NO120559B - - Google Patents

Download PDF

Info

Publication number
NO120559B
NO120559B NO162794A NO16279466A NO120559B NO 120559 B NO120559 B NO 120559B NO 162794 A NO162794 A NO 162794A NO 16279466 A NO16279466 A NO 16279466A NO 120559 B NO120559 B NO 120559B
Authority
NO
Norway
Prior art keywords
pressure
turbine
turbines
receiver
cylinder
Prior art date
Application number
NO162794A
Other languages
Norwegian (no)
Inventor
A Oestergaard
Original Assignee
Burmeister & Wains Mot Mask
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burmeister & Wains Mot Mask filed Critical Burmeister & Wains Mot Mask
Publication of NO120559B publication Critical patent/NO120559B/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2700/00Measures relating to the combustion process without indication of the kind of fuel or with more than one fuel
    • F02B2700/03Two stroke engines
    • F02B2700/031Two stroke engines with measures for removing exhaust gases from the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2700/00Measures relating to the combustion process without indication of the kind of fuel or with more than one fuel
    • F02B2700/03Two stroke engines
    • F02B2700/035Two stroke engines with reservoir for scavenging or charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Description

Omkastbar ekshaustturboladet totaktsforbrenningsmotor med flere sylindere. Reversible exhaust turbocharged two-stroke multi-cylinder internal combustion engine.

Foreliggende oppfinnelse angår ekshaustturboladede totaktsfor-brenningsmotorer, særlig dieselmotorer, og særlig slike innrettet for store ydelser, og spesielt, men imidlertid ikke utelukkende motorer bestemt for anvendelse som fremdrivningsmaskineri i skip. The present invention relates to exhaust turbocharged two-stroke internal combustion engines, in particular diesel engines, and in particular those designed for large outputs, and especially, but not exclusively, engines intended for use as propulsion machinery in ships.

Nærmere presisert angår oppfinnelsen en omkastbar ekshaustturboladet totaktsforbrenningsmotor med flere sylindre, hvis styreorganer for innstrømning og utstromning er utformet således, at den ved motorens normale omdreiningsretning opptredende efterutstromningsperiode tjener som foravstromningsperiode ved den motsatte omdreiningsretning, og hvor turboladernes kompressorer er seriekoblet med hensyn til forbrenningsluftstrømmen, mens deres tur biner er seriekoblet med en mellomliggende receiver, idet turbinen eller turbinene i det forste trinn arbeider som impulsturbin, og turbinen eller turbinene i det annet trinn arbeider'som liketrykksturbin med stort sett konstant innstrømningstrykk. More precisely, the invention relates to a reversible exhaust turbocharged two-stroke internal combustion engine with several cylinders, whose control means for inflow and outflow are designed in such a way that the post-flow period occurring in the normal direction of rotation of the engine serves as the pre-flow period in the opposite direction of rotation, and where the compressors of the turbochargers are connected in series with regard to the combustion air flow, while their turbines are connected in series with an intermediate receiver, with the turbine or turbines in the first stage working as an impulse turbine, and the turbine or turbines in the second stage working as a constant pressure turbine with largely constant inflow pressure.

Ved slike motorer har man hittil satt alt inn på å utfore kon-struksjonen slik at der i videst mulig utstrekning unngås ut-strømning av luft fra motorsylinderen i lopet av den nødvendigvis meget store efterutstrdmningsperiode, til hvilket formål det er foreslått å avpasse storrelsen av mellomreceiveren samt det innbyrdes forhold mellom impulsturbinen og den efterfolgende liketrykksturbin på en slik måte, at der holdes et i forhold til spyletrykket hoyt trykk i mellomreceiveren, hvorved utstrømning In the case of such engines, everything has been done so far to carry out the construction so that the outflow of air from the engine cylinder is avoided to the greatest extent possible during the necessarily very long post-exhaustion period, for which purpose it is proposed to adjust the size of the intermediate receiver as well as the mutual relationship between the impulse turbine and the following constant pressure turbine in such a way that a high pressure in relation to the flushing pressure is maintained in the intermediate receiver, whereby outflow

gjennom impulsturbinen under efterutstromningsperioden motvirkes, inntil kompresjonen til det nye arbeidsslag begynner ved sylin-dervolumets og det blottede utstromningsareals hastige avtagen under stemplets oppadgående bevegelse. through the impulse turbine during the post-flow period is counteracted, until the compression of the new working stroke begins with the rapid decrease of the cylinder volume and the exposed flow area during the upward movement of the piston.

