NO118929B - - Google Patents

Download PDF

Info

Publication number
NO118929B
NO118929B NO160764A NO16076465A NO118929B NO 118929 B NO118929 B NO 118929B NO 160764 A NO160764 A NO 160764A NO 16076465 A NO16076465 A NO 16076465A NO 118929 B NO118929 B NO 118929B
Authority
NO
Norway
Prior art keywords
sewage
water
electrolysis
seawater
phosphates
Prior art date
Application number
NO160764A
Other languages
Norwegian (no)
Inventor
F Spanur
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of NO118929B publication Critical patent/NO118929B/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Gasket Seals (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

Fremgangsmåte til rensing av kloakkvann. Procedure for cleaning sewage water.

Vanligvis renses kloakkvann ved siling, Sewage is usually cleaned by filtering,

filtrering eller settling av kloakkslammet. En meget anvendt fremgangsmåte er den såkalte biologiske rensemetode hvor kloakkslammet omdannes under luftinnblåsing. Over 90 pst. av de faste forurensninger kan fjernes fra kloakkvannet ved disse konvensjonelle metoder, men de stoffer som er oppløst i vannet, f. eks. fosfater, er frem-deles til stede. Disse fosfater følger med vannet ut i vassdrag eller i sjøen, og kan særlig i innelukkede fjordarmer forårsake en overgjødsling av vannet slik at man får filtration or settling of the sewage sludge. A widely used method is the so-called biological cleaning method where the sewage sludge is converted under air blowing. Over 90 per cent of the solid pollutants can be removed from the sewage water by these conventional methods, but the substances that are dissolved in the water, e.g. phosphates, are still present. These phosphates accompany the water into waterways or the sea, and can cause an over-fertilization of the water, especially in enclosed fjord arms, so that you get

en unormal plankton- og algevekst. Når algene dør og går i forråtnelse, forbruker de det surstoff som er oppløst i vannet og fiskebestanden desimeres. Algeslammet gjør dessuten vannet ugjennomsiktig og uappetittlig. an abnormal growth of plankton and algae. When the algae die and rot, they consume the oxygen dissolved in the water and the fish population is decimated. The algae sludge also makes the water opaque and unappetizing.

Det er kjent at fosfater kan felles ut It is known that phosphates can precipitate

sammen med hydroksyder av jern og alu-minium. Disse hydroksyder, som er tungt-løselige, avsetter seg imidlertid meget lang-somt, og det kreves meget store tanker eller beholdere for utfelling og separasjon av slam. together with hydroxides of iron and aluminium. However, these hydroxides, which are poorly soluble, settle very slowly, and very large tanks or containers are required for precipitation and separation of sludge.

Oppfinneren er imidlertid kommet frem til en metode for utfelling av fosfater og slam av kloakkvann, hvorved disse ulem-per unngås. However, the inventor has come up with a method for precipitating phosphates and sludge from sewage water, whereby these disadvantages are avoided.

Ifølge oppfinnelsen blir først de gro-vere forurensninger silt fra kloakkvannet på vanlig måte, hvorpå dette blir blandet med sjøvann eller tilsvarende oppløsning som inneholder magnesiumsalter. Blandingen gjøres derpå alkalisk ved elektrolyse eller ved kombinert elektrolyse og alkali-tilsetning. Herved vil fosfatene felles ut som MgNH4P04. Dessuten vil det utfelles According to the invention, the coarser contaminants are first filtered from the sewage in the usual way, after which this is mixed with seawater or a similar solution containing magnesium salts. The mixture is then made alkaline by electrolysis or by combined electrolysis and alkali addition. In this way, the phosphates will precipitate out as MgNH4P04. Moreover, it will precipitate

Mg(OH)2. Dette hydroksyd har sterkt Mg(OH)2. This hydroxide has strong

okkluderende evne og vil under avsettingen rive med seg partikler som er suspendert i kloakkvannet. Dette blir derved renset både for fosfater og for oppslemmede og sus-penderte partikler. occlusive ability and during deposition will drag with it particles that are suspended in the sewage. This is thereby cleaned of both phosphates and suspended and suspended particles.

