NO117536B - - Google Patents

Download PDF

Info

Publication number
NO117536B
NO117536B NO168247A NO16824767A NO117536B NO 117536 B NO117536 B NO 117536B NO 168247 A NO168247 A NO 168247A NO 16824767 A NO16824767 A NO 16824767A NO 117536 B NO117536 B NO 117536B
Authority
NO
Norway
Prior art keywords
carbon
shell
ferrochrome
glow
roasted
Prior art date
Application number
NO168247A
Other languages
Norwegian (no)
Inventor
J Backhurst
F Goodbridge
M Fleischmann
R Plimley
Original Assignee
Nat Res Dev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Res Dev filed Critical Nat Res Dev
Publication of NO117536B publication Critical patent/NO117536B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/40Cells or assemblies of cells comprising electrodes made of particles; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/16Construction of testing vessels; Electrodes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Fremgangsmåte for reduksjon av kullvannstoff innhol det i ferrolegeringer. Method for reducing coal hydrogen content in ferroalloys.

Foreliggende oppfinnelse vedrører en The present invention relates to a

fremgangsmåte for fremstilling av kullstoffattig ferrokrom fra kullstoffrikt ferrokrom i en vakuumovn og hvor kullstoffet method for producing low-carbon ferrochrome from high-carbon ferrochrome in a vacuum furnace and where the carbon

i det kullstoffrike ferrokrom oksyderes i det in the carbon-rich ferrochrome is oxidized in it

vesentlige uten smeltning ved hjelp av et substantial without melting by means of a

fast oksydasjonsmiddel, omfattende et solid oxidizing agent, comprising a

jernoksyd. iron oxide.

Et vesentlig formål for oppfinnelsen er An essential object of the invention is

å tilveiebringe en fremgangsmåte av nevnte art, hvor jernoksydet som anvendes for to provide a method of the aforementioned kind, where the iron oxide used for

oksydasjon av kullstoffet i det kullstoffrike ferrokrom, behandles på en særlig oxidation of the carbon in the carbon-rich ferrochrome is treated in a special way

måte, slik at det er i høy grad effektivt way, so that it is highly effective

for utførelsen av oksydasjonsprosessen. for carrying out the oxidation process.

Et annet formål er ved hjelp av den Another purpose is by using it

nevnte fremgangsmåte å fremstille ut fra said method to produce from

ferrokrom med et bestemt høyt kullstoffinnhold et ferrokrom med et lavt kullstoffinnhold, som oppviser et krom-til-jern-forhold, som er så høyt som mulig. ferrochrome with a certain high carbon content a ferrochrome with a low carbon content, which exhibits a chromium-to-iron ratio that is as high as possible.

Et annet formål er å tilveiebringe en Another purpose is to provide a

forbedret fremgangsmåte av den her an-gitte art, hvor kullstoffoksydasjonsreak-sjonen skrider frem med stor hastighet til improved method of the kind indicated here, where the carbon oxidation reaction progresses at great speed to

i alt vesentlig fullendelse. in all essential perfection.

Foreliggende oppfinnelse tilveiebringer The present invention provides

en fremgangsmåte for reduksjon av kullstoffinnholdet i ferrolegeringer, som inneholder betydelige mengder kullstoff av den a method for reducing the carbon content of ferroalloys, which contain significant amounts of carbon thereof

art hvor glødeskall i findelt form blandes species in which ember shells in finely divided form are mixed

intimt med ferrolegeringen, hvoretter denne blanding opphetes under lavt subatmosfærisk trykk i en tid og ved en temperatur intimately with the ferroalloy, after which this mixture is heated under low subatmospheric pressure for a time and at a temperature

som er tilstrekkelig til å bevirke reaksjonen which is sufficient to effect the reaction

mellom kullstoffet i ferrolegeringen og between the carbon in the ferroalloy and

glødeskallet, slik at det dannes et oksyd the glow shell, so that an oxide is formed

av kullstoffet og metallisk jern, og oksydet av kullstoffet fjernes kontinuerlig fra de reagerende stoffer, og det karakteristiske ved foreliggende fremgangsmåte er at glødeskallet før blandingen med ferrolegeringen røstes under oksyderende forhold ved en temperatur mellom 900° og 1050° C i en tid som er tilstrekkelig til fullstendig å oksydere glødeskallet til Fe^Os og til å brenne bort oljeaktige og lignende brennbare stoffer som glødeskallet inneholder. of the carbon material and metallic iron, and the oxide of the carbon material is continuously removed from the reacting substances, and the characteristic of the present method is that, before mixing with the ferroalloy, the glow plug is roasted under oxidizing conditions at a temperature between 900° and 1050° C for a time that is sufficient to completely oxidize the glow shell to Fe^Os and to burn away oily and similar combustible substances which the glow shell contains.

