NO115261B - - Google Patents

Download PDF

Info

Publication number
NO115261B
NO115261B NO153730A NO15373064A NO115261B NO 115261 B NO115261 B NO 115261B NO 153730 A NO153730 A NO 153730A NO 15373064 A NO15373064 A NO 15373064A NO 115261 B NO115261 B NO 115261B
Authority
NO
Norway
Prior art keywords
carbon dioxide
metal
welding
weld
opening
Prior art date
Application number
NO153730A
Other languages
Norwegian (no)
Inventor
J Shepherd
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of NO115261B publication Critical patent/NO115261B/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Arc Welding In General (AREA)

Description

Fremgangsmåte ved forening av metaller. Procedure for joining metals.

Oppfinnelsen vedrører forening av metaller ved srneltning av metall hvormed det i hele den foreliggende beskrivelse me-nes at et metall bringes i smeltet tilstand under foreningsprosessen. En av vanskelig-forenes ved en metallsmeltemetode, spe-hetene som opptrer når metallplater skal sielt smeltesveising ved gass eller elek-trisk lysbue, er at varme sprer seg fra sveisen gjennom materialene som skal forenes. Denne vanskelighet er særlig alvor-lig når det gjelder sveising av en tynn plate til et materiale av større tverrsnitt, og ved sammensveising av to tynne plater. Den nevnte spredning av varme inn i den tynne plate bevirker en betydelig deforme-ring og forvridning nær ved sveisen. I den senere tid er det blitt gjort forsøk på å hindre denne varmespredning ved å holde et område av den tynne plate nær der hvor sveisen skal utføres, i berøring med en stor blokk av et metall som er en god var-meleder, f. eks. kobber. Denne fremgangsmåte til å hindre spredning av varme fra sveisen er ofte vanskelig å anvende når platen som skal forenes er flat, og det er nesten umulig å benytte den når plater som er buet i mer enn ett plat skal forenes med hinannen. Det er et formål med den foreliggende oppfinnelse å unngå eller å nedsette disse vanskeligheter. The invention relates to the union of metals by smelting of metal, by which throughout the present description it is meant that a metal is brought into a molten state during the union process. One of the difficult-to-unite by a metal fusion method, the peculiarities that occur when metal sheets are to be fusion welded by gas or electric arc, is that heat spreads from the weld through the materials to be joined. This difficulty is particularly serious when it comes to welding a thin plate to a material of larger cross-section, and when welding two thin plates together. The aforementioned spread of heat into the thin plate causes significant deformation and distortion close to the weld. In recent times, attempts have been made to prevent this heat spread by keeping an area of the thin plate close to where the weld is to be performed, in contact with a large block of a metal that is a good heat conductor, e.g. . copper. This method of preventing the spread of heat from the weld is often difficult to use when the plate to be joined is flat, and it is almost impossible to use it when plates that are curved in more than one plate are to be joined to each other. It is an object of the present invention to avoid or reduce these difficulties.

Når det gjelder anvendelsen av flytende luft for kjøling av arbeidsstykket og en inert gass for å beskytte sveisestedet, skal det påpekes at det ikke er hensiktsmessig å kombinere disse to metoder, da flytende luft ikke er hensiktsmessig som kjølemiddel ved høye temperaturer på grunn av dets oksyderende innvirkning på metallet, og det er ikke mulig effektivt å anvende en inert gass som beskyttelse ved et sådant kjølemiddel. Regarding the use of liquid air to cool the workpiece and an inert gas to protect the welding point, it should be pointed out that it is not appropriate to combine these two methods, as liquid air is not suitable as a coolant at high temperatures due to its oxidizing impact on the metal, and it is not possible to effectively use an inert gas as protection with such a coolant.

Oppfinnelsen vedrører derfor en fremgangsmåte til forening av metaller ved en metallsveiseprosess, og fremgangsmåten er karakterisert ved at det området av metallet som befinner seg nær ved det som smeltes avkjøles ved at fast kulldioksyd avsettes på metallet, derved at det mot metallet rettes en åpning, til hvilken det til-føres flytende kulldioksyd. The invention therefore relates to a method for uniting metals by a metal welding process, and the method is characterized by the fact that the area of the metal which is close to what is being melted is cooled by solid carbon dioxide being deposited on the metal, whereby an opening is directed towards the metal, to to which liquid carbon dioxide is added.