Ved motoren ifolge den foreliggende oppfinnelse anlegges der imidlertid andre synspunkter, og på grunnlag av disse består det for oppfinnelsen karakteristiske i at turbinenes respektive ydelser er fordelt således, at trykket i mellomreceiveren er mindre enn eller maksimalt lik halvdelen av det i spyleluftreceiveren herskende trykk, og at trykket i motorsylinderen efter avslutning av spyleperioden på grunn av delvis ekspansjon og delvis utstromning fra sylinderen hoyst andrar 75% av trykket i spyleluftreceiveren, når kompresjonen begynner. In the case of the engine according to the present invention, however, other points of view are taken, and on the basis of these it is characteristic of the invention that the respective performances of the turbines are distributed in such a way that the pressure in the intermediate receiver is less than or at most equal to half of the prevailing pressure in the scavenge air receiver, and that the pressure in the engine cylinder after the end of the flushing period, due to partial expansion and partial outflow from the cylinder, changes no more than 75% of the pressure in the flushing air receiver, when compression begins.

Det oppnås herved en rekke konstruksjons- og driftsmessige for-deler, som tilsammen muliggjbr oppnåelse av et meget hoyt effek-tivt middeltrykk uten skadelig forhoyelse av maksimaltrykket i sylinderen, og uten at den termiske belastning av motorens enkelte deler overstiger hva som er normalt og tillatelig. Dette henger sammen med at den flertrinnskjoling av luften, som oppnås ved at kompresjonen i turboladerne deles opp på to eller flere trinn med mulighet for mellomkjoling, suppleres med en betydelig kjoling A number of design and operational advantages are thereby achieved, which together enable the achievement of a very high effective mean pressure without a harmful increase in the maximum pressure in the cylinder, and without the thermal load on the engine's individual parts exceeding what is normal and permissible . This is connected to the fact that the multi-stage cooling of the air, which is achieved by dividing the compression in the turbochargers into two or more stages with the possibility of intermediate cooling, is supplemented by a significant cooling

av luften i selve motorsylinderen som folger av den der foregå-ende ekspansjon fra det i spyleluftreceiveren herskende hoye of the air in the engine cylinder itself, which follows from the expansion taking place there from the prevailing height in the scavenge air receiver

trykk til det vesentlig lavere endelige ladetrykk ved begynnel-sen av kompresjonen i motorsylinderen, samt med at denne betyde-lige overkompresjon av den til motorsylindrene forte luft gjor det mulig å noyes med et relativt lite tidsareal for innstromningsorganet (spyleportene), hvorved dettes åpningsperiode kan gjores meget kort, og ekshaustorganets åpningstidspunkt rykkes tilsvarende tilbake, slik at der fås en tilsvarende forlengelse av det nyttige arbeidsslag. pressure to the significantly lower final charge pressure at the beginning of the compression in the engine cylinder, as well as with this significant overcompression of the air forced to the engine cylinders, makes it possible to settle for a relatively small time area for the inflow device (the flushing ports), whereby its opening period can is made very short, and the exhaust organ's opening time is correspondingly pushed back, so that a corresponding extension of the useful work type is obtained.

Videre oppnås ved den angitte kombinasjon av foranstaltninger en gunstig fordeling av den samlede turbineffekt mellom impulsturbinen og liketrykksturbinen med en passende stor del av effekten på impulsturbinen, som erfaringsmessig mister forholdsvis mindre i effekt ved lavere motorbelastninger enn turbiner arbeidende i et liketrykkssystem, hvorved det fås en sikrere drift av det samlede anlegg ved delbelastning, tomgang og start. Furthermore, with the specified combination of measures, a favorable distribution of the overall turbine power between the impulse turbine and the direct pressure turbine is achieved with a suitably large part of the power on the impulse turbine, which, according to experience, loses relatively less power at lower engine loads than turbines working in a direct pressure system, whereby a safer operation of the overall plant at partial load, idling and starting.