De vanlige jernoksyder er FeO, Fe.sO-i og: Fe2Os, hvor forholdet mellom surstoff og jern er 1:1, resp. 1— y3 : 1 og iy2 : 1. Glødeskall har omtrentlig den sammensetning som fremgår av formlen Fes04 og vanligvis antar man at det har denne for-mel. Glødeskall er skall eller flak, som dannes når stålbarrer føres gjennom et valseverk. Det er tilgjengelig i store mengder til en rimelig pris. Slik som glødeskal-let fåes, er det vanligvis forurenset med olje, fett og lignende stoffer og med partikler eller stykker av metallisk stål. Det inneholder også kullstoff som stammer fra stålet. The usual iron oxides are FeO, Fe.sO-i and: Fe2Os, where the ratio between oxygen and iron is 1:1, resp. 1— y3 : 1 and iy2 : 1. Incandescence has approximately the composition shown by the formula Fes04 and it is usually assumed that it has this formula. Glow scales are shells or flakes, which form when steel ingots are passed through a rolling mill. It is available in large quantities at a reasonable price. As the glow plug is obtained, it is usually contaminated with oil, grease and similar substances and with particles or pieces of metallic steel. It also contains carbon that originates from the steel.

Røstning av glødeskallet i en oksyderende atmosfære brenner bort oljen og fet-tet og lignende brennbare stoffer, som glødeskall er forurenset med når det mottas fra valseverket. Røsteprosessen oksy-derer også en del av kullstoffet i gløde-skallet, og dette kullstoff stammer fra stålbarrene. Oljen og lignende og kullstoffet danner gassformete forbrennings-produkter, som føres bort med forbren-ningsgassene fra røsteapparatet. Da disse materialer har en reduserende karakter, vil fjernelsen av dem fra glødeskallet øke glødeskallets oksyderende kraft. Roasting the glow plug in an oxidizing atmosphere burns away the oil and grease and similar combustible substances, with which the glow plug is contaminated when it is received from the rolling mill. The roasting process also oxidizes part of the carbon in the annealing shell, and this carbon originates from the steel ingots. The oil and the like and the charcoal form gaseous combustion products, which are carried away with the combustion gases from the roasting apparatus. As these materials have a reducing character, their removal from the glow plug will increase the glow plug's oxidizing power.

Røsteprosessen vil videre oksydere en del eller en vesentlig del av FeO og FesCi, hvorved den oksyderende kraft av det røstede glødeskall økes ytterligere. The roasting process will further oxidize a part or a significant part of FeO and FesCi, whereby the oxidizing power of the roasted glow plug is further increased.

Den oksyderende kraft av glødeskallet økes enn videre ytterligere ved røsteproses-sen ved delvis eller fullstendig oksydasjon av jernmetallpartiklene, som inneholdes i glødeskallet, som fåes fra valseverket. The oxidizing power of the glow shell is further increased during the roasting process by partial or complete oxidation of the iron metal particles, which are contained in the glow shell, which are obtained from the rolling mill.

Om ønskes kan glødeskallet, slik som det mottas fra valseverket, befries for metalliske partikler før røstningen ved å fra-skille metallet fra oksydet under anven-delse av en tyngdekraftprosess eller ved flotasjonskonsentrering. Det er imidlertid å foretrekke å findele glødeskallet, f. eks. ved hjelp av en kulemølle, valsemølle eller en hammermølle, og deretter siktes det findelte materiale. Findelingstrinnet danner små plater av de metalliske partikler og reduserer oksydinnholdet i glødeskallet til en finere tilstand enn de små metall-plater. Siktning gjennom en sikt med en passende siktåpning, vil bevirke at de større metalliske plater skilles fra de mindre j ernoksydpartikler. If desired, the annealed shell, as received from the rolling mill, can be freed of metallic particles before roasting by separating the metal from the oxide using a gravity process or by flotation concentration. However, it is preferable to finely divide the glow shell, e.g. using a ball mill, roller mill or a hammer mill, and then the finely divided material is sieved. The fining step forms small plates of the metallic particles and reduces the oxide content in the glow plug to a finer state than the small metal plates. Sieving through a sieve with a suitable sieve opening will cause the larger metallic plates to be separated from the smaller iron oxide particles.