Det oppnås enmeget effektiv avkjøling ved å injisere kulldioksyd i flytende form i naboområdet av sveiestedet, og fremgangsmåten er også en meget ren fremgangsmåte for utførelse av metallsveising. Når kulldioksydet kommer ut fra åpningen stivner det, og det faste kulldioksyd avsettes høyaktig på det sted hvor det er nødvendig, og den latente sublimasjons-varme i kulldioksydet tilveiebringer avkjø-lingseffekten, og det dannes ikke noen væske som renner ut over arbeidsstykket, og materialet fjernes fra arbeidsstykkets overflate uten tilsøling. En ytterligere for-del ved framgangsmåten ifølge oppfinnelsen ligger deri at kulldioksydene danner en inert atmosfære over sveisestedet med følgende reduksjon i metallets oksydering. Very effective cooling is achieved by injecting carbon dioxide in liquid form in the vicinity of the welding site, and the method is also a very clean method for performing metal welding. When the carbon dioxide comes out of the opening it solidifies, and the solid carbon dioxide is deposited like hay in the place where it is needed, and the latent heat of sublimation in the carbon dioxide provides the cooling effect, and no liquid is formed which flows out over the workpiece, and the material removed from the surface of the workpiece without contamination. A further advantage of the method according to the invention lies in the fact that the carbon dioxides form an inert atmosphere above the welding point with the following reduction in the oxidation of the metal.

Strømmen av kulldioksyd kan leveres fra en eller flere åpninger, f. eks. munn-stykker eller kapillarrør med en innvendig diameter av opptil ca. 0,075 mm som hensiktsmessig kan bæres av sveiseutstyret. I stedet for enkle stråler eller kapillarrør kan det benyttes en åpning som er for-met som åpningen i en gassbrenner av «svalehaletypen». Den således tilførte strøm av kulldioksyd danner en avkjølt barriere mellom sveisen og resten av materialet som sveises. Hvis det er to tynne plater av materiale som skal sveises sam-men kan strømmer av kulldioksyd tilføres på begge sider av sveisen. Ennvidere kan strømmene av kulldioksyd ledes mot den samme side av materialet som sveises som den hvor selve sveisen befinner seg eller mot den motsatte siden. I visse tilfeller kan det være fordelaktig å lede kulldioksydet mot begge sider av materialet. Ved sveising for hånden kan kulldioksyd-tilførselen en-ten være fast til sveiseutstyret, eller den kan være montert særskilt, men ved auto-matisk sveising hlir kulldioksydtilførselen fortrinnsvis festet til sveiseutstyret i de tilfeller hvor dette skal beveges, mens materialet som sveises forblir i ro. The flow of carbon dioxide can be delivered from one or more openings, e.g. nozzles or capillary tubes with an internal diameter of up to approx. 0.075 mm which can be suitably carried by the welding equipment. Instead of simple jets or capillary tubes, an opening can be used which is shaped like the opening in a gas burner of the "dovetail" type. The thus supplied stream of carbon dioxide forms a cooled barrier between the weld and the rest of the material being welded. If there are two thin sheets of material to be welded together, streams of carbon dioxide can be supplied on both sides of the weld. Furthermore, the streams of carbon dioxide can be directed towards the same side of the material being welded as the one where the weld itself is located or towards the opposite side. In certain cases, it can be advantageous to direct the carbon dioxide towards both sides of the material. When welding by hand, the carbon dioxide supply can either be fixed to the welding equipment, or it can be mounted separately, but in automatic welding, the carbon dioxide supply is preferably attached to the welding equipment in cases where it is to be moved, while the material being welded remains at rest .

Kulldioksydet som ledes til åpningen kan avkjøles isobart under sin passering fra tilførselsreservoaret til avleveringsste-det, hvorved en større del av kulldioksydet som trer ut fra åpningen vil være i flytende og fast form. Slik avkjøling er særlig viktig i sveiseverksteder hvor omgi-velsestemperaturen er høy, da kulldioksydet har en kritisk temperatur av bare 31° C, og derfor ikke kan eksistere i flytende form ved høyere temperatur enn denne. The carbon dioxide that is led to the opening can be cooled isobarically during its passage from the supply reservoir to the delivery point, whereby a larger part of the carbon dioxide that emerges from the opening will be in liquid and solid form. Such cooling is particularly important in welding workshops where the ambient temperature is high, as the carbon dioxide has a critical temperature of only 31° C, and therefore cannot exist in liquid form at a higher temperature than this.

