6115799B2 (en)