Det er imidlertid ønskelig først å røste glødeskallet slik som det mottas fra valseverket, og deretter å skille den gjenvæ-rende metalliske fraksjon fra jernoksyd-fraksjonen. Røsteprosessen vil, slik som nærmere omtalt i det følgende, i det min-ste oksydere delvis metallpartiklene i glødeskallet, hvorved det røstede produkts oksyderende kraft økes. Ennvidere bevir-ker røstningen at metallet lettere kan fin-deles, hvorved malingen og siktningen eller andre prosesser for å skille metallet fra oksydet lettes. However, it is desirable to first roast the glow plug as it is received from the rolling mill, and then to separate the remaining metallic fraction from the iron oxide fraction. The roasting process will, as described in more detail below, at least partially oxidize the metal particles in the glow shell, whereby the oxidizing power of the roasted product is increased. Furthermore, the roasting causes the metal to be more easily divided, whereby grinding and sieving or other processes to separate the metal from the oxide are facilitated.

Uten hensyn til hvor vidt metallfrak-sjonen er fjernet fra glødeskallet før eller etter den oksyderende røstning, så er den resulterende oksydfraksjon forbedret som et oksydasjonsmiddel ved fremgangsmåten ifølge oppfinnelsen på grunn av at de jernholdige metallpartikler er fjernet, idet disse er indifferente som oksydasjonsmid-ler, og hvis de var til stede, ville de for-tynne det resulterende kullstoffattige ferrokrom. Regardless of the extent to which the metal fraction is removed from the glow plug before or after the oxidizing roasting, the resulting oxide fraction is improved as an oxidizing agent by the method according to the invention due to the fact that the iron-containing metal particles have been removed, as these are indifferent as oxidizing agents , and if present, would dilute the resulting carbonaceous ferrochrome.

Glødeskall som anvendes ved fremgangsmåten ifølge oppfinnelsen, røstes i en roterende ovn, en Herreshoff røsteovn eller i en annen vanlig røsteapparatur. Det anvendte temperaturområde er fra 900° C til 1050° C, ved hvilket der ikke finner sted kuledannelse eller sintring. Glow shells used in the method according to the invention are roasted in a rotary kiln, a Herreshoff roasting oven or in another common roasting apparatus. The temperature range used is from 900° C to 1050° C, at which no balling or sintering takes place.

Glødeskall som røstes i henhold til oppfinnelsen, og som enten er fri for eller som inneholder jernmetallpartikler, er et effektivt oksydasjonsmiddel for kullstoffet i kullstoffrikt ferrokrom i fast tilstand ved en vakuumovnsprosess for fremstilling av kullstoffaktig ferrokrom. Incandescence that is roasted according to the invention, and which is either free of or contains iron metal particles, is an effective oxidizing agent for the carbon in carbon-rich ferrochrome in the solid state in a vacuum furnace process for the production of carbonaceous ferrochrome.

Kullstoffrikt ferrokrom eller en jern-legering, som vanligvis inneholder fra 50 pst. til 80 pst. krom, fra 4 pst. til 10 pst. kullstoff, mens resten i alt vesentliig be-står av jern, bortsett fra tilfeldige foru-rensninger, omfattende fra 2 pst. til 5 pst. silisium og mindre prosentmengder av aluminium, magnesium, kalsium og lignende. Kullstoff er i det vesentlige til stede som karbider av krom og jern, men noe av kullstoffet kan være til stede i oppløsning i det kullstoffrike ferrokrom. Carbon-rich ferrochrome or an iron alloy, usually containing from 50 per cent to 80 per cent chromium, from 4 per cent to 10 per cent carbon, the remainder essentially consisting of iron, apart from incidental impurities, including from 2% to 5% silicon and smaller percentages of aluminium, magnesium, calcium and the like. Carbon is essentially present as carbides of chromium and iron, but some of the carbon may be present in solution in the carbon-rich ferrochrome.