Ved den elektrolytiske prosess anvendes elektrolyseceller hvor elektrodene er adskilt med diafragma. Blandingen av kloakkvann og sjøvann føres inn ved katoden. Tilsatser på 10/15 pst. sjøvann er tilstrek-kelig til å gi blandingen god elektrisk ledningsevne. Under elektrolysen utvikles vannstoff på katoden, og vannet i katoderommet blir alkalisk, hvorved fosfatene og hydroksydene utskilles. Den oppadgående vannstrøm ved katoden vil flotere og rive med seg de utfelte substanser til overflaten, hvor det legger seg som et skum som lett kan fjernes. In the electrolytic process, electrolytic cells are used where the electrodes are separated by a diaphragm. The mixture of sewage water and seawater is introduced at the cathode. Additions of 10/15 percent seawater are sufficient to give the mixture good electrical conductivity. During the electrolysis, hydrogen is developed on the cathode, and the water in the cathode space becomes alkaline, whereby the phosphates and hydroxides are separated. The upward flow of water at the cathode will float and drag the precipitated substances with it to the surface, where it settles as a foam that can be easily removed.

Det har vist seg fordelaktig å anvende bare rent sjøvann i anoderommet, idet anolytten da får større elektrisk ledningsevne. Anolytten blir under elektrolysen klorhol-dig og vil ved blanding med det rensede kloakkvannet fra katoderommet desinfise-re det rensede kloakkvann. It has proven advantageous to use only pure seawater in the anode compartment, as the anolyte then gains greater electrical conductivity. The anolyte becomes chlorine-containing during the electrolysis and, when mixed with the purified sewage water from the cathode compartment, will disinfect the purified sewage water.

Ved elektrolyseforsøk utført i labora-torie- og halvteknisk målestokk er det blitt oppnådd en rensegrad på over 90 pst. med hensyn til fosfater, turbiditet og farve. In electrolysis experiments carried out on a laboratory and semi-technical scale, a purification degree of over 90 per cent has been achieved with regard to phosphates, turbidity and colour.

Det har tidligere vært foreslått å rense kloakkvann ved å tilsette sjøvann og lede blandingen mellom en positiv og en negativ elektrode uten anvendelse av diafragma. Ved denne fremgangsmåte oppnås imidlertid bare en delvis rensing av kloakkvannet, hovedsakelig i form av destruksjon av de organiske stoffer, mens fosfatene fortsatt forblir oppløst i kloakkvannet. It has previously been proposed to purify sewage water by adding seawater and directing the mixture between a positive and a negative electrode without the use of a diaphragm. With this method, however, only a partial purification of the sewage is achieved, mainly in the form of destruction of the organic substances, while the phosphates still remain dissolved in the sewage.

Videre er det foreslått å elektrolysere kloakkvann i en diafragmacelle hvor rått kloakkvann anvendes som katolytt, mens slam som har sedimentert ut fra kloakk- Furthermore, it is proposed to electrolyse sewage water in a diaphragm cell where raw sewage water is used as catholyte, while sludge that has sedimented from sewage

vannet, anvendes som anolytt. Ved denne behandling oppnås at svovelkomponentene o. 1. forbindelser som forårsaker stanken i kloakkvann, vil omdannes til mere luktfrie komponenter. Fosfatene forblir imidlertid oppløst i kloakkvannet. the water, is used as anolyte. With this treatment, it is achieved that the sulfur components and 1. compounds that cause the stench in sewage water will be converted into more odorless components. However, the phosphates remain dissolved in the sewage.

Fig. 1 viser skjematisk et eksempel på Fig. 1 schematically shows an example of

en forsøkscelle i henhold til oppfinnelsen. an experimental cell according to the invention.