Det bemerkes i denne forbindelse at såvel impulsturbinen som den efterfolgende liketrykksturbin kan være utfort med ett eller flere trinn, som på vilkårlig kjent måte kan være samlet i en enkelt turbin eller fordelt på flere turbiner. It is noted in this connection that both the impulse turbine and the subsequent constant pressure turbine can be designed with one or more stages, which can be assembled in any known manner in a single turbine or distributed over several turbines.

Det skal likeledes bemerkes at antallet av sideordnede impulsturbiner beror på motorens sylinderantall og mulighetene for gruppe-ring av motorsylindrene på felles turbinseksjoner, og at det som regel vil være hensiktsmessig ved motorer med mange sylindre å anvende en enkelt eller kun noen få 1iketrykksturbinder, som fodes fra mellomreceiveren, hvori samtlige eller et antall av impulsturbinene har avlop. It should also be noted that the number of side-by-side impulse turbines depends on the engine's number of cylinders and the possibilities for grouping the engine cylinders on common turbine sections, and that it will usually be appropriate for engines with many cylinders to use a single or only a few 1-pressure turbine binders, which are fed from the intermediate receiver, in which all or a number of the impulse turbines have drains.

Det skal også bemerkes at det er en viss sammenheng mellom tids-arealet av motorsylinderens innstromningsorgan og gjennomstrom-ningsarealet av den til sylinderen sluttede impulsturbin, slik å forstå at man for å oppnå et visst bnsket trykk i spyleluftreceiveren kan anvende forskjellige kombinasjoner av tidsareal for innstromningsorganet og gjennomstromningsareal for impulsturbinen, idet et storre innstromningstidsareal krever et noe mindre turbingjennomstromningsareal og omvendt. Da utstromningen av gass fra motorsylinderen under efterutstrbmningsperioden på sin side avhenger av både impulsturbinens gjennornstrbmningsareal og efterutstrbmningstidsarealet, vil man i kraft av dette forhold alltid kunne velge en hensiktsmessig kombinasjon, som gir både tilstrekkelig hoyt trykk i spyleluftreceiveren og tilstrekkelig ekspansjon og efterutstrbmning under efterutstrbmningsperioden. It should also be noted that there is a certain relationship between the time area of the engine cylinder's inflow device and the flow area of the impulse turbine connected to the cylinder, so that it can be understood that in order to achieve a certain desired pressure in the scavenge air receiver, different combinations of time area for the inflow device can be used and flow-through area for the impulse turbine, as a larger inflow time area requires a slightly smaller turbine flow-through area and vice versa. As the outflow of gas from the engine cylinder during the post-exhaustion period in turn depends on both the impulse turbine's normal flow area and the post-exhaustion time area, by virtue of this relationship, one will always be able to choose an appropriate combination, which provides both sufficiently high pressure in the scavenge air receiver and sufficient expansion and post-exhaustion during the post-exhaustion period.

Den omstendighet at en vesentlig del av energien til drift av turbokompressorene utvinnes i en turbin, som arbeider som liketrykksturbin, medfbrer under normal drift en god virkningsgrad i ekshaustgassens utnyttelse, og forholdet mellom gjennomstrbm-ningsarealet av samtlige impulsturbiner og gjennomstrbmnings-arealet av samtlige liketrykksturbiner velges derfor hensiktsmessig ifblge oppfinnelsen slik at trykket i mellomreceiveren ved drift med normal belastning og normalt omdreiningstall minst andrar ca. en fjerdedel av trykket i spyleluftreceiveren, hvorved det sikres at en så stor del av den samlede turbinenergi tilveiebringes av liketrykksturbiner, at fordelene ved disses bedre virkningsgrad gjor seg merkbart gjeldende i det samlede resultat. The fact that a significant part of the energy for operating the turbo compressors is extracted in a turbine, which works as a direct pressure turbine, results in a good degree of efficiency in the utilization of the exhaust gas during normal operation, and the ratio between the flow area of all impulse turbines and the flow area of all direct pressure turbines is chosen therefore expedient according to the invention so that the pressure in the intermediate receiver during operation with normal load and normal speed changes at least approx. a quarter of the pressure in the purge air receiver, whereby it is ensured that such a large part of the total turbine energy is provided by direct pressure turbines, that the advantages of their better efficiency become noticeable in the overall result.