Kullstoffattig ferrokrom kan inne-holde opp til 1 pst. til 2 pst. kullstoff, men de mest ønskede sorter inneholder kullstoff i en mengde under 0,1 pst. og kan oppvise så lite som 0,01 pst. eller mindre. Forøvrig er kullstoffattig ferrokrom av lignende sammensetning som kullstoffrikt ferrokrom. Low-carbon ferrochrome can contain up to 1 percent to 2 percent carbon, but the most desirable grades contain carbon in an amount below 0.1 percent and can show as little as 0.01 percent or less. Otherwise, low-carbon ferrochrome has a similar composition to high-carbon ferrochrome.

Ved vakuumovnsprosessen for fremstilling av kullstoffattig ferrokrom fra kullstoffrikt ferrokrom blandes omhygge-lig findelt kullstoffrikt ferrokrom og findelt fast oksydasjonsmiddel og blandingen briketteres vanligvis. Brikettene bringes til å reagere i fast tilstand, dvs. uten smeltning i en vakuumovn ved subatmosfærisk trykk, idet der anvendes trykk så lave som 100 mikron eller mindre, og ved temperatu-rer varierende mellom 1000° og 1350° C under kontinuerlig utsugning av atmosfæren. Det faste oksydasjonsmiddel reagerer med kullstoffet i ferrokrom, så at der dannes et kulloksyd, særlig CO og metallisk jern i overensstemmelse med følgende ligninger: In the vacuum furnace process for the production of carbon-rich ferrochrome from carbon-rich ferrochrome, finely divided carbon-rich ferrochrome and finely divided solid oxidizing agent are carefully mixed and the mixture is usually briquetted. The briquettes are brought to react in a solid state, i.e. without melting in a vacuum furnace at subatmospheric pressure, using pressures as low as 100 microns or less, and at temperatures varying between 1000° and 1350° C under continuous extraction of the atmosphere . The solid oxidizing agent reacts with the carbon in ferrochrome, so that a carbon oxide is formed, in particular CO and metallic iron in accordance with the following equations:

For fremstilling av kullstoffattig ferrokrom er mengden av røstede glødeskall, som det er nødvendig å anvende med en bestemt mengde av kullstoffrikt ferrokrom, for en vesentlig del avhengig av kullstoffinnholdet i ferrokromet. Da der imidlertid er tilstede andre stoffer, som f. eks. silisium, aluminium og lignende i det kullstoffrike ferrokrom, og hvilke stoffer oksyderes før eller samtidig med kullstoffet av det røstede glødeskall, er det hensikts-mesig å bestemme eksperimentelt i liten målestokk det forhold mellom det kullstoffrike ferrokrom og glødeskall som kreves for bestemte utgangsmaterialer. Når der kreves et meget lavt kullstoffinnhold i produk-tet som fåes ved prosessen, er det ønskelig å anvende et svakt overskudd av røstede glødeskall utover den teoretiske mengde som kreves for å oksydere alt kullstoffet og ledsagende oksyderbare komponenter i det kullstoffrike ferrokrom. For the production of carbon-poor ferrochrome, the quantity of roasted ingot shells, which it is necessary to use with a certain amount of carbon-rich ferrochrome, is largely dependent on the carbon content of the ferrochrome. However, when other substances are present, such as e.g. silicon, aluminum and the like in the carbon-rich ferrochrome, and which substances are oxidized before or at the same time as the carbon of the roasted ingot shell, it is appropriate to determine experimentally on a small scale the ratio between the carbon-rich ferrochrome and ingot shell that is required for certain starting materials. When a very low carbon content is required in the product obtained by the process, it is desirable to use a slight excess of roasted ingot shells beyond the theoretical amount required to oxidize all the carbon and accompanying oxidizable components in the carbon-rich ferrochrome.

Det er klart at fremgangsmåten ifølge oppfinnelsen kan anvendes også bare for å redusere kullstoffinnholdet i ferrokromet. F. eks. kan kullstoffinnholdet i 7,5 pst.s kullstoffholdig ferrokrom reduseres til 3,0 pst., så at man får et ferrokrom med middels kullstoffinnhold, ved at der anvendes en tilsvarende mengde av røstede glødeskall. Eller også kan et middels kullstoffrikt ferrokrom med 3,0 pst. C over-føres til et kullstoffattig ferrokrom med 0,01 pst. C. It is clear that the method according to the invention can also be used simply to reduce the carbon content in the ferrochrome. For example the carbon content in 7.5 per cent carbon ferrochrome can be reduced to 3.0 per cent, so that a ferrochrome with a medium carbon content is obtained, by using a corresponding amount of roasted ingot shells. Alternatively, a medium carbon-rich ferrochrome with 3.0% C can be transferred to a low-carbon ferrochrome with 0.01% C.

