NL8200542A - Zonnecollector met gas/vloeistof-warmte-uitwisseling. - Google Patents

Zonnecollector met gas/vloeistof-warmte-uitwisseling. Download PDF

Info

Publication number
NL8200542A
NL8200542A NL8200542A NL8200542A NL8200542A NL 8200542 A NL8200542 A NL 8200542A NL 8200542 A NL8200542 A NL 8200542A NL 8200542 A NL8200542 A NL 8200542A NL 8200542 A NL8200542 A NL 8200542A
Authority
NL
Netherlands
Prior art keywords
air
passages
elements
solar collector
liquid
Prior art date
Application number
NL8200542A
Other languages
English (en)
Original Assignee
Owens Illinois Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Illinois Inc filed Critical Owens Illinois Inc
Publication of NL8200542A publication Critical patent/NL8200542A/nl

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/20Solar heat collectors using working fluids having circuits for two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

X 3
Zonnecollector met gas/vloeistof-warmte-uitwisseling.
De uitvinding heeft in het algemeen gesproken betrekking op een zonnecollector en meer in het bijzonder op een, een eenheidvormend zonne-energie-collectorsamenstel met een aantal geevacueerde collectorelementen en een gas/vloeistof-5 warmtewi s s elaar.
De toename van de vraag naar energie in samenhang met de toename van de prijs van de winning van fossiele brandstoffen is een aansporing geweest te zoeken naar alternatieve energiebronnen. Wellicht de meest onmiddellijke veelbelo-10 vende alternatieve bron is zonne-energie en de ontwikkeling en verbeteringen in zonne-energie-collector-ontwerpen zijn in de laatste tien jaar indrukwekkend geweest. Niettemin vertoont elke werkelijke uitvoering zoals met een vlakke plaat of met een buis, en elk soort winningsmedium, zoals lucht of water, zekere 15 gebreken in zijn prestatie die vragen om verbetering. Bij col lectors met geevacueerde buizen die gebruik maken van lucht als een warmtewinningsmedium, is een veel voorkomend probleem te-bleken de verdeling van lucht over de collector-elementen. Een onvoldoende luchtstroom in bepaalde collectorelementen als 20 gevolg van een gebrekkige verdeling in een centraal verdeelor- gaan heeft niet alleen tot gevolg dat bepaalde collectorelementen bij een hoge temperatuur werkzaam zijn, hetgeen hun levensduur nadelig kan beïnvloeden, maar vermindert ook het rendement van het totale collectorsamenstel.
25 Het is in de stand van de techniek bekend dat een ongelijkmatige verdeling van een fluïdum in het algemeen kan worden verbeterd door de bedrijfsdruk van het systeem te vergroten en aldus het drukverval over componenten van het systeem. Ongelukkigerwijs kan een vergroting van de werkdruk in 30 een systeem alleen worden verkregen met een dienovereenkomstige toename in het energieverbruik, dat wil zeggen van de energie die naar de componenten die de lucht in beweging brengen, wordt toegevoerd. In een winningssysteem van zonne-energie kan een 8200542 i ί - 2 - zodanige toename van het energieverbruik groter zijn dan de toename van de gewonnen energie die het gevolg is van de verbeterde luchtverdeling. Gezien als een thermodynamisch systeem kan het totale rendement van de zonnecollector in feite geringer 5 uitvallen als gevolg van de toename wat energieverbruik betreft verbonden met het bereiken van het doel van een verbeterde luchtverdeling.
Deze situatie wekt de suggestie dat lage drukken in het systeem en minimale waarden van het drukverval voor-10 delig kunnen zijn. Een systeem waarin dit het geval is, is be schreven in het Amerikaanse octrooischrift k.016.860.
Een ander gebied waarin moeilijkheden optreden bij het benutten van zonne-energiecollectors, houdt verband met de wijze van energie-overdracht. In vele zonne-collectors die 15 lucht gebruiken als het winningsmedium, wordt de lucht verplaatst vanuit het zonne-energiecollectorsamenstel door een leidings-stelsel heen naar de plaats, zoals een woonruimte, waarin de warmte-energie moet worden benut. Een dergelijk leidingwerk roept een aantal problemen op. In de eerste plaats veroorzaken transport-20 wegen van een enigszins aanzienlijke lengte een drukverval dat van betekenis is, hetgeen de problemen van de toevoer van energie naar het systeem en van het totale rendement, zoals hiervoor gesteld, alleen maar versterkt. In de tweede plaats zijn problemen van energieverlies naar de omgeving in verband met de 25 geringe dichtheid van lucht en de grote diameter en het grote omtreksoppervlak van een dergelijk leidingwerk van betekenis. Vanzelfsprekend kan een dergelijk leidingwerk goed zijn geïsoleerd en bij voorkeur is dit ook het geval, maar dit vergroot de buitendiameter van het leidingwerk. Tenslotte kan het instal-30 leren van een leidingwerk met een zodanige grote diameter in bestaande constructies, ook nog problemen oproepen die met een meer compact energie-overdrachtschema hetzij tot een minimum zouden lijken te worden teruggebracht of althans te worden verlicht. Een voorbeeld van een zonne-energiecollector die een der-35 gelijk compact energie-overdrachtschema benut, is beschreven in 8200542 - 3 - ï 4 het Amerikaanse octrooischrift 3.960.136. In de in dit octrooi-schrift beschreven inrichting verwarmt lucht die circuleert in een collector op het dak, een vloeistof, zoals water, en het water wordt gebruikt als het warmte-overdrachtmedium.
