NL2036925A - Method for Precisely Determining the Hydrocarbon Accumulation Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid Inclusion Synergy - Google Patents

Method for Precisely Determining the Hydrocarbon Accumulation Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid Inclusion Synergy Download PDF

Info

Publication number
NL2036925A
NL2036925A NL2036925A NL2036925A NL2036925A NL 2036925 A NL2036925 A NL 2036925A NL 2036925 A NL2036925 A NL 2036925A NL 2036925 A NL2036925 A NL 2036925A NL 2036925 A NL2036925 A NL 2036925A
Authority
NL
Netherlands
Prior art keywords
rocks
analysis
volcanic
dating
time
Prior art date
Application number
NL2036925A
Other languages
Dutch (nl)
Inventor
Liu Xiaohong
Tan Cong
Lin Tong
Feng Mingyou
Original Assignee
Univ Southwest Petroleum
Res Institute Of Petroleum Exploration And Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southwest Petroleum, Res Institute Of Petroleum Exploration And Development filed Critical Univ Southwest Petroleum
Priority to NL2036925A priority Critical patent/NL2036925A/en
Publication of NL2036925A publication Critical patent/NL2036925A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This invention presents a method for precisely determining the hydrocarbon accumulation timing in volcaniclastic rocks based on mineral dating and fluid inclusion synergy, includes: Step 1, systematic sampling; Step 2, diagenesis study; Step 3, temperature measurement and compositional analysis of fluid inclusions; Step 4, dating analysis; Step 5, analysis of solid bitumen characteristics; Step 6, determining the timing of hydrocarbon accumulation. In Step 2, sampled volcaniclastic rocks undergo laboratory analysis to assess mineral composition, structure, and tectonic features, identifying diagenesis types. The invention is based on correlating fluid inclusion properties and mineral dating, combined with mineral dating methods, accurately establishes hydrocarbon timing in volcaniclastic rocks, and improving methods for discerning diagenesis and accumulation condition couplings, and offering significant guidance and support for hydrocarbon enrichment research in such rocks.