Fremgangsmåten ifølge oppfinnelsen skal beskrives nærmere under henvisning til det følgende utførelseseksempel. The method according to the invention shall be described in more detail with reference to the following design example.

Eksempel. Example.

Glødeskall, slik som det mottas fra valseverket, røstes i en roterende ovn med en varmesonetemperatur av 1100° C. Ovnens atmosfære holdes oksyderende ved at der i ovnen rundt brenneren og i nærheten av ovnens utløpsende innføres store volum-mengder luft. Glødeskallets oppholdstid i ovnen er ca. tre timer. Slag, as it is received from the rolling mill, is roasted in a rotary kiln with a heating zone temperature of 1100° C. The kiln's atmosphere is kept oxidizing by introducing large volumes of air into the kiln around the burner and near the kiln's outlet end. The glow shell's residence time in the oven is approx. three hours.

Det røstede glødeskall avkjøles og ma-les i en kulemølle i en time. Det malte, røstede glødeskall luftklassifiseres til et sluttprodukt av 85 pst.—200 mesh (0,074 mm åpninger i sikten). Dette betyr at 85 pst. av materialet passerer gjennom en 200 maskers sikt. The roasted ember shell is cooled and ground in a ball mill for one hour. The ground, roasted slag is air-classified to a final product of 85 percent—200 mesh (0.074 mm openings in the sieve). This means that 85 per cent of the material passes through a 200 mesh sieve.

Det røstede, malte og luftklassifiserte glødeskall oppviste følgende sikteanalyse: The roasted, ground and air-classified glow plug showed the following sieve analysis:

og inneholder ifølge analyse 69,7 pst. Fe. and, according to analysis, contains 69.7 percent Fe.

Det anvendte kullstoffrike ferrokrom oppviste følgende sikteanalyse: og den gir følgende kjemiske analyse: The carbon-rich ferrochrome used showed the following sieve analysis: and it gives the following chemical analysis:

En 80 mesh sikt betyr at størrelsen av hver åpning i sikten er 0,177 mm. En 200 mesh sikt betyr at størrelsen av hver åpning i sikten er 0,074 mm. An 80 mesh sieve means that the size of each opening in the sieve is 0.177 mm. A 200 mesh sieve means that the size of each opening in the sieve is 0.074 mm.

En blanding av disse stoffer og andre i de mengder som er anført i det følgende, briketteres i en Komarek-Greaves presse, så at der dannes briketter av en størrelse som en damefinger: A mixture of these substances and others in the amounts listed below is briquetted in a Komarek-Greaves press, so that briquettes are formed the size of a lady's finger:

De friske briketter lufttørkes ved rom-temperatur i 24 timer og opphetes deretter i en luftstrøm ved en temperatur av 500° C i 12 timer for å avdrive restfuktighet og lettflyktige bindemiddelkomponenter og for å behandle brikettene. De forbehandlete eller omdannede briketter veier omtrent 5400 kg og innføres i en vakuumovn og utsettes i denne for en opphetning og vakuumbehandling i overensstemmelse med følgende arbeidsskjema: The fresh briquettes are air-dried at room temperature for 24 hours and then heated in an air stream at a temperature of 500° C for 12 hours to remove residual moisture and volatile binder components and to treat the briquettes. The pre-treated or converted briquettes weigh approximately 5,400 kg and are introduced into a vacuum furnace and subjected to heating and vacuum treatment in accordance with the following work schedule:

Etter avslutningen av vakuum-varme-behandlingen veiet residuet fra ovnen 4500 After the end of the vacuum-heat treatment, the residue from the furnace weighed 4,500

kg. Brikettene som ble ført ut fra ovnen er kg. The briquettes that were taken out of the furnace are

av samme form som de friske briketter som of the same shape as the fresh briquettes which

ble ført inn i ovnen, men har en noe redu-sert størrelse. Det kullstoff-fattige ferrokrom som fremstilles på denne måten, har was taken into the oven, but has a somewhat reduced size. The carbon-poor ferrochrome produced in this way has

følgende partielle kjemiske analyse: the following partial chemical analysis:

Cr 49,5 % Cr 49.5%

Fe 45,0 % Fairy 45.0%

C 0,05 % C 0.05%

Foreliggende oppfinnelse er også an-vendbar for reduksjon av kullstoffinnholdet i andre ferrolegeringer, som f. eks. fer-romangan, ferrovanadium, ferromolybden, ferrowolfram og lignende under anven-delse av røstede glødeskall som oksydasjonsmiddel i en vakuumovn ved en pro-sess i fast tilstand. Videre kan ternære The present invention is also applicable for reducing the carbon content in other ferroalloys, such as e.g. ferro-manganese, ferrovanadium, ferro-molybdenum, ferro-tungsten and the like using roasted ingot shells as oxidizing agent in a vacuum furnace in a solid-state process. Furthermore, ternary can

eller høyere ferrolegeringer behandles i or higher ferroalloys are processed in

overensstemmelse med oppfinnelsen. conformity with the invention.

Claims (2)

1. Fremgangsmåte for reduksjon av kullstoffinnholdet i ferrolegeringer som1. Method for reducing the carbon content in ferroalloys which inneholder betydelige mengder kullstoff, hvor glødeskall i findelt form blandes intimt med ferrolegeringen, og denne blanding opphetes under lavt subatmosfærisk trykk i en tid og ved en temperatur som er tilstrekkelig til å bevirke reaksjonen mellom kullstoffet i ferrolegeringen og glødeskallet, slik at det dannes et oksyd av kullstoffet og metallisk jern, og oksydet av kullstoffet fjernes kontinuerlig fra de reagerende stoffer, karakterisert ved at gløde-skallet før blandingen med ferrolegeringen røstes under oksyderende forhold ved en temperatur mellom 900° og 1050° C i en tid som er tilstrekkelig til fullstendig å oksydere glødeskallet til FeaOa og til å brenne bort oljeaktige og lignende brennbare stoffer som glødeskallet inneholder..contains significant amounts of carbon, where the slag in finely divided form is intimately mixed with the ferroalloy, and this mixture is heated under low subatmospheric pressure for a time and at a temperature sufficient to effect the reaction between the carbon in the ferroalloy and the slag, so that an oxide is formed of the carbon material and metallic iron, and the oxide of the carbon material is continuously removed from the reacting substances, characterized in that the annealing shell is roasted under oxidizing conditions at a temperature between 900° and 1050° C for a time sufficient to completely oxidize the glow shell to FeaOa and to burn away oily and similar flammable substances that the glow shell contains.. 2. Fremgangsmåte som angitt i på-stand 1, karakterisert ved at det findelte, røstete glødeskall utsettes for luftklassifi-sering for å skille metalliske bestanddeler fra ikke-metalliske oksydiske bestanddeler før blandingen med ferrolegeringen.2. Method as stated in claim 1, characterized in that the finely divided, roasted ingot shell is subjected to air classification in order to separate metallic constituents from non-metallic oxidizing constituents before mixing with the ferroalloy.
NO168247A 1966-05-24 1967-05-22 NO117536B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB23070/66A GB1194181A (en) 1966-05-24 1966-05-24 Improvements relating to Electrode Arrangements for Electrochemical Cells.

Publications (1)

Publication Number Publication Date
NO117536B true NO117536B (en) 1969-08-25

Family

ID=10189641

Family Applications (1)

Application Number Title Priority Date Filing Date
NO168247A NO117536B (en) 1966-05-24 1967-05-22

Country Status (7)