1 er anoden som kan bestå f. eks. av grafitt. 1 is the anode which can consist of e.g. of graphite.

2 er anoderommet hvortil sjøvannet innfø- 2 is the anode compartment into which the seawater enters

res gjennom det sentrale rør 3 og forde-lingsrørene 4. Tilførselen reguleres ved hjelp av kranen 5 og vannmengden måles med rotameteret 6. Anoderommet er om- through the central pipe 3 and the distribution pipes 4. The supply is regulated using the tap 5 and the amount of water is measured with the rotameter 6. The anode compartment is

gitt av et diafragma 7 som er festet på en ramme 8. Denne kan bestå av. f. eks. per- given by a diaphragm 7 which is fixed on a frame 8. This can consist of. e.g. per-

forert jernblikk. Mellom diafragma 7 og katoden 9 ligger katoderommet 10 som er fyllt med en blanding av sjøvann og kloakkvann, som via rotameterne 11 og 12 til- coated iron sheet. Between the diaphragm 7 and the cathode 9 is the cathode space 10 which is filled with a mixture of seawater and sewage water, which via the rotameters 11 and 12 to

føres katoderommet gjennom røret 13. Til- the cathode compartment is passed through tube 13. To

førselen reguleres ved hjelp av kranen 14. the feed is regulated using the tap 14.

Øverste del av cellen er omgitt av et ringformet kar 15 hvortil det rensede kloakkvann fra katoderommet strømmer ut gjennom åpnningene 16 i katoden. I dette rom foregår separasjon, og det dannede skum 18, som er revet med av den oppad- The upper part of the cell is surrounded by an annular vessel 15 into which the purified sewage water from the cathode space flows out through the openings 16 in the cathode. In this space, separation takes place, and the formed foam 18, which is carried away by the upward

gående vannstoffstrøm, samler seg over det rensede vannet 17 og fjernes gjennom ut- flowing hydrogen stream, collects above the purified water 17 and is removed through the

løpet 19, enten med mekaniske midler som f. eks. en skyffel eller ved luftinnblåsing gjennom åpningen 20. Det rensede vannet føres bort gjennom røret 21, og vannet fra anoderommet føres bort gjennom røret 22. 23 og 24 er en isolerende del av diafragma - rammen 8. race 19, either by mechanical means such as e.g. a shovel or by blowing air through the opening 20. The purified water is led away through the pipe 21, and the water from the anode compartment is led away through the pipe 22. 23 and 24 are an insulating part of the diaphragm - the frame 8.

Skummet avvannés på vanlig vis ved The foam is dewatered in the usual way with wood

settling i tanker, og man får til slutt et slam som bare inneholder ca. y3 av vann-innholdet i kloakkslam utfelt ved de konvensjonelle metoder. settling in tanks, and you finally get a sludge that only contains approx. y3 of the water content in sewage sludge precipitated by the conventional methods.

I mange tilfelle vil det lønne seg å In many cases, it will pay off

tørke slammet og anvende det som gjødsel, dry the sludge and use it as fertilizer,

idet slammet foruten verdifull humus inne- as the sludge contains, in addition to valuable humus,

holder kvelstoff, og det er målt opptil tre ganger så meget fosfat som i tørket ku- holds nitrogen, and up to three times as much phosphate has been measured as in dried cow-

gjødsel. fertilizer.

Hovedfordelen med den nye kloakk-rensemetode er at fosfatene fjernes fra kloakkvannet og kan nyttiggjøres mens kloakkvannet både renses og desinfiseres. Dessuten foregår det en bemerkelsesverdig The main advantage of the new sewage treatment method is that the phosphates are removed from the sewage and can be used while the sewage is both cleaned and disinfected. Moreover, a remarkable thing is taking place

rask utfelling av slam i kloakkvannet ved okkludering til Mg(OH>2 og flotasjon med rapid precipitation of sludge in the sewage water by occlusion to Mg(OH>2 and flotation with

vannstoff eller innblåst luft. Oppholds- water or blown air. Residence

tiden for kloakkvannet i elektrolysecellen behøver, etter de utførte forsøk, ikke over- the time for the sewage in the electrolysis cell need not, according to the tests carried out, exceed

stige 25 til 30 min., mens oppholdstiden i de konvensjonelle biologiske renseanlegg er 5 rise 25 to 30 min., while the residence time in the conventional biological treatment plants is 5

til 10 timer. to 10 hours.