Det er som nevnt et vesentlig trekk ved oppfinnelsen at kompresjonen i motorsylinderen av ladningen til det neste arbeidsslag begynner ved et trykk, ladetrykket, som ligger vesentlig under det i spyleluftreceiveren herskende, stort sett konstante trykk, idet der i lbpet av efterutstrbmningsperioden, inntil kompresjonen setter inn, er foregått en betydelig ekspansjon og utstrbmning av sylinderens luftinnhold ved innstrbmningsorganets lukning. Den hermed tilstrebede effekt er som nevnt dels å kunne nbyes med et vesentlig mindre innstrbmningstidsareal enn ellers nbdvendig, dels å få en innvendig kjbling av sylinderen som folge av luft-ladningens ekspansjon. As mentioned, it is an essential feature of the invention that the compression in the engine cylinder of the charge for the next working stroke begins at a pressure, the charge pressure, which is significantly below the prevailing, largely constant pressure in the scavenge air receiver, since during the post-exhaustion period, until the compression sets in, a significant expansion and exhausting of the cylinder's air content has taken place when the exhausting device closes. The desired effect is, as mentioned, partly to be able to expand with a significantly smaller inflow time area than otherwise necessary, and partly to have an internal coupling of the cylinder as a result of the expansion of the air charge.

Oppfinnelsen er anskueliggjort på tegningen, på hvilkenThe invention is illustrated in the drawing, in which

Fig. 1 skjematisk viser en utfbrelsesform for en 7-sylindret totaktsmotor ifblge oppfinnelsen. Fig. 2 viser en annen utfbrelsesform for en tilsvarende motor. Fig. 3 viser et diagram over trykkforlbp i den betraktede periode, og Fig. 1 schematically shows an embodiment of a 7-cylinder two-stroke engine according to the invention. Fig. 2 shows another embodiment of a corresponding motor. Fig. 3 shows a diagram of pressure progress in the considered period, and

Fig. 4 et styringsdiagram for en motorsylinder.Fig. 4 a control diagram for an engine cylinder.

Fig. 1 viser ganske skjematisk en 7-sylindret totaktsdiesel-motor, hvis sylindre er betegnet med 1-7. Sylinderflgs ikke viste eks-haus torganer er ved hjelp av de kortest mulige rorledninger av minst mulig volum sluttet gruppevis til to ekshaustturboladere 8 og 9, hvis turbindeler 10 og 12 arbeider som impulsturbiner og trekker hver sin kompressordel, henholdsvis 11 og 13. Fra turbinene 10 og 12 fores ekshaustgassen gjennom rorledninger til en mellomreceiver 14, som er således dimensjonert, at der deri her-sker et stort sett konstant trykk. Fra mellomreceiveren 14 går ekshaustgassen gjennom en ekshaustturbolader 15, hvis turbindel 16 arbeider som liketrykksturbin og avgir ekshaustgassen til det fri, fortrinnsvis gjennom en ekshaustdampkjeie og en lyddemper på vanlig måte. Ekshaustturboladerens 15 kompressordel 17 innsuger luft fra atmosfæren og avgir den komprimerte luft gjennom mellom-kjblere 18 til de to parallelt arbeidende kompressordeler 11 og 13, som komprimerer luften ytterligere og leverer den gjennom en mellomkjoler 19 til motorens spyleluftreceiver 20. Fig. 1 shows quite schematically a 7-cylinder two-stroke diesel engine, whose cylinders are designated by 1-7. The cylinder liners, not shown, are connected in groups to two exhaust turbochargers 8 and 9, using the shortest possible rudder lines of the smallest possible volume, whose turbine parts 10 and 12 work as impulse turbines and draw their respective compressor parts, 11 and 13, respectively. From the turbines 10 and 12, the exhaust gas is fed through rudder lines to an intermediate receiver 14, which is dimensioned in such a way that a largely constant pressure prevails therein. From the intermediate receiver 14, the exhaust gas passes through an exhaust turbocharger 15, whose turbine part 16 works as a constant pressure turbine and emits the exhaust gas to the open air, preferably through an exhaust steam boiler and a silencer in the usual way. The compressor part 17 of the exhaust turbocharger 15 sucks in air from the atmosphere and delivers the compressed air through intermediate coils 18 to the two parallel working compressor parts 11 and 13, which compress the air further and deliver it through an intermediate coil 19 to the engine's scavenge air receiver 20.

