NL8801009A - Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur - Google Patents

Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur Download PDF

Info

Publication number
NL8801009A
NL8801009A NL8801009A NL8801009A NL8801009A NL 8801009 A NL8801009 A NL 8801009A NL 8801009 A NL8801009 A NL 8801009A NL 8801009 A NL8801009 A NL 8801009A NL 8801009 A NL8801009 A NL 8801009A
Authority
NL
Netherlands
Prior art keywords
oxygen
sulphide
sulfide
waste water
sulfur
Prior art date
Application number
NL8801009A
Other languages
Dutch (nl)
Original Assignee
Rijkslandbouwuniversiteit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rijkslandbouwuniversiteit filed Critical Rijkslandbouwuniversiteit
Priority to NL8801009A priority Critical patent/NL8801009A/en
Publication of NL8801009A publication Critical patent/NL8801009A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/06Preparation of sulfur; Purification from non-gaseous sulfides or materials containing such sulfides, e.g. ores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

In oxidative biological purification of waste water, by converting sulphide to S and sulphate by means of S-oxidising bacteria in presence of 02, the amt. of 02 used is less than that needed for complete oxidn. of sulphide to sulphate. Pref. the amt. of 02 used is 0.5-1.5 mols w.r.t. 1 mol of sulphide, and 02 consumption is controlled by regulating the 02 concn. in dependence on the sulphide concn. The hydraulic residence time is less than 20 mins. The reactor may contain support material, this may be a polyurethane foam, to immobilise th biomass.

Description

k ] N.0. 35056 /ank] N.0. 35056 / an

Werkwijze voor de verwijdering «"sulfide uit afvalwater.Method for the removal of sulfide from wastewater.

De uitvinding heeft betrekking op een werkwijze voor de oxydatieve biologische zuivering van afvalwater, waarin men sulfide met behulp van 5 zwavel oxyderende bacteriën in aanwezigheid van zuurstof omzet in zwavel en sulfaat.The invention relates to a method for the oxidative biological purification of waste water, in which sulfide is converted into sulfur and sulfate in the presence of oxygen using sulfur-oxidizing bacteria in the presence of oxygen.

De aanwezigheid van sulfide in afvalwater heeft vele nadelige gevolgen, zoals: - corrosie van rioolsystemen (zoals staal en beton); - stank (zogenaamde "rotte eier"geur); - zuurstofverbruik in het oppervlaktewater, waardoor zuurstofgebrek ontstaat; - hoog chemisch zuurstofverbruik gepaard gaande met hoge milieuheffingen.The presence of sulfide in wastewater has many adverse consequences, such as: - corrosion of sewer systems (such as steel and concrete); - bad smell (so-called "rotten egg" odor); - oxygen consumption in the surface water, causing oxygen deficiency; - high chemical oxygen demand accompanied by high environmental taxes.

]5 Het verwijderen van sulfide kan geschieden door: precipitatie met metaalionen, of oxydatie tot zwavel en/of sulfaat.Sulfide removal can be accomplished by: precipitation with metal ions, or oxidation to sulfur and / or sulfate.

Bij de oxydatiemethoden kan men onderscheid maken tussen direkte oxydatie (met bijvoorbeeld CI2, C102, H202 of O2) en biologi- 20 sche oxydatie (met bijvoorbeeld zuurstof).In the oxidation methods, a distinction can be made between direct oxidation (with, for example, Cl2, C102, H2O2 or O2) and biological oxidation (with, for example, oxygen).

De biologische oxydatie vindt tot dusver steeds plaats met een overmaat aan zuurstof, zodat het aanwezige sulfide volledig of zo goed als volledig wordt omgezet in sulfaat, terwijl tevens organische stoffen worden geoxydeerd. De verwijdering van sulfide volgens deze bekende me-25 thoden duurt in het algemeen 1-10 uur. Voorts heeft er onderzoek plaats gevonden naar de oxydatie door fototrofe bacteriën (met licht) en door denitrificerende bacteriën (met nitraat).So far, the biological oxidation always takes place with an excess of oxygen, so that the sulphide present is completely or almost completely converted into sulphate, while organic substances are also oxidized. Sulfide removal by these known methods generally takes 1-10 hours. Furthermore, research has been conducted into the oxidation by phototrophic bacteria (with light) and by denitrifying bacteria (with nitrate).

