NO118845B - - Google Patents
Download PDFInfo
- Publication number
- NO118845B NO118845B NO167101A NO16710167A NO118845B NO 118845 B NO118845 B NO 118845B NO 167101 A NO167101 A NO 167101A NO 16710167 A NO16710167 A NO 16710167A NO 118845 B NO118845 B NO 118845B
- Authority
- NO
- Norway
- Prior art keywords
- elements
- extracted
- metals
- granite
- rock
- Prior art date
Links
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 14
- 239000011435 rock Substances 0.000 claims description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- 235000010755 mineral Nutrition 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 8
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- 239000011573 trace mineral Substances 0.000 claims description 6
- 235000013619 trace mineral Nutrition 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 3
- 239000002738 chelating agent Substances 0.000 claims description 2
- 239000010438 granite Substances 0.000 description 8
- 238000000605 extraction Methods 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241001637516 Polygonia c-album Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/16—Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
- C22B3/1608—Leaching with acyclic or carbocyclic agents
- C22B3/1658—Leaching with acyclic or carbocyclic agents of different types in admixture, e.g. with organic acids added to oximes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/16—Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
- C22B3/1683—Leaching with organo-metallic compounds
- C22B3/1691—Leaching with a mixture of organic agents wherein at least one agent is an organo-metallic compound
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Extraction Or Liquid Replacement (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
Fremgangsmåte ved utvinning av elementer fra malte bergarter eller fattige mineraler. Procedure for extracting elements from ground rocks or poor minerals.
Foreliggende oppfinnelse angår en fremgangsmåte ved utvin- The present invention relates to a method by extracting
ning av elementer, spesielt metaller, som inneholdes i meget små ning of elements, especially metals, which are contained in very small
mengder i plutoniske, vulkanske, sedimentære og metamorfe bergar- quantities in plutonic, volcanic, sedimentary and metamorphic rocks
ter eller i fattige mineraler, ved hvilken fremgangsmåte elementene utvinnes under anvendelse av ichelatdannende midler. ter or in poor minerals, by which method the elements are extracted using chelate-forming agents.
Fenomenet chelatdannelse er i seg selv kjent. En chelatfor-bindelse oppstår ved forening av et metall M med et materiale som inneholder to eller flere elektronavgivende grupper. Det erholdes derved en spesiell type interne komplekser av cyklisk struktur. The phenomenon of chelation is known in itself. A chelate bond occurs when a metal M is united with a material containing two or more electron-donating groups. A special type of internal complexes of cyclic structure is thereby obtained.
Slike cykliske komplekser eller chelatkomplekser oppviser bemerkel-sesverdig stabilitet og har vært utnyttet tidligere ved utvinning av metaller fra mineraler. Such cyclic complexes or chelate complexes exhibit remarkable stability and have been used in the past in the extraction of metals from minerals.
Ved hjelp av oppfinnelsen tilveiebringes der nu en fremgangsmåte ved utvinning av elementer fra malte bergarter eller mineraler under anvendelse av en kombinasjon av to chelatdannende midler, hvilken fremgangsmåte utmerker seg ved at sporelementer, spesielt metaller mobiliseres og ekstraheres ved anvendelse av en kombinasjon av sitronsyre og oxalsyre. With the help of the invention, a method is now provided for the extraction of elements from ground rocks or minerals using a combination of two chelating agents, which method is characterized by the fact that trace elements, especially metals, are mobilized and extracted using a combination of citric acid and oxalic acid .
Det foretrekkes å anvende en 0,1 M opplosning av de to syrer. It is preferred to use a 0.1 M solution of the two acids.
Det er ikke nodvendig å underkaste bergarten eller mineral-et noen forbehandling i tillegg til malingen, for utvinningen fore-taes, og fremgangsmåten kan utfores ved omgivelsenes temperatur eller ved moderat forhoyet temperatur. It is not necessary to subject the rock or mineral to any pre-treatment in addition to the painting, for the extraction to take place, and the procedure can be carried out at ambient temperature or at a moderately elevated temperature.