5 Samenvattend heeft de uitvinding betrekking op een zonne-energieeollector die als een eenheid is uitgevoerd en die is voorzien van een aantal geevacueerde collectorelemen-ten die zijn bevestigd aan en in verbinding staan met een centraal opgesteld tweewegsverdeelorgaan waarin zijn opgenomen een 10 gas/vloeistof-warmtevisselaar en een inrichting voor het laten circuleren van het gasvormige warmtewinningsmedium, De collec-torelementen zijn verspringend in een rij opgesteld aan weerszijden van het verdeelorgaan. Elk van de collectorelementen omvat een langwerpige dubbelwandige glazen buis met een open eind 15 welke buis een geevacueerde ringvormige ruimte tussen de glazen wanden bepaalt. Een dunwandige metalen verdelerbuis met een diameter die iets geringer is dan de binnendiameter van de binnenste glazen wand, is in de glazen buis aangebracht en loopt door voorbij het open eind van het collectorelement. De door de 20 verdelerbuis en de binnenwand van het collectorelement bepaal de ring staat in verbinding met de dichtstbij zijnde doorgang in het verdeelorgaan en het inwendige van de verdelerbuis staat in verbinding met de verderweg gelegen doorgang in het verdeelorgaan. De inrichting voor het laten circuleren van lucht levert 25 lucht onder lage druk aan één van de doorgangen en deze lucht stroomt naar binnen in. alle ringen en in het inwendige van de verdelerbuizen die daarmee in verbinding staan. De lucht loopt dan uit het verdeelorgaan weg in hetzij de ringen of in het inwendige van de verschillende verdelerbuizen, bereikt het eind 30 van dé collectorelementen en loopt naar binnen naar de andere doorgang in het verdeelorgaan, waarbij de lucht die te voren in de ringen was, nu binnen in de verdelerbuizen loopt, en omgekeerd. De luchtstroom wordt vervolgens binnenin de andere doorgang in het verdeelorgaan gecombineerd en gaat verder door de 35 warmtewisselaar heen waar de energie van de lucht wordt over- 8200542 • i 3 - k - gedragen naar de vloeistof, namelijk water, dat door de warmtewisselaar heen stroomt. Lucht die de warmtewisselaar verlaat, wordt teruggevoerd naar- de ventilator en vandaar naar de collector element en, terwijl het water of een andere vloeistof die de 5 warmte-energie uit de lucht absorbeerde, uit de warmte-wisse- laar wordt weggevoerd en door een toepasselijke leiding heen wordt verplaatst naar de plaats van gebruik.
Het is dus een doel van de uitvinding een zonne-energiecollector als eenheid te verschaffen die als opbrengst 10 een verwarmde vloeistof levert.
Een ander doel van de uitvinding is het verschaffen van een, een eenheid vormende zonne-energiecollector die een groot rendement vertoont.
Weer een ander doel van de uitvinding is het 15 verschaffen van een, een eenheid vormende zonne-collector met geevacueerde buizen die gemakkelijk kan worden geïnstalleerd in bestaande en in nieuwe constructies.
Weer een ander doel van de uitvinding is het verschaffen van een, een eenheid vormende zonne-energiecollector 20 met geevacueerde buizen die gebruik maakt van een luchtverde- lingsschema dat werkt bij lage druk en dat een uitstekende luchtverdeling vertoont bij een minimaal gebruik van energie.
Andere doelen en voordelen van de uitvinding zullen duidelijk worden uit de hierna volgende beschrijving 25 die verwijst naar een tekening.
Fig. 1 is een perspectivisch aanzicht van een, een eenheid vormende zonne-energiecollector volgens de uitvinding .
Fig. 2 is in vergroting een perspectivisch 30 aanzicht van een deel van de warmte-wisselaar die wordt gebruikt in een zonne-energiecollector volgens de uitvinding.
Fig. 3 is een aanzicht van een zijkant van een, een eenheid vormende zonne-energiecollector volgens de uitvinding, gemonteerd op een hellend oppervlak.
35 Fig. is een schematische schets van de lucht- 8200542 4 » - 5 - stroom door het verdeelorgaan en de collectorelementen van een, een eenheid vormende zonne-energiecollector volgens de uitvinding.
Fig. 5 is een aanzicht van een totale door-5 snede van het verdeelorgaan van een , een eenheid vormende zonne-energiecollector volgens de uitvinding, welke doorsnede is gemaakt langs de lijn V - V in fig. 1.
Fig. 6 is vergroot getekend een aanzicht in doorsnede van een gedeelte van de bevestiging van de verdeler-10 buizen in het verdeelorgaan.
Fig. T is een aanzicht in doorsnede van een gedeelte van het verdeelorgaan van een, een eenheid vormende zonne-energiecollector volgens de uitvinding, genomen langs de lijn VI - VI in fig. 1.
15 Bij de beschrijving van een voorkeursuitvoering van de uitvinding tonen de figuren 1 en 3 een, een eenheid vormende zonne-energiecollector 10. De zonnecollector 10 omvat een centraal opgesteld verdeelorgaansamenstel 12 met een aantal collectorelementen 1U die aan weerszijden daarvan versprongen zijn 20 aangebracht. Zowel het verdeelorgaansamenstel 12 als de collec torelementen 1k worden ondersteund door een in het algemeen gesproken rechthoekige raamconstructie 16. De raamconstructie omvat een paar langwerpige Z-balken 18 die het verdeelorgaansamenstel 12 stevig bevestigen en verheffen boven een oppervlak 25 zoals dat van een dak 20 waarop de collector 10 is gemonteerd.