Et anlegg etter oppfinnelsen blir der- A plant according to the invention becomes there-

for relativt billig. Ved anvendelse av meto- for relatively cheap. When using metho-

den bør man fortrinnsvis anordne flere enkeltseller i en felles beholder. it should preferably be arranged in several individual cells in a common container.

Alkaliseringen kan også skje ved en kombinasjon av elektrolyse og tilsa ts av al- The alkalization can also take place by a combination of electrolysis and the addition of al-

kali, f. eks. brent kalk. Dette kan gjøres ved at kloakkvann — sjøvann blandingen tilsettes alkali, respektive kalk hvorpå blan- potassium, e.g. burnt lime. This can be done by adding alkali or lime to the sewage-seawater mixture, after which

dingen ledes inn i katoderommet i en elektrolysecelle med diafragma og elektrolyse- the material is led into the cathode compartment of an electrolysis cell with a diaphragm and electrolysis

res til pH i den utgående katolytt er minst 9,5. res until the pH in the outgoing catholyte is at least 9.5.

Ved sådan kombinasjon av kjemisk og elektrolytisk rensing oppnås en reduksjon av kraftforbruket sammenlignet med den rene elektrolyseprosess, og metoden faller derfor adskillig rimeligere pr. ms kloakk- With such a combination of chemical and electrolytic cleaning, a reduction in power consumption is achieved compared to the pure electrolysis process, and the method is therefore considerably cheaper per ms sewage

vann enn elektrolysen. Samtidig reduseres også oppholdstiden i elektrolysecellen. water than the electrolysis. At the same time, the residence time in the electrolysis cell is also reduced.

Denne fremgangsmåte gir også tilstrekke- This method also provides sufficient

lig klor til desinfisering av det rensede kloakkvann. Den nødvendige mengde mag-nesiumjoner kan også tilsettes i form av dolomitt. Herved oppnås den fordel at man samtidig får tilsatt alkali. Dolomitten an- lig chlorine to disinfect the purified sewage water. The required amount of magnesium ions can also be added in the form of dolomite. This gives the advantage that alkali is added at the same time. The Dolomite an-

vendes da fortrinsvis i brent form. is then preferably returned in burnt form.

Hvis alt nødvendig alkali for utfellin- If all the necessary alkali for precipitation

gen produseres ved elektrolyse i kloakkvan- gene is produced by electrolysis in sewage water

net, kan man regne med et amp.timefor- net, one can count on an amp.timefor-

bruk på 200 til 300 pr. m<3> kloakkvann. Ved kombinasjon med kjemisk utfelling ved til- use of 200 to 300 per m<3> sewage water. In combination with chemical precipitation by adding

setning av soda eller kalk kan amp.time-forbruket reduseres til mellom 50 og 200. setting of soda or lime, the amp.hour consumption can be reduced to between 50 and 200.

Claims (2)