Ved den kombinerte virkning av de to syrer dannes der vann-opploselige og meget stabile komplekser som inneholder sporelementene, og denne kompleksdanneIse og utvinning av sporelementene fin-ner sted uten at bergartens eller mineralets grunnstruktur nedbry-tes. Dette skyldes at sporelementene oppviser hoy geokjemisk mo-bilitet ved at de er bundet bare meget svakt til grunnstrukturen uten å utgjore noen egentlig del av bergartens eller mineralets krysta llstruktur. By the combined action of the two acids, water-soluble and very stable complexes containing the trace elements are formed, and this complex formation and extraction of the trace elements takes place without the basic structure of the rock or mineral being broken down. This is because the trace elements exhibit high geochemical mobility in that they are bound only very weakly to the basic structure without making up any actual part of the rock or mineral's crystal structure.
Fremgangsmåten er spesielt interessant hva plutoniske gra-nitter angår, fordi disse utgjor meget store potensielle reserver av uran, kobber, bly, sink,tinn, molybden, vanadium, kobolt, lan-tanider osv. Fremgamgsmåten er nyttig ved utvinning av metaller som inneholdes i gangart fra gruvedrift eller i materialer som er bragt for dagen i forbindelse med konstruksjon av demninger, utgraving av tuneller og kanaler osv., eller som inneholdes i storre mineralfo-rekomster som er for fattige til å kunne behandles efter kjente me-toder. Metallene som dnskes utvunnet, kan inneholdes i bergarten i så små mengder som noen få gamma pr. gram bergart. The method is particularly interesting as far as plutonic granites are concerned, because these constitute very large potential reserves of uranium, copper, lead, zinc, tin, molybdenum, vanadium, cobalt, lanthanides, etc. The method is useful in the extraction of metals contained in gait from mining or in materials that have been brought to light in connection with the construction of dams, excavation of tunnels and canals, etc., or that are contained in larger mineral deposits that are too poor to be processed according to known methods. The metals that are supposedly extracted can be contained in the rock in amounts as small as a few gammas per grams of rock.
I de nedenstående eksempler beskrives noen spesifikke ut-for e lsesf ormer av fremgangsmåten ifolge oppfinnelsen. In the examples below, some specific embodiments of the method according to the invention are described.
Eksempel 1 Example 1
I en rotasjonskolbe av polystyren ble det anbragt 50 g gra-nitt av kornstorrelse O,1 - 0,3 ™m«Det ble tilsatt 25 ml 1/10 M oxalsyre og 25 ml l/lO sitronsyre, og kolben med innhold ble dreiet med en hastighet av 80 omdreininger pr. minutt ved romtemperatur i 4 timer. For å oke turbulensen ved omroringen ble det benyttet en automatisk innretning som med visse mellomrom snudde kolbens dreieretning. Denne reversering av dreieretningen forhindret dess-uten at partiklene festet seg til kolbens vegger. Efter fullfort rotasjon ble blandingen dekantert, hvorefter det meste av væsken ble skilt fra granitten ved filtrering. 50 g of granite with a grain size of 0.1 - 0.3 ™m was placed in a polystyrene rotary flask. 25 ml of 1/10 M oxalic acid and 25 ml of 1/10 citric acid were added, and the flask containing the contents was rotated with a speed of 80 revolutions per minute at room temperature for 4 hours. In order to increase the turbulence during the stirring, an automatic device was used which at certain intervals reversed the direction of rotation of the flask. This reversal of the direction of rotation also prevented the particles from sticking to the walls of the flask. After complete rotation, the mixture was decanted, after which most of the liquid was separated from the granite by filtration.