Description

Method for Precisely Determining the Hydrocarbon Accumulation
Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid
Inclusion Synergy
Technical Field
The present invention relates to the field of petroleum exploration technology, specifically a method for precisely determining the hydrocarbon accumulation timing in volcaniclastic rocks based on mineral dating and fluid inclusion synergy.
Background
Volcaniclastic rocks are an important component of volcanic sedimentary basins and are one of the main reservoir rocks for volcanic hydrocarbon deposits. They are characterized by a wide distribution over time, diverse mineral types, and complex types and distributions of reservoir spaces. In addition to primary minerals like albite, quartz, and calcite, volcaniclastic rock reservoirs also contain thermogenic accessory minerals such as xenotime, zircon, apatite, and monazite. These rocks are rich in fluid inclusions, often containing various types of hydrocarbon inclusions (gaseous hydrocarbons, liquid hydrocarbons, methane, bitumen, etc.). However, volcaniclastic rocks are significantly affected by later tectonic thermal events and diagenesis.
Traditional analytical methods are unable to accurately determine the phases and timing of gas reservoir formation, leading to unclear gas reservoir formation rules and severely impacting the exploration progress of volcanic gas reservoirs.
Content of the Invention
The objective of this invention is to provide a method for precisely determining the hydrocarbon accumulation timing in volcaniclastic rocks based on mineral dating and fluid inclusion synergy, addressing the issues raised in the aforementioned background.
To achieve this objective, the invention provides the following technical solutions:
a method for precisely determining the hydrocarbon accumulation timing in volcaniclastic rocks based on mineral dating and fluid inclusion synergy, including the following steps: Step 1, systematic sampling; Step 2, studying diagenesis; Step 3, temperature measurement and compositional analysis of fluid inclusions; Step 4, dating analysis; Step 5, analysis of solid bitumen characteristics; Step 6, determining the timing of hydrocarbon accumulation;
In Step 1, systematic sampling is conducted in the development layers of the volcaniclastic rocks;
In Step 2, the study of diagenesis and the sequence of hydrothermal mineral diagenesis is conducted;
In Step 3, temperature measurement and compositional analysis are performed on fluid inclusions in transparent minerals within the fill;
In Step 4, in-situ micro-area U-Pb dating analysis is conducted on carbonate rock minerals and other accessory minerals;
In Step 5, systematic analysis of characteristics such as the reflectance of solid bitumen is carried out;
In Step 6, by combining the tectonic history, burial-thermal evolution history, dating data, fluid inclusion and bitumen characteristics, the hydrocarbon accumulation timing in volcaniclastic rocks is precisely determined.
Preferably, in Step 1, representative sampling points are selected within the development layers of the volcaniclastic rocks, and systematic sampling is performed at specific intervals and depths to ensure that the samples contain a variety of volcaniclastic rock types, and the sampling depth and location information are recorded. The collected samples are then cleaned, dried, screened, and the samples meeting the requirements are numbered and stored.
Preferably, in Step 2, the sampled volcaniclastic rocks undergo laboratory analysis, including mineral composition, structural and tectonic features, to determine the types of diagenesis experienced by the volcaniclastic rocks, including compaction, cementation, and recrystallization.
Preferably, in Step 2, based on the growth patterns, structural features, and chemical composition of minerals in the volcaniclastic rocks, the types of hydrothermal alteration experienced by the clastic rocks, such as hydrothermal alteration, hydrothermal recrystallization, and hydrothermal replacement, are determined.
According to the analysis results, the types of diagenesis and hydrothermal alteration are combined to establish a sequence of hydrothermal mineral phases and diagenesis, and to analyze the symbiotic combinations, evolution, and formation mechanisms of minerals during diagenesis.
Preferably, in Step 3, transparent minerals are extracted from the fill and subjected to cleaning, drying, and preparation of fluid inclusion thin sections. Using a geological heating and cooling stage and fluorescence analysis, the location, shape, size, type, and distribution characteristics of fluid inclusions in the minerals are determined, and their homogenization temperatures and freezing point temperatures are measured. The salinity and pressure conditions are calculated, ultimately inferring the timing and environment of diagenesis and hydrothermal activity.
Preferably, in Step 3, the fluid inclusion thin section samples are placed in a laser
Raman spectrometer, and the characteristic Raman spectral peaks of the inclusions are measured to determine the composition of the inclusions.
Preferably, in Step 4, the LA-MC-ICPMS method is used for in-situ micro-area U-
Pb dating analysis of carbonate rock minerals and other accessory minerals.
Representative samples are selected, cut into thin sections, and fixed on a sample stage using conductive adhesive. Appropriate scanning intervals and times are set, and the laser ablation system is used to perform point-by-point scanning of the samples.
Preferably, in Step 4, the ablated sample gases are transferred to an MC-ICPMS instrument, where different isotopes of elements are separated by ionization, and their concentrations and ratios are measured. The data are subjected to isotope ratio calculations and error correction, and U-Pb ages are obtained based on the analysis results.
Preferably, in Step 5, the solid bitumen samples are crushed, ground, and dried.
Solid bitumen samples are prepared, and the reflectance is calculated using the method of calculating reflectance from organic matter grayscale values. First, a linear regression equation between the reflectance values and grayscale values of standard substances is obtained. Grayscale value data are collected using a polarizing microscope, and the reflectance is calculated from the average grayscale values. At the same time, the type, content, and pyrolysis temperature characteristics of the organic matter are analyzed.
Preferably, in Step 6, the measured data are integrated, combined with the regional tectonic evolution history, burial history, and thermal evolution history, especially the timing and characteristics of volcanic and tectonic movements, to determine the formation background and timing of the volcaniclastic rock hydrocarbon reservoirs. Furthermore, a dynamic coupling model of the evolution and hydrocarbon accumulation process of volcaniclastic rock reservoirs is constructed to further determine the hydrocarbon accumulation timing in volcaniclastic rocks.
Compared to existing technologies, the beneficial effects of this invention are as follows: This invention is based on the analysis of properties and characteristics of mineral components such as fluid inclusions in minerals, combined with mineral dating methods. It can precisely determine the hydrocarbon accumulation timing in volcaniclastic rocks, effectively improving the reliability of methods for discerning the coupling relationship between diagenesis and hydrocarbon accumulation conditions 5 in volcaniclastic rocks. This provides significant methodological guidance and technical support for the study of hydrocarbon enrichment patterns in volcaniclastic rock reservoirs.