Bij de biologische oxydatie met zuurstof treden de volgende reak-ties op: 30 2HS~ + 02 -» 2S° + 20H“ 2S° + 302 + H20 -? 2SO42" + 2H+The following reactions occur during biological oxidation with oxygen: 30 2HS ~ + 02 - »2S ° + 20H“ 2S ° + 302 + H20 -? 2SO42 "+ 2H +

Gevonden is nu een werkwijze waarmee men langs biologische weg sulfide uit afvalwater grotendeels in de vorm van zwavel kan verwijderen.A method has now been found with which one can remove sulfide from waste water largely in the form of sulfur by biological means.

De werkwijze zoals in de aanhef vermeld, wordt volgens de uitvin-35 ding gekenmerkt doordat men minder zuurstof gebruikt dan voor de volledige oxydatie van sulfide tot sulfaat nodig is.The method as stated in the opening paragraph is characterized according to the invention in that less oxygen is used than is necessary for the complete oxidation of sulfide to sulfate.

Door toepassing van de werkwijze volgens de uitvinding wordt het sulfide hoofdzakelijk omgezet in zwavel. De zwavel kan vervolgens bijvoorbeeld door bezinking of filtratie uit het afvalwater worden verwij-40 derd en nuttig worden gebruikt.By using the method according to the invention, the sulfide is mainly converted into sulfur. The sulfur can then be removed from the waste water, for example, by settling or filtration, and used usefully.

.8801009 2.8801009 2

De samenstelling van de zwaveloxyderende biomassa wordt o.a. bepaald door de verhouding tussen zuurstofconcentratie en sulfidebelas-ting.The composition of the sulfur-oxidizing biomass is determined, inter alia, by the ratio between oxygen concentration and sulfide load.

De specifieke biomassa bestaat uit aerobe zwaveloxyderende bacte-5 riën uit de groep van kleurloze zwavelbacteriën (zoals van de geslachten Thiobacillus en Thiomicrospira).The specific biomass consists of aerobic sulfur-oxidizing bacteria from the group of colorless sulfur bacteria (such as from the genera Thiobacillus and Thiomicrospira).

Men gebruikt voor de biologische oxydatie per mol in het afvalwater aanwezig sulfide minder dan de 2 mol zuurstof die voor volledige omzetting in sulfaat nodig is. Bij voorkeur gebruikt men 0,5-1,5 mol zuur-10 stof.For the biological oxidation, per mole of sulfide present in the waste water, less than the 2 moles of oxygen required for complete conversion to sulfate are used. Preferably 0.5-1.5 mol of acid-10 is used.

Het zuurstofgebruik kan men regelen door de zuurstofconcentratie te sturen in afhankelijkheid van de sulfideconcentratie. De concentraties kunnen op bekende wijze worden gemeten en geregeld. Dit kan zowel in de reaktor als aan de uitgang van de reaktor plaats vinden. Een andere mo-15 gelijkheid is het regelen aan de hand van de redoxpotentiaal van het afvalwater in de reaktor en/of van de reaktoreffluent.Oxygen consumption can be controlled by controlling the oxygen concentration depending on the sulfide concentration. The concentrations can be measured and controlled in a known manner. This can take place both in the reactor and at the outlet of the reactor. Another possibility is to control on the basis of the redox potential of the waste water in the reactor and / or of the reactor effluent.

De hydraulische verblijftijd is bij voorkeur minder dan 20 minuten, dus aanzienlijk korter dan volgens de bekende biologische werkwijzen.The hydraulic residence time is preferably less than 20 minutes, thus considerably shorter than according to the known biological methods.

Het biologische proces volgens de uitvinding kan verlopen bij een 20 pH tussen 5,5 en 9,5, waarbij het optimum ligt tussen 8,0 en 8,8.The biological process according to the invention can proceed at a pH between 5.5 and 9.5, the optimum being between 8.0 and 8.8.

Het biedt voordeel om in de reaktor tevens een dragermateriaal aan te brengen zoals een polyurethaanschuim voor het immobiliseren van de biomassa.It is advantageous to also provide a carrier material in the reactor such as a polyurethane foam for immobilizing the biomass.

De werkwijze volgens de uitvinding kan bijvoorbeeld worden toege-25 past in aansluiting op een voorzuivering, zoals een anaerobe vergis-ting en voor het regeneren van wasvloeistof die wordt gebruikt bij de verwijdering van waterstofsulfide uit gassen.For example, the process of the invention may be used in connection with a pre-purification such as an anaerobic digestion and for regenerating wash liquor used in the removal of hydrogen sulfide from gases.

Anderzijds kan de verwijdering van sulfide worden gevolgd -door een nabehandeling ter verwijdering van andere verontreinigingen.On the other hand, the removal of sulfide can be followed by a post-treatment to remove other impurities.