Operasjonen ble gjentatt tre ganger, hver gang med samme volum reagens, nemlig 50 ml. På denne måte ble den behandlede prove bragt i kontakt med 200 ml reagens, som efter dekantering ble sentrifugert ved 60OO omdreininger pr. minutt inntil det ble erholdt en klar væske, som inneholdt praktisk talt alle granittens metaller. The operation was repeated three times, each time with the same volume of reagent, namely 50 ml. In this way, the treated sample was brought into contact with 200 ml of reagent, which, after decanting, was centrifuged at 6000 revolutions per minute. minute until a clear liquid was obtained, which contained practically all the metals of the granite.
Resultatene som ble oppnådd med tre granittprover av for-skjellig opprinnelse, er gitt i den nedenstående tabell I. Tabel-len viser de prosentvise ekstraherte mengder av granittens sporelementer ved anvendelse på den ene side av l/lO N HNO^og på den annen side av l/lO M sitronsyre/oxalsyre-blandingen. The results obtained with three granite samples of different origin are given in Table I below. The table shows the percentage extracted amounts of the granite's trace elements using on the one hand 1/10 N HNO^ and on the other of the l/lO M citric acid/oxalic acid mixture.
Dersom man beregner den prosentvise utvinning (U % av et gitt element som funksjon av innholdet^/g i ekstraktresiduet og i bergarten efter ligningen: finnes det at den prosentvise utvinning er betydelig, som vist i den nedenstående tabell n, som for bly, krom, nikkel, tinn og kobber gir de opprinnelige innhold i l<f>/g og den tilsvarende prosentvise utvinning U. If one calculates the percentage recovery (U % of a given element as a function of the content^/g in the extract residue and in the rock according to the equation: it is found that the percentage recovery is significant, as shown in the following table n, as for lead, chromium, nickel, tin and copper give the original content in l<f>/g and the corresponding percentage recovery U.
En sammeligning av vektmengdene av de organiske residuer A comparison of the weight amounts of the organic residues
og de residuer som fåes ved utvasking med salpetersyre, viser at for én og samme prove, av samme kornstbrrelse, fåes hver gang storre vektmengder residuum ved anvendelse av kombinasjonen av sitronsyre og oxalsyre. Innholdet i så godt som samtlige av de organiske ekstrakter er hoyere enn innholdet i residuene erholdt ved anvendelse av salpetersyre. and the residues obtained by leaching with nitric acid show that for one and the same sample, of the same grain size, larger amounts of residue by weight are obtained each time when the combination of citric acid and oxalic acid is used. The content in almost all of the organic extracts is higher than the content in the residues obtained by using nitric acid.
Eksempel 2 Example 2
I dette forsok ble alle faktorer som kunne forårsake tur-bulens eliminert, slik at ingen endring av de behandlede materi-ales kornstbrrelse kunne finne sted. In this experiment, all factors that could cause turbulence were eliminated, so that no change in the grain size of the treated materials could take place.
200 ml reagens ble med en hastighet av 0,1 ml/sekund ledet gjennom en soyle av 9 g granittpartikler av partikkelstorrelse 0,24 mm som hvilte på en nylonduk av tykkelse 0,1 mm. Granitt-soylens temperatur ble holdt konstant på 35°C Hver tredje uke ble lOO ml av væsken fjernet og derefter sentrifugert, hvorefter residuet ble tbrret, kalsinert ved 1000°C og analysert ved spek-trografering. Ved forsoket, som strakte seg over 30 uker, ble det 200 ml of reagent was passed at a rate of 0.1 ml/second through a bed of 9 g of granite particles of particle size 0.24 mm resting on a nylon cloth of thickness 0.1 mm. The temperature of the granite soil was kept constant at 35°C. Every three weeks, 100 ml of the liquid was removed and then centrifuged, after which the residue was filtered, calcined at 1000°C and analyzed by spectrography. During the trial, which spanned 30 weeks, it was
i sammenligningsoyemed benyttet fire reagenser, nemlig en mettet opplbsning av Fe^SO^)^i 1 N H2SO^, en mettet opplosning av NaHCO^som ble holdt under en strom av CO , en N/lO opplosning av HNO_ og sluttelig en M/10 opplosning av sitronsyre/oxalsyre. for comparison four reagents were used, namely a saturated solution of Fe^SO^)^in 1 N H2SO^, a saturated solution of NaHCO^ which was held under a current of CO, a N/lO solution of HNO_ and finally a M/ 10 solution of citric acid/oxalic acid.