Den i fig. 2 viste utforelsesform for motoren adskiller seg fra den i fig. 1 viste, ved at turboladerne 8 og 9 utgjor forste kompresjonstrinn, mens liketrykksturboladeren 15 utgjor annet kompresjonstrinn for luften. The one in fig. 2 shown embodiment of the engine differs from that in fig. 1 showed, in that the turbochargers 8 and 9 constitute the first compression stage, while the direct pressure turbocharger 15 constitutes the second compression stage for the air.

Styringsdiagrammet for hver motorsylinder er på vanlig måte frem-stilt i fig. 4, hvor kurvene U og S viser de i hvert oyeblikk blottede gjennornstromningsarealer av sylinderens ekshaustorgan og dens innstromningsorgan (vanligvis spyleporter). Kurvene U og S er på vanlig måte avsatt med gjennornstrbmningsarealene som ordinater over en abscisseakse, som angir krumtappsti11ingen i grader avsatt ut til begge sider fra nedre dbdpunkt BDP. Det vil sees at styringsdiagrammet i det viste eksempel er symmetrisk om BDP, slik at den pågjeldende motor vil operere fullstendig ens i begge omdreiningsretninger. The control diagram for each engine cylinder is shown in the usual way in fig. 4, where the curves U and S show the exposed recirculation areas of the cylinder's exhaust organ and its inflow organ (usually flushing ports) at each moment. The curves U and S are laid out in the usual way with the renormalization areas as ordinates over an abscissa axis, which indicates the crankshaft pitch in degrees laid out to both sides from the lower db point BDP. It will be seen that the control diagram in the example shown is symmetrical about BDP, so that the motor in question will operate completely the same in both directions of rotation.

I diagrammet i fig. 4 bor det særlig bemerkes at det har vært mulig å begrense varigheten av spyleportenes åpningsperiode til kun 60° ialt liggende symmetrisk om BDP. In the diagram in fig. 4, it should be particularly noted that it has been possible to limit the duration of the flushing gates' opening period to only 60° in total lying symmetrically about BDP.

I diagrammet i fig. 3 representerer abscisseaksen igjen krumtapp-stillingen avsatt i grader ut til begge sider fra BDP, mens ordi-natene angir trykk i absolutt verdi med abscisseaksen som atmos-færelinje. In the diagram in fig. 3, the abscissa again represents the crankshaft position set in degrees to both sides from BDP, while the ordinates indicate pressure in absolute value with the abscissa as the atmospheric line.

Trykket i spyleluftreceiveren betraktes i denne forbindelse som konstant og representeres ved den vannrette linje Pg, mens trykket i mellomreceiveren mellom de to seriekoblede ekshaustturbi-ner likeledes kan betraktes som konstant og er representert ved den vannrette linje PM>In this connection, the pressure in the scavenge air receiver is considered constant and is represented by the horizontal line Pg, while the pressure in the intermediate receiver between the two series-connected exhaust turbines can also be considered constant and is represented by the horizontal line PM>

Trykket i sylinderen er representert ved kurven Pc, mens trykket i ekshaustroret foran impulsturbinens innlop er representert ved kurven Py. The pressure in the cylinder is represented by the curve Pc, while the pressure in the exhaust pipe in front of the impulse turbine inlet is represented by the curve Py.