1. Fremgangsmåte for fjerning av opp-1. Procedure for removing up- løste fosfater fra kloakkvann som er be-fridd for de groveste forurensninger ved siling eller lignende, karakterisert ved at kloakkvannet tilføres magnesiumioner, f. eks. i form av sjøvann, hvorpå kloakkvannet alkaliseres inntil fosfatene felles ut som MgNHéPOé, enten ved elektrolyse alene eller ved kombinert elektrolyse og alkalitil-setning, idet elektrolysen utføres ved at kloakkvannet tilføres katoderommet i en elektrolysecelle utstyrt med diafragma, hvor anolytten utgjøres av sjøvann. dissolved phosphates from sewage water that has been freed of the coarsest contaminants by screening or the like, characterized in that the sewage water is supplied with magnesium ions, e.g. in the form of seawater, after which the sewage is alkalized until the phosphates precipitate as MgNHéPOé, either by electrolysis alone or by combined electrolysis and alkali addition, the electrolysis being carried out by supplying the sewage to the cathode compartment of an electrolysis cell equipped with a diaphragm, where the anolyte is made up of seawater. 2. Fremgangsmåte som i påstand 1, karakterisert ved at det rensede vann fra katoderommet og det klorholdige sjøvann fra anoderommet blandes, hvorved oppnås en desinfisering av kloakkvannet. ■2. Method as in claim 1, characterized in that the purified water from the cathode compartment and the chlorine-containing seawater from the anode compartment are mixed, whereby a disinfection of the sewage is achieved. ■
NO160764A 1965-03-22 1965-12-03 NO118929B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US441648A US3314824A (en) 1965-03-22 1965-03-22 Puncture-type safety seal for galvanic cells

Publications (1)

Publication Number Publication Date
NO118929B true NO118929B (en) 1970-03-02

Family

ID=23753730

Family Applications (1)

Application Number Title Priority Date Filing Date
NO160764A NO118929B (en) 1965-03-22 1965-12-03

Country Status (11)

Country Link
US (1) US3314824A (en)
JP (1) JPS4116893B1 (en)
AT (1) AT263877B (en)
BE (1) BE672661A (en)
BR (1) BR6574930D0 (en)
CH (1) CH439424A (en)
DE (1) DE1496304B2 (en)
DK (1) DK111330B (en)
FR (1) FR1464170A (en)
GB (1) GB1127737A (en)
NO (1) NO118929B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660168A (en) * 1970-04-09 1972-05-02 Mallory & Co Inc P R Leak-proof primary cell
IL50641A (en) * 1975-11-03 1980-07-31 Mallory & Co Inc P R Pressure release device
JPS5855619B2 (en) * 1977-11-30 1983-12-10 富士電気化学株式会社 Sealing gasket body for explosion-proof batteries
US4227701A (en) * 1979-01-02 1980-10-14 Fuji Electrochemical Co., Ltd. Rupturable sealing structure of cell
GB2058440B (en) * 1979-09-12 1983-01-26 Berec Group Ltd Galvanic cells
EP0107267A1 (en) * 1982-06-28 1984-05-02 Union Carbide Corporation Galvanic cell having pressure relief cover
US4537841A (en) * 1983-11-04 1985-08-27 Duracell Inc. Metal-supported seals for galvanic cells
GB2215119A (en) * 1988-02-04 1989-09-13 Ever Ready Ltd Cell
US5080985A (en) * 1989-12-07 1992-01-14 Duracell Inc. High pressure seal for alkaline cells
US6010802A (en) * 1996-01-22 2000-01-04 Rayovac Corporation Current collector assembly
JP3346191B2 (en) * 1996-11-05 2002-11-18 松下電器産業株式会社 Cylindrical alkaline battery
US6087041A (en) * 1998-03-06 2000-07-11 Eveready Battery Company, Inc. Electrochemical cell structure employing electrode support for the seal
US6127062A (en) * 1998-03-24 2000-10-03 Duracell Inc End cap seal assembly for an electrochemical cell
US6270919B1 (en) * 1999-04-27 2001-08-07 Eveready Battery Company, Inc. Electrochemical cell having low profile seal assembly with anti-resealing vent
US6887614B2 (en) * 2001-07-30 2005-05-03 The Gillette Company End cap assembly for an electrochemical cell
US6887618B2 (en) * 2002-08-09 2005-05-03 The Gillette Company Electrochemical cell with flat casing and vent
US6833215B2 (en) * 2003-01-03 2004-12-21 The Gillette Company Alkaline cell with flat housing
US6986969B2 (en) * 2003-01-03 2006-01-17 The Gillette Company Alkaline cell with flat housing and improved current collector
US6991872B2 (en) * 2003-03-26 2006-01-31 The Gillette Company End cap seal assembly for an electrochemical cell
US7579105B2 (en) * 2005-02-18 2009-08-25 The Gillette Company End cap assembly and vent for high power cells
US20080085450A1 (en) * 2006-10-05 2008-04-10 Depalma Christopher L End cap seal assembly for an electrochemical cell
US20080102366A1 (en) * 2006-10-31 2008-05-01 Anglin David L End cap seal for an electrochemical cell
US20080102365A1 (en) * 2006-10-31 2008-05-01 Yoppolo Robert A End cap seal assembly for an electrochemical cell
US20080166626A1 (en) * 2007-01-05 2008-07-10 Yoppolo Robert A End cap seal assembly for an electrochemical cell
US20080220316A1 (en) * 2007-03-06 2008-09-11 Berkowitz Fred J End cap seal assembly for a lithium cell
US20090226805A1 (en) * 2008-03-07 2009-09-10 Robert Yoppolo Battery
US9028986B2 (en) 2009-01-07 2015-05-12 A123 Systems Llc Fuse for battery cells
US8257848B2 (en) * 2009-01-12 2012-09-04 A123 Systems, Inc. Safety venting mechanism with tearing tooth structure for batteries
EP2507891B1 (en) 2009-12-04 2018-03-28 A123 Systems LLC Battery with integrated power management system and scalable battery cutoff component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL86959C (en) * 1951-02-27
BE625069A (en) * 1961-12-15