Den erholdte mengde residuum avtok efterhvert efter å ha The amount of residue obtained gradually decreased after having
nådd et maksimum og nærmet seg en asymptote. reached a maximum and approached an asymptote.
Denne metode ga resultater som stemte overens med de resultater som ble oppnådd ved den i eksempel 1 beskrevne akseller-erte ekstraksjon, hvor reaksjonskolben ble underkastet rotasjon. This method gave results that agreed with the results obtained by the accelerated extraction described in example 1, where the reaction flask was subjected to rotation.
Den nye fremgangsmåte har vist at de fleste metaller som The new method has shown that most metals which
er tilstede i bergarten, er meget mobile og således lett ekstraheres med svake reagenser, og at visse elementer, såsom jern, alu-minium og silicium, nesten alltid finnes i ekstraksjonsresiduet. Disse hovedelementer ekstraheres delvis som folge av blandevirk-ningen, idet omroringen nødvendigvis forårsaker dispergering av meget fine partikler i kolloidal tilstand, men spesielt som folge av utvaskingen av mikrosprekkene. are present in the rock, are very mobile and thus easily extracted with weak reagents, and that certain elements, such as iron, aluminum and silicon, are almost always found in the extraction residue. These main elements are partly extracted as a result of the mixing effect, as the stirring necessarily causes the dispersion of very fine particles in a colloidal state, but especially as a result of the washing out of the microcracks.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR52445A FR1477661A (en) | 1966-03-08 | 1966-03-08 | New process for extracting metals from very low grade rocks or ores |
Publications (1)
Publication Number | Publication Date |
---|---|
NO118845B true NO118845B (en) | 1970-02-23 |
Family
ID=8603158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO167101A NO118845B (en) | 1966-03-08 | 1967-03-03 |
Country Status (9)
Country | Link |
---|---|
BE (1) | BE694476A (en) |
CH (1) | CH481221A (en) |
DE (1) | DE1558396B1 (en) |
ES (1) | ES338475A1 (en) |
FR (1) | FR1477661A (en) |
GB (1) | GB1183612A (en) |
NL (1) | NL6702767A (en) |
NO (1) | NO118845B (en) |
SE (1) | SE331366B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3735002A (en) * | 1971-10-27 | 1973-05-22 | M Poston | Bone decalcification composition |
DE3327338A1 (en) * | 1983-07-29 | 1985-02-07 | Licencia Találmányokat Ertékesítö Vállalat, Budapest | Method for leaching metal oxides from sialite and allite rocks, minerals, silicate-containing industrial by-products or waste products |
DE3716646A1 (en) * | 1987-05-18 | 1988-12-08 | Eugen Dipl Chem Dr Phil Dumont | REMOVAL OF METALS FROM EARTH, DUST AND SLUDGE |
DE4218863C2 (en) * | 1992-06-09 | 1994-05-19 | Farshad Dr Dehnad | Method and device for the treatment of substances contaminated with heavy metals |
AUPN564495A0 (en) * | 1995-09-27 | 1995-10-19 | Commonwealth Scientific And Industrial Research Organisation | Recovery of vanadium |
WO1998008585A1 (en) * | 1996-08-26 | 1998-03-05 | Geochem Technologies, Inc. | Leaching of metal chalcogenide (sulfide-type) minerals with oxidizing and chelating agents |
-
1966
- 1966-03-08 FR FR52445A patent/FR1477661A/en not_active Expired
-
1967
- 1967-02-10 CH CH197667A patent/CH481221A/en not_active IP Right Cessation
- 1967-02-14 DE DE19671558396 patent/DE1558396B1/en active Pending
- 1967-02-22 BE BE694476D patent/BE694476A/xx unknown
- 1967-02-23 NL NL6702767A patent/NL6702767A/xx unknown