De raamconstructie 16 omvat voorts een paar L-vormige collector-steunbalken 22 die in het algemeen gesproken onder een rechte hoek tussen de einden van de Z-balken 18 zijn bevestigd. De steunbalken 22 omvatten elk een aantal U-vormige sleuven 2k voor 30 het daarin opnemen van een collectorelement welke sleuven een wig vormen voor de einden van de collectorelementen 1k die het verst van het verdeelorgaansamenstel 12 liggen, en ondersteunen deze. De raamconstructie 16 kan worden vervaardigd van een materiaal zoals gegalvaniseerd ijzer, aluminium of een ander der-35 gelijk materiaal. De Z-balken 18 kunnen worden bevestigd aan 8200542 - 6 - het verdeelorgaansamenstel 12 en aan de L-vormige halken 22 door middel van ieder geschikt bevestigingsmiddel zoals van draad voorziene bevestigingsorganen, klinknagels, puntlassen of een ander middel.
5 Zoals fig. 2 laat zien kan de zonnecollector K) zijn geïnstalleerd op het dak 20 van een woning of een ander gebouw. Bij voorkeur is de zonnecollector 10 in Zuidelijke richting georienteerd en wel onder een hellingshoek die de ontvangst van zonne-energie op de geografische breedte van zijn 10 opstelling optimaal maakt. De collectorelementen 1H staan vrij, dat wil zeggen dat de collector 10 geen spiegel, reflector of ander spiegelend reflectie-orgaan omvat voor het concentreren van de zonnestralen, maar in plaats daarvan.vertrouwd op diffuse reflectie aan het oppervlak van het dak 20 of van een ander 15 horizontaal of hellend oppervlak aan de kant van de collector- elementen 1¼ die is afgekeerd van de zon om energie naar de elementen toe te reflecteren.
In fig. 5 is het verdeelorgaansamenstel 12 in doorsnede met in het algemeen rechthoekige vorm te zien en 20 het omvat een buitenmantel 30 van plaatmetaal en een kleinere binnenmantel 32, eveneens van plaatmetaal. Tussen de buitenmantel 30 van plaatmetaal en de binnenmantel 32 van plaatmetaal zijn in geschikte grootte en geschikt georienteerd voorgevormde isolatieplaten 3^ geplaatst. De isolatieplaten 3^· zijn bij voor-25 keur vervaardigd van polyurethaan-isocyanaat of een soortgelijk materiaal dat zeker aan een maximum temperatuur van tenminste 160°C weerstand kan bieden. De gelijkmatige dikte van de voorgevormde plaat-isolatie 3b, alsmede de nauwkeurig gevormde rechte hoeken, zorgen ervoor dat de platen 3^ dicht aan elkaar 30 zullen passen en de ruimte tussen de buitenmantel 30 en de bin nenmantel 32 geheel vullen. Centraal in de binnenmantel 32 is een schot 36 van plaatmetaal opgesteld dat de binnenruimte van de binnenmantel 32 over zijn gehele lengte verdeelt in een inlaat- of toevoerdoorgang Uo en een uitlaat- of terugvoerdoor-35 gang b2.
8200542 J 1 - 7 -
In fig. 5 en fig. 6 "bepaalt het centraal opgestelde schot 36 een aantal ronde openingen hh, in elk -waarvan een ringvormig afdichtorgaan hè van een elastomeermateriaal is opgenomen. Het afdichtorgaan hè heeft een oppervlak U8 in de 5 vorm van een afgeknotte kegel dat het ihbrengen van het af dichtorgaan li-6 in de cirkelvormige opening UU vergemakkelijkt, en een ringvormige inspringende groef 50 die rondom zijn omtrek is aangehracht en die het afdichtorgaan hè stevig vasthoudt in éên van de cirkelvormige openingen W. Binnenin elk van de af-10 dichtorganen hè is een dunwandige metalen verdelerbuis 52 gezet.
De verdelerbuis 52 -wordt in axiale zin in het afdichtorgaan hè vastgehouden door middel van een naar buiten uitstekende rib 5h die is gevormd in de verdelerbuis 52 nabij het ene eind daarvan en die samenwerkt met een complementair uitgevoerde half-15 cirkelvormige verdieping 56 in het naar binnen gekeerde opper vlak van het afdichtorgaan W>. Alle verdelerbuizen 52 zijn concentrisch opgesteld binnen één van de c oil eet or element en 1 lien steken in axiale richting uit buiten het open eind van het bijbehorende collectorelement 14 over een afstand die voldoende 20 is dat de verdelerbuis kan worden bevestigd in het schot 36 op de hiervoor beschreven wijze. Aan het andere eind van de verdelerbuis 62, dat wil zeggen het eind dat zich bevindt in het collect orelement 14, houden een aantal, bij voorkeur drie, naar buiten gerichte oren of lippen 58 de verdelerbuis 52 in een coaxia-25 le positie binnen in het collectorelement 14.
In axiale zin op één lijn met de verdelerbuizen 52 en concentrisch daaromheen aangebracht zijn een eerste cirkelvormige opening 60 in de buitenmantel 30 en een tweede cirkelvormige opening 62 in de binnenmantel 32. Een gedeelte van 30 de plaatisolatie 3¾ dat zich 'bevindt tussen de openingen 60 en 62, is verwijderd om zo een cirkelvormige holte èh te vormen waarin een ringvormig gevormde afdichting 66 is opgenomen. De gevormde afdichting 66 is bij voorkeur vervaardigd van een elastomeer op basis van siliconen en kan in het verdeelorgaansamen-35 stel 12 worden vastgehouden door het aanbrengen van een dun laagje 8200542 * * - 8 - 68 van een kleefmiddel op "basis van siliconen ter plaatse van het contactoppervlak tussen de gevormde afdichting 66 en de plaat-isolatie 3^·. De gevormde afdichting 66 omvat een buiten-lip 70 die functioneert als een afdichting van de buitenlucht, 5 en voorts een aantal naar binnen toe gerichte langs de omtrek aangebrachte driehoekige ribben 72 die functioneren als een chevron-afdichting voor het afdichten van de collectorelementen ik en voor het stevig in het verdeelorgaansamenstel 12 vasthouden daarvan.