Åpnings- og lukningstidspunktene for utstromningsorganet og inn-strbmningsorganet er markert på abscisseaksen og på linjen P^ svarende til de i fig. 4 angitte verdier. The opening and closing times for the outflow device and the inflow device are marked on the abscissa axis and on the line P^ corresponding to those in fig. 4 specified values.

Det fremgår av diagrammet at trykket P^, som ved den betraktede periodes begynnelse svarer til det konstante trykk PM i mellomrecei veren, straks ved ekshaustorganets begynnende åpning stiger steilt i lbpet av foravstrbmningsperioden og omtrent ved dennes midte har antatt praktisk talt samme verdi som det samtidige trykk Pc i sylinderen, hvis steile fall derefter sinkes noe og blir mindre steilt. It appears from the diagram that the pressure P^, which at the beginning of the considered period corresponds to the constant pressure PM in the intermediate receiver, immediately at the beginning of the opening of the exhaust organ rises steeply during the pre-flow period and approximately at the middle of this has assumed practically the same value as the simultaneous press Pc in the cylinder, whose steep drop then slows somewhat and becomes less steep.

I resten av foravstrbmningsperioden fblges trykkene Py og Pc meget nbye ad og skjærer trykklinjen P - trykket i spyleluftreceiveren - omtrent ved det tidspunkt, hvor spyleportene åpnes. During the rest of the pre-flow period, the pressures Py and Pc follow very closely and intersect the pressure line P - the pressure in the purge air receiver - approximately at the time when the purge ports are opened.

I selve spyleperioden, mens spyleportene er åpne, trenger den relativt hoyt komprimerte luft fra spyleluftreceiveren inn i sylinderen og fortrenger resten av den der værende gass ut gjen nom ekshaustorganet, hvorunder trykket i sylinderen forblir like ved trykket i spyleluftreceiveren, hvorfra det kun adskiller seg ved det uvesentlige trykktap over spyleportene, et trykktap, som kan holdes lite såvel absolutt som særlig relativt på grunn av at den nodvendige luftmengde er sterkt komprimert og derfor har tilsvarende mindre volum og tilsvarende mindre stromningshastig-het gjennom portene. During the flushing period itself, while the flushing ports are open, the relatively highly compressed air from the flushing air receiver penetrates into the cylinder and displaces the rest of the gas there through the exhaust device, during which the pressure in the cylinder remains equal to the pressure in the flushing air receiver, from which it only differs by the insignificant pressure loss over the flushing ports, a pressure loss which can be kept small both absolutely and particularly relatively due to the fact that the required amount of air is highly compressed and therefore has a correspondingly smaller volume and a correspondingly smaller flow rate through the ports.

Henimot spyleperiodens avslutning, hvor spyleportenes areal avtar hurtig, begynner trykket i sylinderen å falle som folge av sylin-derinnholdets ekspansjon ut gjennom de stadig åpne ekshaustporter, og dette fortsetter efter spyleportenes lukning i den egentlige efteravstromningsperiode, hvor sylindertrykket som folge av den stadige ekspansjon og utstromning av den i sylinderen værende luftmengde fortsetter med å falle ned til en minimumsverdi, som nås på et tidspunkt hvor sylindervolumet igjen er begynt å avta fort og får overvekt over utstromningen gjennom det samtidig fort avtagende gjennomstromningsareal av ekshaustorganet. Det mini-mumstrykk som således nås i motorsylinderen, andrar i det viste eksempel mellom 55 og 60% av trykket i spyleluftreceiveren og representerer altså det ladetrykk, hvorfra kompresjonen til den påfolgende arbeidssyklus i sylinderen begynner. Towards the end of the flushing period, where the area of the flushing ports decreases rapidly, the pressure in the cylinder begins to fall as a result of the expansion of the cylinder contents out through the constantly open exhaust ports, and this continues after the flushing ports close in the actual afterflow period, where the cylinder pressure as a result of the constant expansion and outflow of the amount of air remaining in the cylinder continues to fall to a minimum value, which is reached at a time when the cylinder volume has again begun to decrease rapidly and gains predominance over the outflow through the simultaneously rapidly decreasing flow area of the exhaust organ. The minimum pressure thus reached in the engine cylinder, in the example shown, varies between 55 and 60% of the pressure in the scavenge air receiver and thus represents the charging pressure, from which the compression of the subsequent work cycle in the cylinder begins.