Also Published As

Publication number Publication date
JPS4116893B1 (en) 1966-09-26
FR1464170A (en) 1966-12-30
BE672661A (en) 1966-03-16
BR6574930D0 (en) 1973-09-11
DK111330B (en) 1968-07-29
AT263877B (en) 1968-08-12
US3314824A (en) 1967-04-18
CH439424A (en) 1967-07-15
DE1496304A1 (en) 1969-01-30
DE1496304B2 (en) 1971-03-18
GB1127737A (en) 1968-09-18

Similar Documents

Publication Publication Date Title
NO118929B (en)
US5538636A (en) Process for chemically oxidizing highly concentrated waste waters
US3943044A (en) Method for treating sewage water
US2997430A (en) Method of purifying sewage-water
US3975247A (en) Treating sewage and recovering usable water and solids
NO176436B (en) Procedure for sewage treatment
US4115219A (en) Brine purification process
CN113200615A (en) Method and system for electrochemically reducing hardness of wastewater
AU732808B2 (en) Treatment of water
CN108191003A (en) A kind of electrolytic processing method of containing sulfate radicals waste water
NO152648B (en) PROCEDURE FOR THE REMOVAL OF METALLIC PURPOSES FROM CLOCK Sludge
US3035992A (en) Process for cleaning waste water such as sewage water
CN117401860B (en) Fracturing flow-back fluid treatment equipment and treatment method
CN113754187A (en) Advanced treatment and recycling process for wastewater of iron and steel enterprises
AU2011208597A2 (en) Method and apparatus for cleaning water electrochemically
Föyn Removal of sewage nutrients by electrolytic treatment: With 6 figures and 5 tables in the text
CN210736227U (en) Potassium hydroxide production system
RU2219761C1 (en) System for preparation of water and delivery of fertilizer into soil at drop irrigation
US1392524A (en) Process for the purifying and clarifying of water
NO154010B (en) PROCEDURE FOR AA REMOVAL MERCURY OIL FROM SOURCE INDUSTRIAL WASTE WATER.
GB825629A (en) Method of purifying sewage water
US4749456A (en) Electrolytic recovery of copper from waste water
RU2305071C2 (en) Electrochemical method and the device of the continuous operation used for the water purification
JP2007330919A (en) Sewage treatment facility
CN210313908U (en) Waste water treatment device for processing phthalocyanine blue pigment