10 Zoals hiervoor opgemerkt is elk van het aan tal collectorelementen 1^ coaxiaal opgesteld rondom êén van de verdelerbuizen 52. De collectorelementen 1^ zijn bij voorkeur cirkelvormig in doorsnede en zijn vervaardigd van glas. Elk van de collectorelementen 1¼ omvat een buitenwand 80 en een binnen-15 wand 82 met een kleinere diameter dan de buitenwand. De wanden 80 en 82 bepalen een langwerpige ringvormige ruimte 8H tussen zich in welke ruimte is geevacueerd tot een vacuum van ongeveer _2 10 Pa. Het vacuum wordt verkregen door lucht uit de ruimte 8H te verwijderen aan het topeind van de collectorelementen 1U 20 en een stengeltje 86 op die plaats wordt afgedicht overeenkom stig een werkwijze die algemeen bekend is. Het vacuum in de ruimte 8k elimineert praktisch gesproken geleidingsverliezen en convectieverliezen uit de collectorelementen 1k. De binnenwanden 82 van de collectorelementen 16 zijn bij voorkeur voorzien van 25 een zonne-energie-absorberend oppervlak 88. Het energie-absor- berende oppervlak 88 omvat een wat de golflengte betreft selectieve bekleding met een grote absorptiecoëfficiënt en een kleine emissie-coefficient ten bedrage van 0,1 of lager in het infrarode gebied, welke bekleding kan worden vervaardigd door het 30 afzetten in vacuum van een dunne laag (100 nm) aluminium op het naar buiten gekeerde oppervlak van de binnenwanden 82 van de collectorelementen 1^·. Vervolgens wordt langs elektrische weg een laag chroom verdampt en afgezet over het substraat van aluminium in de vorm van zwart chroom en wel tot een dikte van 35 ongeveer 150 nm. Anders kan het oppervlak 88 worden zwart gemaakt 8200542 - 9 - met een overdekking van een infrarode energie-absorberend materiaal, zoals magnesiumoxyde, magnesiumfluoride, enz.
Het verdeelorgaansamenstel 12, zoals weergegeven in fig. 35 fig. 5 en fig. J omvat.een centraal opgestel-5 de ventilator 90. De ventilator 90 is voorzien van een prak tisch gesproken gebruikelijke elektromotor 92 die door middel van losneembare bevestigingsorganen 9^ is bevestigd op de metalen buitenmantel 30 van het verdeelorgaansamenstel 12. Bij voorkeur is de elektromotor 92 op geschikte wijze weerbestendig 10 gemaakt. Anders kan de motor 92 worden ondergebracht in een beschermende omhulling (niet getekend). De elektromotor 92 heeft een uitgangsas 96 met een naar keuze vastzetbaar koppelorgaan 98 dat een ventilatoras 100 aandrijft die door de plaatisolatie 3*+ heen steekt in een beklede doorgang 102 tot in de inlaat- of 15 toevoerdoorgang 1*0. Aan het eind van de as 100 die is aangebracht in de toevoerdoorgang 1*0·, is een op gebruikelijke wijze als een kooi gevormde waaier 10l* bevestigd. Een geschikte dekplaat 106 die bevestigd is op het schot 36, bepaalt een invoeropening 108 die concentrisch met en dicht naast de waaier 1öl* is opgesteld.
20 Fig. T laat zien dat het verdeelorgaansamen stel 12 bovendien omvat een luchtkering 110 die is opgesteld binnenin de toevoerdoorgang 1*0 tussen het schot 36 en de binnenmant el 32, en een volgens een bepaalde vorm gebogen paneel 112.
De luchtkering 110 en het in vorm gebogen paneel. 112 bezitten 25 beide een symmetrisch aangebracht gekromd oppervlak 11U dat zorgt voor een gelijkmatige verdeling van lucht vanuit de waaier 10l* naar alle ruimten van de inlaat- of toevoerdoorgang 1*0. Toegang tot de waaier 10l* wordt gemakkelijk verkregen door het in vorm gebogen paneel 112 en een overeenkomstig buitenpaneel 30 116 dat deel uitmaakt van de buitenmantel 30, uit te voeren als wegneembare secties die kunnen worden vastgezet door middel van naar keuze losneembare bevestigingsorganen 11-8.
Zoals blijkt uit fig. 2 en fig. 5 omvat het verdeelorgaansamenstel 12 verder een langwerpige warmtewisselaar 35 120 die is opgesteld in de uitlaat- of terugvoerluchtdoorgang 8200542 - 10 - b2. De warmtewisselaar 120 omvat een paar evenwijdige langwerpige platen 122 die beide voorzien in een bevestiging voor de warmtewisselaar 120 tussen het centrale opgestelde schot 36 en de binnenmantel 32 en sluiten ongeveer 2/3 van de breedte 5 van de uitlaat of terugvoerdoorgang k2 af. Een paar evenwijdige plat gemaakte fluidumgeleidende buizen Ï2k zijn onder afdichting bevestigd op het paar langwerpige platen 122. Het paar buizen 12^ bepaalt een langwerpige, rechthoekige doorgang 126 waarbinnen is opgesteld een als een serpentijn gevormde warmte-10 overdrachtsrib of oppervlak 128. Het warmte-overdrachtsopper- vlak 128 is bij voorkeur vervaardigd van een metaal zoals koper, dat goede warmte-overdrachtseigenschappen vertoont en kan in het algemeen worden gevormd overeenkomstig de gebruikelijke warm-te-overdrachtspraktijk teneinde de warmte-uitwisseling vanuit 15 de lucht die door de doorgang 126 gaat, naar het fluïdum dat door de buizen 12b loopt, optimaal te maken. Aan beide einden van de plat gemaakte buizen 12U bevindt zich een kast 130 die de verbinding en de stroomverdeling tussen de plat gemaakte buizen *\2k en een enkele fluidumleiding 132 verzorgt. Aan het ene eind van 20 de warmtewisselaar 120 vertoont de fluidumleiding 132 een teruggebogen bocht (niet getekend) en de fluidumleiding 132 ligt tegen de warmte-wisselaar 120 aan over zijn gehele lengte zodanig dat zowel de inlaatleiding 132 als de uitlaatleiding 132 uitsteken aan hetzelfde eind van het verdeelorgaansamenstel 12, 25 zoals in fig. 1 is getekend.