Den innbyrdes beliggenhet av trykkene P s i spyleluftreceiveren og PM i mellomrecei veren er bestemt av»» den innbyrdes dimensjonering av impulsturbinen og den efterfolgende liketrykksturbin, som i det viste eksempel er således avpasset at trykket i mellomreceiveren andrar to femtedeler av trykket i spyleluftreceiveren. En vesentlig del av ekshaustgassens energi utnyttes således i liketrykksturbinen, mens den del som utnyttes i impulsturbinen, andrar en så forholdsvis betydelig andel av den samlede energi, at impulsturbinens bedre virkning ved lavere belastninger gjor seg merkbart gjeldende, når motoren arbeider med delbelastning. The relative location of the pressures P s in the purge air receiver and PM in the intermediate receiver is determined by the relative dimensioning of the impulse turbine and the subsequent constant pressure turbine, which in the example shown is adjusted so that the pressure in the intermediate receiver is two fifths of the pressure in the purge air receiver. A significant part of the exhaust gas's energy is thus utilized in the constant pressure turbine, while the part that is utilized in the impulse turbine accounts for such a relatively significant proportion of the total energy that the impulse turbine's better effect at lower loads becomes noticeable when the engine is working at partial load.

Oppfinnelsen er ikke bundet til de viste og beskrevne utfbrelses-eksempler, idet motorens type, stbrrelse, sylinderantall etc. kan velges fritt, hvilket også gjelder den innbyrdes og absolutte dimensjonering av de enkelte komponenter innenfor de i kravene angitte rammer. Det har vist seg mulig ved anvendelse av opp-finnelsens prinsipper å konstruere store direkte omkastbare skipsdieselmotorer for så hbye effektive middeltrykk som 15 kg/ cm 2 uten vanskeligheter av betydning med hensyn til storrelsen av de opptredende maksimaltrykk og varmebelastninger og med en brenselsbkonomi, som minst er på hoyde med de hittil konvensjo-nelle motorers. The invention is not bound to the examples shown and described, as the engine type, steering gear, number of cylinders, etc. can be freely chosen, which also applies to the mutual and absolute dimensioning of the individual components within the limits specified in the requirements. It has proved possible by applying the principles of the invention to construct large directly reversible marine diesel engines for as high effective mean pressures as 15 kg/cm 2 without significant difficulties with regard to the size of the occurring maximum pressures and heat loads and with a fuel economy of at least is on a par with the hitherto conventional engines.

Claims (2)

1. Omkastbar ekshaustturboladet totaktsforbrenningsmotor med flere sylindre, hvis styreorganer for innstromning og ut-strømning er utformet således at den ved motorens normale omdreiningsretning opptredende efterutstromningsperiode tjener som foravstromningsperiode ved den motsatte omdreiningsretning, og hvor turboladernes kompressorer er seriekoblet med hensyn til forbrenningsluftstrommen, mens deres turbiner er seriekoblet med en mellomliggende receiver, idet turbinen eller turbinene i det forste trinn arbeider som impulsturbin, og turbinen eller turbinene i det annet trinn arbeider som liketrykksturbin med stort sett konstant innstrbmningstrykk, karakterisert ved at turbinenes respektive ydelser er fordelt således at trykket i mellomreceiveren er mindre enn eller maksimalt lik halvdelen av det i spyleluftreceiveren herskende trykk, og at trykket i motorsylinderen efter avslutning av spyleperioden på grunn av delvis ekspansjon og delvis utstrømning fra sylinderen hbyst andrar 75% av trykket i spyleluftreceiveren, når kompresjonen begynner.1. Reversible exhaust turbocharged two-stroke internal combustion engine with several cylinders, whose control means for inflow and outflow are designed so that the post-flow period occurring in the normal direction of rotation of the engine serves as the pre-flow period in the opposite direction of rotation, and where the compressors of the turbochargers are connected in series with respect to the combustion air flow, while their turbines is connected in series with an intermediate receiver, with the turbine or turbines in the first stage working as an impulse turbine, and the turbine or turbines in the second stage working as a direct pressure turbine with largely constant inlet pressure, characterized by the fact that the turbines' respective performances are distributed so that the pressure in the intermediate receiver is less than or at most equal to half of the prevailing pressure in the scavenge air receiver, and that the pressure in the engine cylinder after the end of the scavenging period, due to partial expansion and partial outflow from the cylinder, changes at least 75% of the pressure in the scavenge air receiver, when compression begins. 2. Totaktsforbrenningsmotor som angitt i krav 1, karakterisert ved at forholdet mellom impulsturbin og liketrykksturbin er valgt slik at trykket i mellomreceiveren minst andrar en fjerdedel av trykket i spyleluftreceiveren.2. Two-stroke internal combustion engine as stated in claim 1, characterized in that the ratio between impulse turbine and constant pressure turbine is chosen so that the pressure in the intermediate receiver is at least a quarter of the pressure in the scavenge air receiver.
NO162794A 1965-04-29 1966-04-28 NO120559B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK218265AA DK107202C (en) 1965-04-29 1965-04-29 Exhaust turbocharged two-stroke engine.