- 1967-03-03 NO NO167101A patent/NO118845B/no unknown
- 1967-03-08 SE SE03221/67A patent/SE331366B/xx unknown
- 1967-03-08 ES ES338475A patent/ES338475A1/en not_active Expired
- 1967-03-08 GB GB8897/67A patent/GB1183612A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
ES338475A1 (en) | 1968-04-01 |
CH481221A (en) | 1969-11-15 |
NL6702767A (en) | 1967-09-11 |
DE1558396B1 (en) | 1971-11-04 |
GB1183612A (en) | 1970-03-11 |
SE331366B (en) | 1970-12-21 |
FR1477661A (en) | 1967-04-21 |
BE694476A (en) | 1967-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nesbitt et al. | Chemical processes affecting alkalis and alkaline earths during continental weathering | |
Kilinc et al. | Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars | |
Presley et al. | Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia—II. Trace element distribution in interstitial water and sediment | |
Ku | An evaluation of the U234/U238 method as a tool for dating pelagic sediments | |
Mumin et al. | Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti gold belt, Ghana: Remobilization of “invisible” gold | |
Cauwet | Influence of sedimentological features on the distribution of trace metals in marine sediments | |
Sawka et al. | A weathering-related origin of widespread monazite in S-type granites | |
Valdés et al. | Distribution and temporal variation of trace metal enrichment in surface sediments of San Jorge Bay, Chile | |
US3511645A (en) | Processes for extracting metals from rocks or ores | |
CN105181783B (en) | Platinum-palladium metallographic analysis method in dolomite and quartzite type platinum group ore deposit | |
Kamenov et al. | Sources of lead in the San Cristobal, Pulacayo, and Potosi mining districts, Bolivia, and a reevaluation of regional ore lead isotope provinces | |
Chmielewski et al. | Possibility of uranium and rare metal recovery in the Polish copper mining industry | |
Yang et al. | Selective crustal contamination and decoupling of lithophile and chalcophile element isotopes in sulfide-bearing mafic intrusions: an example from the Jingbulake intrusion, Xinjiang, NW China | |
Benedict et al. | Kinetics and thermodynamics of dissolved rare earth uptake by alluvial materials from the Nevada Test site, southern Nevada, USA | |
NO118845B (en) | ||
Kajiwara et al. | Experimental study of sulfur isotope fractionation between coexistent sulfide minerals | |
Rye et al. | Carbon, hydrogen, oxygen, and sulfur isotope study of the Darwin lead-silver-zinc deposit, southern California | |
Halter et al. | Origin and evolution of the greisenizing fluid at the East Kemptville tin deposit, Nova Scotia, Canada | |
Vincent et al. | Genesis and age of Pb− Zn mineralization from the Ningi-Burra ring complex, North Central Nigeria: Constraints from zircon morphology, U− Pb dating and Lu− Hf isotopes | |
Kunzendorf et al. | The distribution of rare earth elements in manganese micronodules and sediments from the equatorial and southwest Pacific | |
US3387928A (en) | Recovery of tellurium and/or selenium from aqueous solutions | |
RU2425363C1 (en) | Procedure for determination of quantitative contents of valuable metals in rock and piles of metal mining production | |
Canney et al. | Cold acid extraction of copper from soils and sediments; a proposed field method | |
Plater et al. | The application of uranium series disequilibrium concepts to sediment yield determination | |
Amer et al. | Geometallurgy and processing of North Ras Mohamed poly-mineralized ore materials, South Sinai, Egypt |