Aan de hand van fig. k zal de luchtcirculatie in het verdeelorgaansamenstel 10, de collectorelementen 1^ en de verdelerbuizen 52 nu worden beschreven. Zoals hiervoor opgemerkt is de waaier 10^ opgesteld in de toevoerdoorgang 1*0 en wordt 30 dus de luchtstroom daarin toegevoerd. Een deel van de lucht die door de waaier 10^ wordt geleverd, treedt binnen in het stel cirkelvormige doorgangen die zijn bepaald door de dunwandige verdelerbuizen 52 en gaat verder naar links, in buitenwaartse richting van het verdeelorgaansamenstel 12 vandaan. Op dezelfde 35 wijze treedt een praktisch even groot deel van de door de waaier 8200542 - 11 - 1θ4 geleverde lucht tinnen in de ringen die worden "bepaald door de dunwandige verdelerbuizen 52 en de binnenoppervlakken van de binnenste glaswanden 82 van de collectorelementen 16. Deze lucht stroomt naar rechts, naar buiten toe van het verdeelorgaansamen-5 stel 12 vandaan. In beide gevallen wordt wanneer de luchtstroom de einden van de verdelerbuizen 52 en van de glazen binnenbuizen 82 bereikt de richting van de stroom omgekeerd. In het eerste geval begint de lucht die binnen de cirkelvormige doorgang van de verdelerbuis 52 stroomt, naar* binnen naar de terugvoer-10 doorgang b2 te stromen in de door de verdelerbuizen 52 en de glazen binnenwanden 82 van de collectorelementen 1U bepaalde ring te stromen. Omgekeerd keert de lucht die te voren naar buiten toe stroomde in de ringvormige ruimten, terug naar de doorgang k-2 in de cirkelvormige doorgang die door de verdelerbuizen 52 15 is bepaald. De lucht gaat dan verder door de doorgang 126 van de warmtewisselaar 122 geeft de binnen de collectorelementen 1¾ verzamelde warmte-energie af aan het warmtewisselaaroppervlak 128 en uiteindelijk aan het fluïdum dat door de plat gemaakte buizen 12h van de warmtewisselaar* 120 stroomt, af. De lucht 20 wordt vandaar door de cirkelvormige opening 108 en door de waaier 10^ heen getrokken en komt opnieuw in circulatie.
In fig. h is ook de afstand tussen naburige collectorelementen te zien die de voorkeur heeft, ofschoon niet noodzakelijk is. Zoals eerder opgemerkt zijn de collectorelemen-25 ten 16 bij voorkeur cirkelvormig van doorsnede. Waar de diameter van hei/collect or element is gegeven als "T" is de optimale bezetting van collectorbuizen en aldus het optimale energieverzamel-rendement gebleken te worden bereikt wanneer de collectorelementen 16 op een afstand uiteen staan die ongeveer gelijk is aan 30 "T". Anders gezegd is de afstand van hart tot hart tussen nabu rige collectorelementen bij voorkeur ongeveer "2T". Echter moet worden opgemerkt dat deze voorkeursafstand niet dient te worden opgevat als een beperking van de uitvinding en evenmin als een absolute waarde die niet moet worden veranderd.
35 Zoals hiervoor opgemerkt is een. gebruikelijke 8200542 Λ - 12 - oplossing tot verbetering van de verdeling en van de warmteoverdracht in bekende luchtbehandelingssystemen in de stand van de techniek geweest het vergroten van de werkdruk in het systeem. Ongelukkigerwijs kunnen pogingen om deze redenering toe 5 te passen op zonne-energie-terugwinsystemen vergezeld gaan van een zo grote toename van de in het systeem in te voeren energie om zodanige vergrote werkdrukken te verkrijgen dat het totale rendement van het systeem kleiner wordt. In de hier beschreven zonne-energiecollector 10 zijn de plaatsen waar de druk daalt 10 en dus turbulentie optreedt met daarmee gepaard een vergrote warmte-overdracht, zorgvuldig zo gekozen dat zij voornamelijk optreden waar warmte moet worden overgedragen en zo kan dus het bedrijf plaatsvinden bij een uitzonderlijk geringe luchtdruk en dienovereenkomstig geringe invoer van energie. Met 15 betrekking tot de collectorelementen 1U moet worden opgemerkt dat de oppervlakken van de doorsneden van de cirkelvormige doorgangen die zijn bepaald door de dunwandige verdelerbuizen 52 en van de ringvormige doorgangen die zijn bepaald door de buitenwand van de verdelerbuizen 52 en de binnenvlakken van de bin-20 nenwanden 82 van de collectorelementen 1U ongelijk van grootte zijn, waarbij het oppervlak van de doorsnede van de eerstgenoemde aanzienlijk groter is. Een dergelijke ongelijkheid van de oppervlakken in doorsnede resulteert in een grotere stroomsnelheid in de ringvormige ruimten en een daarmee gepaard gaande 25 turbulentie die grenslagen tegen het binnenoppervlak en het buitenoppervlak van de ringen verstoort waardoor warmt e-overdracht naar de lucht wordt versterkt. Bijvoorbeeld zal een dunwandige verdelerbuis 52 met een diameter van ongeveer 3,3 cm een binnendoorsnede met een oppervlak van ongeveer 8 cm hebben. 30 Bij concentrische plaatsing binnen de binnenwand 82 van een col- lectorelement 1^ die een binnendiameter van ongeveer U,0 cm heeft, heeft de verkregen ring een dwarsdoorsnede met een op-pervlak van ongeveer k cm , dat wil zeggen ongeveer de helft van het oppervlak van de doorsnede van de binnendoorgang van de 35 verdelerbuis 52. Aldus is niet alleen de lucht in de ring tur- 8200542 - 13 - buienter en daarmee minder geschild: om isolerende grenslagen te vormen, maar treedt het energieverlies en het drukverval dat met de turbulentie gepaard gaat, precies op ter plaatse van •waar de energie wordt toegevoerd en worden aldus de energie-5 winning en het totale rendement aanzienlijk verbeterd.