Country Link
CH (1) CH473609A (en)
DE (1) DE1671463C3 (en)
FR (1) FR1562782A (en)
GB (1) GB1194181A (en)
NL (1) NL156449C (en)
NO (1) NO117536B (en)
SE (1) SE396095B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663298A (en) * 1970-03-03 1972-05-16 North American Rockwell Rotatable electrode structure with conductive particle bed
JPS5128938B1 (en) * 1970-11-26 1976-08-23
US3853735A (en) * 1971-09-30 1974-12-10 Nalco Chemical Co Electrolytic apparatus for preparation of organometallic compounds
JPS5816953B2 (en) * 1972-10-19 1983-04-04 ダ−ト インダストリ−ズ インコ−ポレイテツド Electrolysis method to remove wastewater pollutants
IE39814B1 (en) * 1973-08-03 1979-01-03 Parel Sa Electrochemical process and apparatus
CA1001986A (en) * 1973-08-13 1976-12-21 Nanabhai R. Bharucha Fluidized-bed electrode system
US4035278A (en) * 1974-05-17 1977-07-12 Cjb Developments Limited Electrolytic cells
US3956086A (en) * 1974-05-17 1976-05-11 Cjb Development Limited Electrolytic cells
GB1497542A (en) * 1974-05-30 1978-01-12 Parel Sa Electrochemical apparatus
GB1497543A (en) * 1974-11-13 1978-01-12 Parel Sa Flow of electrolyte through electrolytic cells
IT1114820B (en) * 1977-06-30 1986-01-27 Oronzio De Nora Impianti ELECTROLYTIC MONOPOLAR MEMBRANE CELL
US4278521A (en) 1978-05-30 1981-07-14 Dechema Electrochemical cell
JPS55145185A (en) * 1979-04-26 1980-11-12 Nanao Kogyo Kk Reaction apparats for electrolysis
CA1172602A (en) * 1982-09-29 1984-08-14 John J. Byerley Discrete particulate bipolar reactor
AU568388B2 (en) * 1983-08-10 1987-12-24 National Research Development Corp. Purifying a mixed cation electrolyte
GB8508726D0 (en) * 1985-04-03 1985-05-09 Goodridge F Purifying mixed-cation electrolyte
FI922485A (en) * 1992-05-29 1993-11-30 Seppo Tapio Ylaesaari ELEKTROKEMISKT FOERFARANDE OCH ANORDNING FOER AVLAEGSNANDE AV SYRE UR VATTEN ELLER VATTENLOESNINGAR
DE19929579A1 (en) * 1999-06-29 2001-01-04 Sgl Technik Gmbh Method and device for adjusting pH · + · values and redox potentials of liquids by means of electrolysis
US20080220278A1 (en) * 2007-03-09 2008-09-11 Robert Brian Dopp High rate electrochemical device
CN102400185B (en) * 2011-12-19 2014-02-19 江西瑞林装备有限公司 Electrolytic plate conductive bar extraction device
WO2020264112A1 (en) 2019-06-25 2020-12-30 California Institute Of Technology Reactive electrochemical membrane for wastewater treatment

Also Published As

Publication number Publication date
CH473609A (en) 1969-06-15
DE1671463A1 (en) 1971-08-19
FR1562782A (en) 1969-04-11
SE396095B (en) 1977-09-05
NL156449B (en) 1978-04-17
DE1671463B2 (en) 1974-05-16
GB1194181A (en) 1970-06-10
NL6707208A (en) 1967-11-27
NL156449C (en) 1980-04-15
DE1671463C3 (en) 1975-01-02

Similar Documents

Publication Publication Date Title
NO117536B (en)
US4906290A (en) Microwave irradiation of composites
US2411073A (en) Making products of iron or iron alloys
US1717160A (en) Reduction of complex ores
US3847601A (en) Reduced pellets for making alloys containing nickel and chromium
DE2306475C3 (en) Process for the enrichment of nickel-containing oxidic ores
JPS61221339A (en) Flash refining method
US3144329A (en) Method for producing rolled steel products
CN115404339B (en) Method for developing and utilizing oolitic high-phosphorus iron ore
DE2422619A1 (en) METHOD OF DISPOSAL OF FINELY DISTRIBUTED WASTE
NO116916B (en)
US2833645A (en) Reduction of chromium oxides
US2939784A (en) Process for elimination of sulfur from metals
EP3003605A1 (en) Iron and molybdenum containing compacts
US4445932A (en) Method of recovering ferronickel from oxidated nickel ores
US2802730A (en) Process for the reduction of carbon content of ferroalloys
US2767080A (en) Process for reducing oxidic ores
US2488926A (en)
US2994601A (en) Nickel recovery from ore
RU2826667C1 (en) Obtaining oxides of active metals and concentrates from complex and difficult-to-process iron-containing ores by selective reduction of elements
US1518626A (en) Treatment of copper-lead matte
US2829041A (en) Method for reducing the carbon content of carbon-containing ferrochromium
RU2086676C1 (en) Method of manufacturing briquets from metallurgic raw material
Nokhrina et al. Direct alloying of steel with nickel concentrate
JPH0791617B2 (en) Method for producing vanadium-containing aggregate and vanadium-containing alloy steel