30 Tabel A illustreert de werkwijze volgens de uitvinding. Uit de ta bel blijkt dat de omzettingssnelheid van sulfide met zwavelbacteriën en ondermaat zuurstof steeds hoger is dan 400 mg/l/h.Table A illustrates the method of the invention. The table shows that the conversion rate of sulfide with sulfur bacteria and oxygen deficiency is always higher than 400 mg / l / h.

_Tabel A_ systeem omzettingssnelheid efficiëntie 35 _(mg/l/h)_(%)_ biorotor (laboratorium) 416 99,5 opstroom-reaktor (laboratorium) 454 98 biorotor (HRT 7,5 min) 862 89 O) biorotor (HRT 13 min) 508 89 40 opstroom (HRT 16 min)__405_89_ HRT = hydraulische verblijftijd_Table A_ system conversion rate efficiency 35 _ (mg / l / h) _ (%) _ biorotor (laboratory) 416 99.5 upstream reactor (laboratory) 454 98 biorotor (HRT 7.5 min) 862 89 O) biorotor (HRT 13 min) 508 89 40 upflow (HRT 16 min) __ 405_89_ HRT = hydraulic residence time

. 880 f 00S. 880 f 00S

v 3 Λ (1) Sulfideconcentratie voor zuivering: 150 mg/1: na zuivering: 16 mg/1; van het omgezette sulfide is 90 % omgezet tot zwavel.v 3 Λ (1) Sulfide concentration before purification: 150 mg / 1: after purification: 16 mg / 1; 90% of the converted sulfide has been converted to sulfur.

Ter vergelijking geeft tabel B de snelheid van sulfideverwijdering 5 in andere systemen weer: _Tabel B_ systeem omzettingssnelheid _(mg/l/h)_For comparison, Table B shows the rate of sulfide removal 5 in other systems: _ Table B_ System conversion rate _ (mg / l / h) _

10 BIOLOGISCH10 ORGANIC

T. denitrificans; anaëroob (1) 73,6T. denitrificans; anaerobic (1) 73.6

Fotosynthetiserende bacteriën (2) 54 (met zwaveIproduktie)Photosynthesizing bacteria (2) 54 (with sulfur production)

Chlorobium thiosulfatophilum (3) 67 (met zwaveIproduktie)Chlorobium thiosulfatophilum (3) 67 (with sulfur production)

CHEMISCHCHEMICAL

15 Katalysator ΚΜηθ4 (1 mg Mn/1) (4) 11615 Catalyst ΚΜηθ4 (1 mg Mn / 1) (4) 116

Katalysator aktieve kool (53 mg/l) (5) 237Activated carbon catalyst (53 mg / l) (5) 237

Katalysator aktieve kool (530 mg/1) (5)_752_ (l) Sublette K.L., Sylvester N.D., Oxidation of hydrogen sulfide by 20 continuous cultures of Thiobaeillus denitrificans Biotechnol.Activated carbon catalyst (530 mg / l) (5) _752_ (l) Sublette K.L., Sylvester N.D., Oxidation of hydrogen sulfide by 20 continuous cultures of Thiobaeillus denitrificans Biotechnol.

Bioeng. 23_, 753-758 (1987)Bioeng. 23_, 753-758 (1987)

Sublette K.L., Sylvester N.D., Oxidation of hydrogen sulfide by Thiobaeillus denitrificans: desulfurization of natural gas Biotechnol. Bioeng. ^9, 249-257 (1987) 25 (2) Kobayashi H.A., Stenstrom M, Mah R.A., Use of photosynthetic bacte ria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water res.17(5) 597-587 (1983) (3) Cork D.J., Microbial conversion of sulphate to sulphur - an alternative to gypsum synthesis; from Advances in Biotechnological Pro- 30 cesses 4, biz. 183-209 (1985); Alan R. Liss, Inc.Sublette K.L., Sylvester N.D., Oxidation of hydrogen sulfide by Thiobaeillus denitrificans: desulfurization of natural gas Biotechnol. Bioeng. ^ 9, 249-257 (1987) 25 (2) Kobayashi H.A., Stenstrom M, Mah R.A., Use of photosynthetic bacte ria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water res. 17 (5) 597-587 (1983) (3) Cork D.J., Microbial conversion of sulfate to sulfur - an alternative to gypsum synthesis; from Advances in Biotechnological Processes 4, biz. 183-209 (1985); Alan R. Liss, Inc.

(4) Martin J.L., Rubin A.J., Removal of sulfides by catalytic oxygenation in alkaline media from: Proceedings of the 33th Ind. Waste Conference, Purdue University, 1987 biz. 814-822.(4) Martin J.L., Rubin A.J., Removal of sulfides by catalytic oxygenation in alkaline media from: Proceedings of the 33th Ind. Waste Conference, Purdue University, 1987 biz. 814-822.