Verder wordt met betrekking tot de stroom en het drukverval de aandacht gevestigd op de constructie van de warmtewisselaar 120. De langwerpige platen 122 sluiten ongeveer 2/3 deel van het oppervlak van de doorsnede van de uitlaat of 10 terugvoerdoorgang h2 af, waarbij zij de hals van de doorgang 126 bepalen en de luchtstroom smoren. De luchtstroom door de doorgang 126 heen is dus aanzienlijk sneller en turbulenter dan de luchtstroom in andere delen van het verdeelorgaansamenstel 12. Aldus valt opnieuw de plaats van een drukval samen met een 15 plaats waar energie-overdracht plaatsvindt.
Een, een geheel vormende lucht/vloeistof zonne-energiecollector die gebruik maakt van een vloeistof als het uiteindelijke warmte-overdrachtsmedium, vertoont ook voordelen wat betreft zijn constructie. De open collector-rij, 20 dat wil zeggen het ontbreken van doorlopende reflector-panelen en/of van beschermende transparante dekplaten, alsmede de cilindervormige buitenoppervlakken van de collectorelementen 1U hebben tot gevolg een zeer geringe aërodynamische afremming en overwegingen met betrekking tot een windbelasting kunnen 25 praktisch achterwege blijven. Een zodanige verkleinde afremming brengt de noodzakelijkheid van grote, zware en kostbare onder-steuningsconstructies die de totale prijs van het zonne-energie-collectorsysteem aanzienlijk kunnen vergroten, tot een minimum terug. Voorts verlaagt het gebruik van het gas, zoals lucht, 30 als het primaire warmtewinningsmedium het gewicht bij bedrijf van de collector, waarmee de afmeting en de prijs van bijbehorende constructie-elementen verder worden verkleind. Dat het secundaire en uiteindelijke warmtewinningsmedium een fluïdum is, zoals water, met een grote soortelijke warmte is eveneens van 35 voordeel. In het bijzonder kan de overdracht van de gewonnen 8200542 - 1U - zonne-energie vanuit de collector 10 naar de plaats waar de energie wordt benut in een gebouw, worden bewerkstelligd door het gebruik van de gebruikelijke pijpen van koper of van de recent ontwikkelde kunststofpijp die goed is geïsoleerd. In een 5 kenmerkend voorbeeld zal een dergelijke pijp een buitendiameter hebben van minder dan 13 mm en zal hij niet dikker zijn dan 2,5 mm bij een juiste isolatie. Deze geringe diameter maakt installatie, in het bijzónder in bestaande gebouwen, een eenvoudige zaak en in het algemeen ongecompliceerd in zoverre de 10 pijpleiding gemakkelijk kan worden gelegd door balken, schotten en wanden zonder onnodige complicatie.
Eveneens met betrekking tot het warmte-over-drachtsfluïdum dat in de buizen 12k van de warmtewisselaar 120 stroomt, zal het duidelijk zijn dat water een onmiddellijk aan-15 trekkelijke keuze is als gevolg van zijn geringe prijs beschik baarheid, veiligheid en grote soortelijke warmte. Een evenzeer duidelijk bezwaar van het gebruik van water is de gevoeligheid daarvan voor een faseverandering, dat wil zeggen bevriezen en de daarbij behorende volume-uitzetting die water vertoont bij 20 de overgang van de vloeibare fase naar de vaste fase. Het spreekt daarom voorzich dat andere vloeistoffen, zoals glyconen en gly-eol-mengsels in beschouwing moeten worden genomen om te worden gebruikt als een warmtewinningsfluïdum in de collector 10.
Het zal ook duidelijk zijn dat de totale af-25 meting en dus de energie-verzamelcapaciteit van de, een eenheid vormende lucht/vloeistof zonne-energiecollector 10 kenmerkend zal worden bepaald door zijn toepassing. Niettemin wordt voorzien dat de collector 10 kenmerkend J2 collectorelementen 1^ zal omvatten die zijn opgesteld in een paar verspringende rijen van 30 elk 36 elementen. Het aantal zowel als de lengte van de collec torelementen ib kunnen in ruime mate uiteen lopen.
Tenslotte wordt de aandacht gevestigd op de verspringende opstelling van de verdelerbuizen 52 en de collectorelementen 1U. Een dergelijke opstelling vereenvoudigt in 35 aanzienlijke mate de constructie van het verdelerorgaansamen- 8200542 - 1-5 - stel 12, in het hijzonder van het schot 36. In verschillende zonnecollectors volgens de stand van de techniek zijn talloze schotten en doorgangen nodig voor het verdelen van de lucht over de warmtewinningselementen. Een dergelijke ingewikkeldheid 5 naast de hogere prijs van de collector resulteert veelal in een slechte verdeling van de lucht. In de hier beschreven zonne-energiecollector 10 verschaffen twee evenwijdige, praktisch identieke doorgang ko en b2 een rechtstreekse en gelijkmatige luchtverdeling over de collectorelementen 1¾. en de verdelerbui-10 zen 52.
8200542