Kulldioksydet kan tilføres fra en stor lagertank eller fra en eller flere transpor-terbare sylindre. I det sistnevnte tilfelle kan sylinderne hensiktsmessig være an-bragt på en vogn som har et arrangement slik at tomme sylindere kan utbyttes med fulle uten å forstyrre kontinuiteten av til-førselen. Vognen kan også hensiktsmessig bære en kjøleinnretning for avkjøling av kulldioksydet på ovenfor beskreven måte. The carbon dioxide can be supplied from a large storage tank or from one or more transportable cylinders. In the latter case, the cylinders can conveniently be placed on a carriage which has an arrangement so that empty cylinders can be exchanged for full ones without disturbing the continuity of the supply. The wagon can also suitably carry a cooling device for cooling the carbon dioxide in the manner described above.

På tegningen viser fig. 1 en sveisebrenner A som skaffer en sveis B mellom en tynn metallplate C og en stav D. Et kapillarrør E som leverer strømmen av kulldioksyd avkjøler platen C langs sveisen, og nedsetter derved spredningen av varme inn i platen. In the drawing, fig. 1 a welding torch A which produces a weld B between a thin metal plate C and a rod D. A capillary tube E which supplies the flow of carbon dioxide cools the plate C along the weld, thereby reducing the spread of heat into the plate.

Fig. 2 viser en sveisebrenner F som skaffer en sveis C mellom to tynne plater av metall H, J. Kapillarrør K, og K, leder strømmen av kulldioksyd mot begge sider av sveisen og nedsetter derved varme-spredningen. Fig. 2 shows a welding torch F which creates a weld C between two thin plates of metal H, J. Capillary tubes K, and K, direct the flow of carbon dioxide towards both sides of the weld and thereby reduce the heat spread.

Claims (2)

1. Fremgangsmåte til forening av metaller ved en metallsveiseprosess, karakterisert ved at det område av metallet som befinner seg nær ved det som smeltes avkjøles ved at fast kulldioksyd avsettes på metallet derved at det mot metallet rettes en åpning til hvilken det tilføres flytende kulldioksyd.1. Method for joining metals in a metal welding process, characterized in that the area of the metal which is located close to that which is being melted is cooled by solid carbon dioxide being deposited on the metal whereby an opening is directed towards the metal to which liquid carbon dioxide is supplied. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at kulldioksydet tilføres fra et eller flere kapillarrør.2. Method according to claim 1, characterized in that the carbon dioxide is supplied from one or more capillary tubes.
NO153730A 1963-07-01 1964-06-19 NO115261B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US291876A US3289424A (en) 1963-07-01 1963-07-01 Cryosurgical fluid control system

Publications (1)

Publication Number Publication Date
NO115261B true NO115261B (en) 1968-09-09

Family

ID=23122236

Family Applications (1)

Application Number Title Priority Date Filing Date
NO153730A NO115261B (en) 1963-07-01 1964-06-19

Country Status (3)