(5) Lefers J.B., Koetsier W.T., Swaaij W.P., The oxidation of sulphide 35 in aqueous solutions, The chemical engineering journal, 15, 111-120 (1987).(5) Lefers J.B., Koetsier W.T., Swaaij W.P., The oxidation of sulphide 35 in aqueous solutions, The chemical engineering journal, 15, 111-120 (1987).

. 880 fOOfl. 880 fof

Claims (5)

1. Werkwijze voor de oxydatieve biologische zuivering van afvalwater, waarin men sulfide met behulp van zwavel oxyderende bacteriën in aanwezigheid van zuurstof omzet in zwavel en sulfaat, met het kenmerk, dat men minder zuurstof gebruikt dan voor de volledige oxydatie van sul- 5 fide tot sulfaat nodig is.Method for the oxidative biological purification of waste water, in which sulfide is converted into sulfur and sulfate in the presence of oxygen by means of sulfur-oxidizing bacteria, characterized in that less oxygen is used than for the complete oxidation of sulfide to sulfate is needed. 2. Werkwijze volgens conclusie 1, met het kenmerk, dat men per mol sulfide 0,5-1,5 mol zuurstof gebruikt.2. Process according to claim 1, characterized in that 0.5-1.5 mol oxygen is used per mol sulfide. 3. Werkwijze volgens conclusie 1 of 2, met het kenmerk, dat men het zuurstofgebruik regelt door regeling van de zuurstofconeentratie in 10 afhankelijkheid van de sulfideconcentratie.3. Process according to claim 1 or 2, characterized in that the oxygen consumption is controlled by controlling the oxygen concentration in dependence on the sulfide concentration. 4. Werkwijze volgens één der conclusies 1-3, met het kenmerk, dat de hydraulische verblijftijd korter is dan 20 minuten.A method according to any one of claims 1-3, characterized in that the hydraulic residence time is less than 20 minutes. 5. Werkwijze volgens één der conclusies 1-4, met het kenmerk, dat men gebruik maakt van een reactor waarin een dragermateriaal is 15 aangebracht. ****** .88010095. Process according to any one of claims 1-4, characterized in that use is made of a reactor in which a support material is arranged. ****** .8801009
NL8801009A 1988-04-19 1988-04-19 Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur NL8801009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL8801009A NL8801009A (en) 1988-04-19 1988-04-19 Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8801009 1988-04-19
NL8801009A NL8801009A (en) 1988-04-19 1988-04-19 Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur

Publications (1)

Publication Number Publication Date
NL8801009A true NL8801009A (en) 1989-11-16

Family

ID=19852156

Family Applications (1)

Application Number Title Priority Date Filing Date
NL8801009A NL8801009A (en) 1988-04-19 1988-04-19 Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur

Country Status (1)

Country Link
NL (1) NL8801009A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451922A1 (en) * 1990-04-12 1991-10-16 Paques B.V. Process for the removal of sulfur dioxide from waste gas
WO1992010270A1 (en) * 1990-12-04 1992-06-25 Paques B.V. Process for the removal of sulphur compounds from gases
WO1992017410A1 (en) * 1991-04-04 1992-10-15 Pâques B.V. Method for removing sulphur compounds from water
WO1997043033A1 (en) * 1996-05-10 1997-11-20 Paques Bio Systems B.V. Process for the purification of gases containing hydrogen sulphide
NL1006339C2 (en) * 1997-06-17 1998-12-21 Stork Eng & Contractors Bv Process for desulfurizing waste gases.
US6136193A (en) * 1996-09-09 2000-10-24 Haase; Richard Alan Process of biotreating wastewater from pulping industries
US7588627B2 (en) 2003-04-17 2009-09-15 Shell Oil Company Process for the removal of H2S and mercaptans from a gas stream
WO2010115871A1 (en) 2009-04-08 2010-10-14 Shell Internationale Research Maatschappij B.V. Method of treating an off-gas stream and an apparatus therefor
WO2021116303A1 (en) * 2019-12-13 2021-06-17 Paqell B.V A continuous process to treat a hydrogen sulphide comprising gas