Claims (16)

1. Zonnecollector van het lucht/vloeistof-type gekenmerkt door de combinatie van een verdeelorgaan met twee doorgangen, een aantal geevacueerde zonne-collectorelementen met 5 een binnenwand, een langwerpig hol orgaan dat is opgesteld binnen elk van de collectorelementen waarbij elk van de holle organen een inwendige doorgang bepaalt die in verbinding staat met één van de doorgangen in het verdeelorgaan en elk van de respectievelijke collectorelementen een buitendoorgang bepaalt 10 tussen de binnenwand van het collectorelement en het langwerpige orgaan welke buitendoorgang in verbinding staat met de andere doorgang in het verdeelorgaan, en een lucht/vloeistofwarmte-wisselaar die is opgesteld in één van de doorgangen in het verdeelorgaan.
2. Zonne-collector volgens conclusie 1, gekenmerkt door een orgaan voor het laten circuleren van lucht door de collectorelementen, de holle organen, de doorgangen en de warmte-wisselaar.
3. Zonnecollector volgens conclusie 1, 20 gekenmerkt door een raamconstructie voor het ondersteunen van het verdeelorgaan en de collectorelementen. k. Zonne-collector volgens conclusie 1, met het kenmerk, dat de collectorelementen zijn opgesteld in twee rijen aan weerszijden van het verdeelorgaan in een rang-25 schikking in één enkel vlak.
5. Zonne-collector volgens conclusie 1, met het kenmerk, dat de collectorelementen cilindervormig zijn en zijn opgesteld in twee rijen aan weerszijden van het verdeelorgaan evenwijdig aan elkaar, en dat alle elementen van de ene 30 rij zijdelings zijn verschoven ten opzichte van alle elementen in de andere rij over een afstand die ongeveer gelijk is aan hun diameter.
6. Zonne-collector volgens conclusie 1, met het kenmerk, dat de warmtewisselaar zich over praktisch de 35 gehele lengte van één van de doorgangen in het verdeelorgaan uit- 8200542 > <- - 17 - strekt en langwerpige organen omvat voor het afsluiten van een gedeelte van de "breedte van deze doorgang. J. Lucht/vloeistof zonne-collector, gekenmerkt door de combinatie van een verdeelorgaan met twee naast elkaar 5 gelegen doorgangen, een aantal geevacueerde buis-collectors waarbij elk daarvan omvat een langwerpig collectorelement met een binnenwand en een langwerpig hol orgaan in het inwendige, waarbij een binnendoorgang wordt bepaald binnenin dat holle orgaan en een buitendoorgang tussen het holle orgaan en de binnen-10 wand van het collectorelement, welke binnendoorgang van elk van de collectors in verbinding staat met één van de twee doorgangen in het verdeelorgaan en de buitendoorgangen van elk van de collectors in verbinding staat met de andere van de twee doorgangen in het verdeelorgaan, een lucht/vloeistofwarmtewisselaar die 15 is opgesteld binnen één van de twee doorgangen in het verdeel orgaan, en een orgaan voor het laten circuleren van lucht door de doorgangen, de collectors en de warmte-wisselaar.
8. Lucht/vloeistof zonne-collector volgens conclusie 7, met het kenmerk, dat de collectorelementen cilin- 20 dervormig zijn en zijn opgesteld in twee rijen die in één vlak liggen aan weerszijden van het verdeelorgaan en wel evenwijdig aan elkaar op een afstand die ongeveer gelijk is aan de diameter van de elementen, en dat de elementen in één van de rijen zijdelings zijn verschoven ten opzichte van de elementen in 25 de andere rij over een afstand die ongeveer gelijk is aan de dia meter.
9. Lucht/vloeistof zonne-collector volgens conclusie 7, met het kenmerk, dat het orgaan voor het laten circuleren van lucht omvat een elektromotor en een waaier en 30 dat het verdeelorgaan middelen omvat voor het bewerkstelligen van een gelijkmatige verdeling van lucht binnen tenminste één van de twee doorgangen in het verdeelorgaan.
10. Lucht/vloeistof zonne-collector volgens conclusie 7S met het kenmerk, dat de warmtewisselaar omvat een 35 paar evenwijdige vloeistofvervoerende buizen die een luchtdoor- 8200542 - 18 - gang "bepalen, een orgaan dat is opgesteld in de luchtdoorgang voor het vergroten van de warmte-overdracht tussen lucht die door deze luchtdoorgang stroomt, en vloeistof die in de huizen stroomt, en een orgaan voor het afsluiten van een deel van de 5 ene van de twee doorgangen in het verdeelorgaan waarin, de warmte wisselaar is opgesteld.
11. Lucht/vloeistof zonne-collector volgens conclusie 7, met het kenmerk, dat het verdeel orgaan omvat een buitenmantel en een binnenmantel die tussen zich in een ruimte 10 bepalen welke ruimte wordt in beslag genomen door een isolerend materiaal, een schot dat in het algemeen gesproken centraal is opgesteld binnen in de binnenmantel en dat de twee doorgangen in het verdeelorgaan bepaalt, en een aantal openingen voor het opnemen van het ene eind van de langwerpige holle organen.
12. Lucht/vloeistof zonne-collector, gekenmerkt door de combinatie van een verdeelorgaan met een buitenmantel, een binnenmantel, een schot dat in het algemeen gesproken centraal is opgesteld binnen de binnenmantel en dat twee naast elkaar gelegen doorgangen bepaalt, een lucht/vloeistof-warmte-20 wisselaar die is opgesteld in één van de doorgangen, een orgaan voor het laten circuleren van lucht, een aantal geevacueerde buis-collectors die elk een langwerpig collectorelement bevatten met een binnenwand en een buitenwand en een langwerpig hol orgaan dat daarin is geplaatst en dat een binnendoorgang bepaalt 25 binnen het holle orgaan alsmede een buitendoorgang tussen het holle orgaan en de binnenwand van het collectorelement, waarbij de binnendoorgang van elk van de collectors in verbinding staat met één van de twee doorgangen in het verdeelorgaan en de buitendoorgang van elk van de collectors in verbinding staat met de 30 andere van de twee doorgangen in het verdeelorgaan.
13. Lucht/vloeistof zonne-collector volgens conclusie 12, met het kenmerk, dat het oppervlak van de doorsnede van de binnendoorgangen ongeveer tweemaal zo groot is als het oppervlak van de doorsnede van de buitendoorgangen. 35 1U. Lucht/vloeistof zonne-collector volgens 8200542 - 19 - conclusie 12, met het kenmerk, dat de langwerpige holle organen middelen omvatten voor het in het algemeen gesproken coaxiaal houden daarvan binnen de binnenwand van de collectorelementen.
15. Lucht/vloeistof zonne-collector volgens 5 conclusie 12, gekenmerkt door een plaat-isolatie die is aan gebracht tussen de buitenmantel en de binnenmantel.
16. Lucht/vloeistof zonne-collector volgens conclusie 7, met het kenmerk, dat de warmte-visselaar omvat een paar evenwijdige vloeistoftransporterende buizen die een lucht- 10 doorgang bepalen, een orgaan dat is opgesteld in de luchtdoor- gang voor het vergroten van de warmte-overdracht tussen lucht die door de luchtdoorgang stroomt, en vloeistof die in de buizen stroomt en een orgaan voor het afsluiten van een gedeelte van de ene van de twee doorgangen in het verdeelorgaan waarbinnen de 15 warmtewisselaar is opgesteld.
17· Lucht/vloeistof zonne-collector volgens \ conclusie 12, gekenmerkt door een raamconstructie voor het ondersteunen van het verdeelorgaan en van de collectors.
18. Lucht/vloeistof zonne-collector volgens 20 conclusie 12, met het kenmerk, dat het orgaan voor het laten circuleren van lucht omvat een elektromotor en een waaier en dat het verdeelorgaan middelen omvat voor het versterken van een gelijkmatige verdeling van lucht binnen tenminste een van de twee doorgangen in het verdeelorgaan.
19. Lucht/vloeistof zonne-collector volgens conclusie 12, met het kenmerk, dat de collectorelementen cilindervormig zijn en zijn opgesteld in twee rijen die in een vlak liggen aan weerszijden van het verdeelorgaan en wel parallel aan elkaar op een onderlinge afstand die ongeveer gelijk is aan 30 de diameter van-de elementen, waarbij de elementen in een van de rijen zijdelings zijn verschoven ten opzichte van de elementen in de andere rij over een afstand die ongeveer gelijk is aan de diameter. 8200542
NL8200542A 1981-02-27 1982-02-12 Zonnecollector met gas/vloeistof-warmte-uitwisseling. NL8200542A (nl)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23907481A 1981-02-27 1981-02-27
US23907481 1981-02-27