Country Link
US (1) US3289424A (en)
AT (1) AT258458B (en)
NO (1) NO115261B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE678971A (en) * 1965-04-13 1966-09-16
US3393679A (en) * 1965-12-27 1968-07-23 Frigitronics Of Conn Inc Cryosurgical instrument
GB1103079A (en) * 1966-02-17 1968-02-14 Internat Res And Dev Company L Improvements in and relating to surgical probes
US3423955A (en) * 1966-06-08 1969-01-28 Andonian Associates Inc Flexible cold finger for cooling samples to cryogenic temperatures
US3386256A (en) * 1966-08-24 1968-06-04 Isotopes Inc Flexible heat-conducting mount
US3413821A (en) * 1967-02-23 1968-12-03 Air Prod & Chem Cryogenic refrigeration for crystal x-ray diffraction studies
US3418822A (en) * 1967-06-27 1968-12-31 Firewel Company Inc Apparatus for transporting a stream of cryogenic liquified gas
US3507283A (en) * 1967-10-11 1970-04-21 Univ Northwestern Cryosurgical instrument
US3512531A (en) * 1968-01-11 1970-05-19 Frigitronics Of Conn Inc Method and apparatus for cryosurgery
US3696813A (en) * 1971-10-06 1972-10-10 Cryomedics Cryosurgical instrument
US4236518A (en) * 1978-04-14 1980-12-02 Gyne-Tech Instrument Corporation Cryogenic device selectively operable in a continuous freezing mode, a continuous thawing mode or a combination thereof
IT1200592B (en) * 1985-02-22 1989-01-27 Erba Strumentazione Adjusting gas chromatograph sample trap cooling temp.
ZA917281B (en) * 1990-09-26 1992-08-26 Cryomedical Sciences Inc Cryosurgical instrument and system and method of cryosurgery
US6014864A (en) * 1998-03-16 2000-01-18 Life Science Holdings, Inc. Cryogenic fluid heat exchanger method and apparatus
US7713266B2 (en) 2005-05-20 2010-05-11 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US7850683B2 (en) 2005-05-20 2010-12-14 Myoscience, Inc. Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat)
US9254162B2 (en) 2006-12-21 2016-02-09 Myoscience, Inc. Dermal and transdermal cryogenic microprobe systems
US8409185B2 (en) 2007-02-16 2013-04-02 Myoscience, Inc. Replaceable and/or easily removable needle systems for dermal and transdermal cryogenic remodeling
US8298216B2 (en) 2007-11-14 2012-10-30 Myoscience, Inc. Pain management using cryogenic remodeling
JP5642087B2 (en) 2008-12-22 2014-12-17 ミオサイエンス インコーポレーティッド Integrated cryosurgery system with refrigerant and power supply
CA2861116A1 (en) 2012-01-13 2013-07-18 Myoscience, Inc. Cryogenic probe filtration system
US9241753B2 (en) 2012-01-13 2016-01-26 Myoscience, Inc. Skin protection for subdermal cryogenic remodeling for cosmetic and other treatments
EP2802279B1 (en) 2012-01-13 2017-08-16 Myoscience, Inc. Cryogenic needle with freeze zone regulation
US9017318B2 (en) 2012-01-20 2015-04-28 Myoscience, Inc. Cryogenic probe system and method
CN105208954B (en) 2013-03-15 2019-06-04 肌肉科技股份有限公司 Low temperature Blunt dissection method and apparatus
US9295512B2 (en) 2013-03-15 2016-03-29 Myoscience, Inc. Methods and devices for pain management
WO2014146122A1 (en) 2013-03-15 2014-09-18 Myoscience, Inc. Methods and systems for treatment of occipital neuralgia
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
WO2015069792A1 (en) 2013-11-05 2015-05-14 Myoscience, Inc. Secure cryosurgical treatment system
US11311327B2 (en) 2016-05-13 2022-04-26 Pacira Cryotech, Inc. Methods and systems for locating and treating nerves with cold therapy
US11134998B2 (en) 2017-11-15 2021-10-05 Pacira Cryotech, Inc. Integrated cold therapy and electrical stimulation systems for locating and treating nerves and associated methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1780267A (en) * 1928-08-20 1930-11-04 Adam P Young Apparatus and method for chilling meats
US2958204A (en) * 1956-08-13 1960-11-01 Aro Equipment Corp Liquid oxygen converter
US2943459A (en) * 1958-04-07 1960-07-05 Fairchild Engine & Airplane Air conditioning system
US2943454A (en) * 1958-06-30 1960-07-05 Mine Safety Appliances Co Liquid oxygen converter

Also Published As

Publication number Publication date
AT258458B (en) 1967-11-27
US3289424A (en) 1966-12-06

Similar Documents

Publication Publication Date Title
NO115261B (en)
US2862294A (en) Joining of metals
US2824948A (en) Method of electric arc-welding
US5393948A (en) Open faced trailing welding shield
CN201471099U (en) Welding protective cover for titanium pipeline of argon-shielded tungsten arc welding gun
US3022415A (en) Gun and process for semi-automatic arc welding
JP2017159307A (en) Welding method using special torch
US2959666A (en) Arc welding
US2496347A (en) Inert gas blanketed welding rod feed process
JP2003290950A (en) Laser welding method for high tension steel plate
US2909648A (en) Metallic vapor shielded electric arc welding
JPS6258828B2 (en)
US3309496A (en) Welding of titanium
AU6134000A (en) Process and unit for the mig welding of aluminium and its alloys
US11484962B2 (en) Welding torch
Mathers Welding of Titanium & Its Alloys
KR101212549B1 (en) Gas-cooled type electro gas welding device
US2674791A (en) Method of soldering aluminous metal parts by treating with bromide and iodide fluxes
JPS6037267A (en) Method and device for cutting metallic material by heat
JPH07100234B2 (en) Laser beam cutting method for alloy steel
Kapustka Arc welding capabilities at EWI
JP2743463B2 (en) Thin plate welding method and apparatus
CN208408852U (en) A kind of welder
GB1289833A (en)
US12023752B2 (en) Method of resistance spot welding and resistance spot welding apparatus