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196176A (en) * 1990-04-12 1993-03-23 Paques, B.V. Process for the removal of sulfur dioxide from waste gas
EP0451922A1 (en) * 1990-04-12 1991-10-16 Paques B.V. Process for the removal of sulfur dioxide from waste gas
WO1992010270A1 (en) * 1990-12-04 1992-06-25 Paques B.V. Process for the removal of sulphur compounds from gases
US5354545A (en) * 1990-12-04 1994-10-11 Paques B.V. Process for the removal of sulphur compounds from gases
WO1992017410A1 (en) * 1991-04-04 1992-10-15 Pâques B.V. Method for removing sulphur compounds from water
US5474682A (en) * 1991-04-04 1995-12-12 Paques B.V. Method for removing sulphur compounds from water
US6156205A (en) * 1996-05-10 2000-12-05 Paques Bio Systems B.V. Process for the purification of gases containing hydrogen sulphide
WO1997043033A1 (en) * 1996-05-10 1997-11-20 Paques Bio Systems B.V. Process for the purification of gases containing hydrogen sulphide
CN1098117C (en) * 1996-05-10 2003-01-08 帕克斯生物系统公司 Purification of gases containing hydrogen sulphide
US6136193A (en) * 1996-09-09 2000-10-24 Haase; Richard Alan Process of biotreating wastewater from pulping industries
WO1998057731A1 (en) * 1997-06-17 1998-12-23 Stork Engineers & Contractors B.V. Method for desulfurizing off-gases
NL1006339C2 (en) * 1997-06-17 1998-12-21 Stork Eng & Contractors Bv Process for desulfurizing waste gases.
US7588627B2 (en) 2003-04-17 2009-09-15 Shell Oil Company Process for the removal of H2S and mercaptans from a gas stream
WO2010115871A1 (en) 2009-04-08 2010-10-14 Shell Internationale Research Maatschappij B.V. Method of treating an off-gas stream and an apparatus therefor
US8765451B2 (en) 2009-04-08 2014-07-01 Shell Oil Company Method of treating an off-gas stream and an apparatus therefor
WO2021116303A1 (en) * 2019-12-13 2021-06-17 Paqell B.V A continuous process to treat a hydrogen sulphide comprising gas
NL2024456B1 (en) * 2019-12-13 2021-09-01 Paqell B V A continuous process to treat a hydrogen sulphide comprising gas

Similar Documents

Publication Publication Date Title
KR100196556B1 (en) Process for the treatment of water containing sulphur compounds
EP0051888B1 (en) Process for the purification of waste water and/or waste water sludge
Vaiopoulou et al. Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification
Hulshoff et al. New developments in reactor and process technology for sulfate reduction
CN107250061B (en) Elemental sulfur internal circulation-SANI (ISC-SANI) process for biological wastewater treatment
Qin et al. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor
AU2008244181B2 (en) Method and equipment for processing waste water containing sulphides and ammonium
CN109052639B (en) Culture method of high-performance anaerobic sludge with synchronous denitrification and desulfurization
US4614588A (en) Method for sulfide toxicity reduction
CA2107689C (en) Method for removing sulphur compounds from water
CZ426598A3 (en) Sulfur reducing bacterium and its utilization in processes of biological desulfurization
Can-Dogan et al. Sulfide removal from industrial wastewaters by lithotrophic denitrification using nitrate as an electron acceptor
CN110342638B (en) Low-carbon-nitrogen-ratio sewage denitrification device and method based on double reflux and gradient oxygen limitation
US5196176A (en) Process for the removal of sulfur dioxide from waste gas
NL8801009A (en) Oxidative biological removal of sulphide from waste water - using short-fall in oxygen, giving conversion largely to sulphur
Van der Maas et al. NO removal in continuous BioDeNOx reactors: Fe (II) EDTA2− regeneration, biomass growth, and EDTA degradation
Carmen et al. Post-treatment of fish canning effluents by sequential nitrification and autotrophic denitrification processes
Yavuz et al. Autotrophic removal of sulphide from industrial wastewaters using oxygen and nitrate as electron acceptors
CN115432808B (en) Device and method for efficiently and synchronously treating acrylic fiber wastewater and nitrate wastewater by double DEAMOX process
JP2799247B2 (en) How to remove sulfur compounds from water
Van Houten et al. Biological sulphate reduction with synthesis gas: microbiology and technology
Wei Research on Sulfide Biological Extraction Technology
SU927758A1 (en) Process for biochemical purification of effluents from sulphates
CN117105404A (en) Method for treating nitrogen-containing wastewater based on combination of nitrate catabolism reduction and sulfur autotrophic denitrification coupled anaerobic ammonia oxidation
CN117756281A (en) Sulfur disproportionation functional flora rapid culture enrichment method and application thereof

Legal Events

Date Code Title Description
A1B A search report has been drawn up
BC A request for examination has been filed
CNR Transfer of rights (patent application after its laying open for public inspection)

Free format text: PAQUES B.V.

BN A decision not to publish the application has become irrevocable