Publications (1)

Publication Number Publication Date
NL8200542A true NL8200542A (nl) 1982-09-16

Family

ID=22900478

Family Applications (1)

Application Number Title Priority Date Filing Date
NL8200542A NL8200542A (nl) 1981-02-27 1982-02-12 Zonnecollector met gas/vloeistof-warmte-uitwisseling.

Country Status (11)

Country Link
JP (1) JPS57155061A (nl)
AU (1) AU8018582A (nl)
BE (1) BE892011A (nl)
BR (1) BR8201018A (nl)
DE (1) DE3206624A1 (nl)
FR (1) FR2500918A1 (nl)
GB (1) GB2093980A (nl)
IL (1) IL65020A0 (nl)
IT (1) IT1147816B (nl)
LU (1) LU83927A1 (nl)
NL (1) NL8200542A (nl)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2160637A (en) * 1984-06-19 1985-12-24 Daniel Clelland Anderson Support arrangement for tubular solar heat collector elements
DE10102825C1 (de) 2001-01-23 2002-10-31 Schott Rohrglas Gmbh Röhrenkollektormodul
DE10155164A1 (de) * 2001-11-12 2003-05-22 Stefan Nau Gmbh Verteiler und Verwendung einer Ringdichtung
ITMO20070022A1 (it) * 2007-01-25 2008-07-26 Kloben S A S Di Turco Adelino E C Collettore solare per il riscaldamento di un fluido termovettore

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2883165A (en) * 1956-12-10 1959-04-21 Modine Mfg Co Heat exchanger core
US3960136A (en) * 1975-02-20 1976-06-01 Owens-Illinois, Inc. Solar energy collection system
US4016860A (en) * 1976-01-12 1977-04-12 Owens-Illinois, Inc. Tubular solar energy collection system utilizing air media
IL50978A (en) * 1976-01-26 1979-12-30 Owens Illinois Inc Solar energy collector
US4120285A (en) * 1976-11-01 1978-10-17 Owens-Illinois, Inc. Modular tubular solar energy collector apparatus
FR2444237A1 (fr) * 1978-12-11 1980-07-11 Chausson Usines Sa Capteur solaire

Also Published As

Publication number Publication date
IT8247874A0 (it) 1982-02-26
IL65020A0 (en) 1982-04-30
LU83927A1 (fr) 1982-07-07
AU8018582A (en) 1982-05-06
BR8201018A (pt) 1983-01-04
JPS57155061A (en) 1982-09-25
FR2500918A1 (fr) 1982-09-03
DE3206624A1 (de) 1982-09-23
GB2093980A (en) 1982-09-08
BE892011A (fr) 1982-05-27
IT1147816B (it) 1986-11-26

Similar Documents

Publication Publication Date Title
US4092979A (en) Combined solar energy conversion and structural and mechanical beam and structures built therefrom
US4346694A (en) Solar collector module
US4054124A (en) Solar radiation collection system
US3961619A (en) Flat plate solar collector module
US4080957A (en) Solar panel
US4219011A (en) Modular solar energy collector systems
US4129119A (en) Solar energy collector
MXPA06009182A (es) Estructura de colector solar con tubos multiples.
US4303059A (en) Apparatus for solar energy collection
US4515149A (en) Apparatus for the collection of solar heat energy and a solar collector
US4076016A (en) Apparatus for the utilization of solar heat
NL8200542A (nl) Zonnecollector met gas/vloeistof-warmte-uitwisseling.
US20130125873A1 (en) Modular solar receiver and solar power plant comprising at least one such receiver
JP2024501787A (ja) 太陽光収集システム
EP0587034B1 (en) Radiation collector
US4132356A (en) Solar heating for home use
CN104833112A (zh) 平板聚光型太阳能集热器
US20140150848A1 (en) Photovoltaic module with heat exchanger
WO1999064795A2 (en) Solar collector
CN101762027A (zh) 太阳能炉
EP0099663A2 (en) Solar energy concentration and heating apparatus
CN216080444U (zh) 一种凸透镜聚光组件及太阳能聚光集热器
JPH01256757A (ja) 吸放熱装置
US20220146151A1 (en) Multi-temperature heat collection system
Parker Solar steam boiler

Legal Events

Date Code Title Description
BV The patent application has lapsed