Publications (1)

Publication Number Publication Date
NO120559B true NO120559B (en) 1970-11-02

Family

ID=8110626

Family Applications (1)

Application Number Title Priority Date Filing Date
NO162794A NO120559B (en) 1965-04-29 1966-04-28

Country Status (9)

Country Link
BE (1) BE680244A (en)
DE (1) DE1526440A1 (en)
DK (1) DK107202C (en)
ES (1) ES326493A1 (en)
FI (1) FI50019C (en)
GB (1) GB1149617A (en)
NL (1) NL6605711A (en)
NO (1) NO120559B (en)
SE (1) SE331389B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228485B2 (en) * 2013-04-25 2016-01-05 Electro-Motive Diesel, Inc. Air handling system having cooling assembly
WO2017147118A1 (en) * 2016-02-23 2017-08-31 Hypercar Development Llc. Mechanically-driven tribule turbocharger assemblies and method

Also Published As

Publication number Publication date
FI50019C (en) 1975-11-10
DE1526440A1 (en) 1970-05-14
FI50019B (en) 1975-07-31
ES326493A1 (en) 1967-03-01
SE331389B (en) 1970-12-21
GB1149617A (en) 1969-04-23
DK107202C (en) 1967-05-01
BE680244A (en) 1966-10-03
NL6605711A (en) 1966-10-31

Similar Documents

Publication Publication Date Title
US3257797A (en) Tandem supercharging system
US2817322A (en) Supercharged engine
US3015934A (en) Load acceleator for supercharged engine
US2189106A (en) Internal combustion engine
US2820339A (en) Turbo-charged internal combustion engines and methods of starting and operating them
SE514969C2 (en) Internal combustion engine
US4428192A (en) Turbocharged internal combustion engine
JP2016534280A5 (en)
US2431563A (en) Two-cycle engine with supercharger driven by parallel high- and lowpressure staged exhaust gas turbine
US3144749A (en) Two cycle supercharged difsel engine
US3103780A (en) Turbocharged internal combustion engines
US2406656A (en) Exhaust energy converting means for internal-combustion engines
US1895538A (en) Internal combustion engine
US2401858A (en) Exhaust mechanism for internalcombustion engines
US2280487A (en) Compound expansion internal combustion engine
US3217487A (en) Exhaust gas driven supercharger
US2873574A (en) Combination hot air and internal combustion engine
US4075980A (en) Multiple-cycle, piston-type internal combustion engine
NO120559B (en)
US3174275A (en) Arrangement in two-stroke cycle combustion engines
GB2185286A (en) I.C. engine with an exhaust gas driven turbine or positive displacement expander
US3447313A (en) Supercharged two stroke cycle internal combustion piston engine
GB244032A (en) Compound internal combustion engine power plants
US1612143A (en) Internal-combustion engine
CN108915870A (en) A kind of integrated air compressibility