Description of the Figure
FIG.1: flowchart of the method provided by this invention.
Specific Embodiments
The following is a clear and complete description of the technical solutions in the embodiments of this invention, in conjunction with the drawings in these embodiments. Obviously, the described embodiments are just a part of the embodiments of this invention and not all of them. Based on these embodiments of this invention, all other embodiments obtained by those skilled in the art without creative efforts fall within the protection scope of this invention.
Please refer to FIG.1, an embodiment provided by this invention: A method for precisely determining the hydrocarbon accumulation timing in volcaniclastic rocks based on mineral dating and fluid inclusion synergy, includes the following steps: Step 1, systematic sampling; Step 2, studying diagenesis; Step 3, temperature measurement and compositional analysis of fluid inclusions; Step 4, dating analysis; Step 5, analysis of solid bitumen characteristics; Step 6, determining the timing of hydrocarbon accumulation;
In Step 1, representative sampling points are selected within the development layers of the volcaniclastic rocks for systematic sampling to ensure that the samples contain a variety of volcaniclastic rock types. Sampling depth and location information are recorded, followed by cleaning, drying, and screening of the collected samples.
Samples meeting the requirements are numbered and stored.
In Step 2, the sampled volcaniclastic rocks undergo laboratory analysis, including mineral composition, structural and tectonic features, to determine the types of diagenesis experienced by the volcaniclastic rocks, including compaction, cementation, and recrystallization. Based on the growth patterns, structural features, and chemical composition of minerals in the volcaniclastic rocks, the types of hydrothermal alteration experienced, such as hydrothermal alteration, hydrothermal recrystallization, and hydrothermal replacement, are determined. The diagenesis types and hydrothermal alteration types are combined to establish a sequence of hydrothermal mineral diagenesis, analyzing the symbiotic combinations, evolution, and formation mechanisms of minerals during diagenesis.
In Step 3, temperature measurement and compositional analysis are performed on fluid inclusions in transparent minerals within the fill. Transparent minerals are extracted from the fill and subjected to cleaning, drying, and preparation of fluid inclusion thin sections. Using a geological heating and cooling stage, and fluorescence analysis, the location, shape, size, type, and distribution characteristics of fluid inclusions in the minerals are determined. Their homogenization temperatures and freezing point temperatures are measured, and the salinity and pressure conditions are calculated, ultimately inferring the timing and environment of diagenesis and hydrothermal activity. The fluid inclusion thin section samples are placed in a laser
Raman spectrometer to determine the composition of the inclusions by measuring the characteristic Raman spectral peaks of the inclusions.
In Step 4, in-situ micro-area U-Pb dating analysis is conducted on carbonate rock minerals and other accessory minerals using the LA-MC-ICPMS method.
Representative samples are selected, cut into thin sections, and fixed on a sample stage using conductive adhesive. Appropriate scanning intervals and times are set, and the laser ablation system is used to perform point-by-point scanning of the samples.
The ablated sample gases are transferred to an MC-ICPMS instrument to separate different isotopes of elements by ionization, measuring their concentrations and ratios.
Data are subjected to isotope ratio calculations and error correction to obtain U-Pb ages.
In Step 5, systematic analysis of characteristics such as the reflectance of solid bitumen is conducted. Solid bitumen samples are crushed, ground, and dried. The solid bitumen is made into sample slices, and the reflectance is calculated using the method of calculating reflectance from organic matter grayscale values. First, a linear regression equation between the reflectance values and grayscale values of standard substances is obtained. Grayscale value data are collected using a polarizing microscope, and the reflectance is calculated from the average grayscale values. The type, content, and pyrolysis temperature characteristics of the organic matter are also analyzed.
In Step 6, the measured data are integrated, combined with the regional tectonic evolution history, burial history, and thermal evolution history, especially the timing and characteristics of volcanic and tectonic movements, to determine the formation background and timing of the volcaniclastic rock hydrocarbon reservoirs. Furthermore, a dynamic coupling model of the evolution and hydrocarbon accumulation process of volcaniclastic rock reservoirs is constructed to further determine the hydrocarbon accumulation timing in volcaniclastic rocks.
Based on the above, the advantages of this invention are as follows: This invention analyzes the temperature, environmental pressure, and specific composition of fluid inclusions in minerals, thereby understanding the characteristics and patterns of diagenesis and the sequence of hydrothermal mineral diagenesis. it further determines the diagenesis and the sequence of hydrothermal mineral diagenesis, more effectively identifying high-quality reservoirs and hydrocarbon deposits,
determining the location and depth of potential hydrocarbon reservoirs, and inferring the distribution patterns and characteristics of hydrocarbon reservoirs. By conducting
U-Pb dating on the micro-areas of minerals, high-precision geological age data can be obtained, revealing the formation and evolutionary history of volcaniclastic rocks. By analyzing characteristics such as the reflectance of solid bitumen, the maturation and evolution patterns of solid bitumen can be further confirmed. Integrating and systematically analyzing these data, the hydrocarbon accumulation timing in volcaniclastic rocks can be precisely determined, effectively improving the reliability of methods for discerning the coupling relationship between diagenesis and hydrocarbon accumulation conditions in volcaniclastic rocks, providing significant methodological guidance and technical support for the study of hydrocarbon enrichment patterns in volcaniclastic rock reservoirs.
For those skilled in the art, it is clear that this invention is not limited to the details of the above exemplary embodiments and can be implemented in other specific forms without departing from the spirit or essential characteristics of the invention.
Therefore, in any respect, the embodiments should be considered as exemplary and non-limiting, and the scope of the invention is defined by the appended claims rather than the above description, thus intending to include all changes that fall within the meaning and range of equivalency of the claims within the invention. Any reference numerals in the claims should not be regarded as limiting the involved claims.

Claims (10)

ConclusiesConclusions 1. Een werkwijze voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen op basis van mineralendatering en gezamenlijke insluitsels, omvattende de volgende stappen: stap 1, systematische bemonstering; stap 2, studie van diagenese; stap 3, temperatuurmeting en samenstellingsanalyse van vloeistofinsluitsels; stap 4, dateringsanalyse; stap 5, analyse van de kenmerken van vast bitumen; stap 6, het bepalen van de accumulatietijd; gekenmerkt door: in stap 1, systematische bemonstering van vulkanische klastische rotsen in ontwikkelde lagen; in stap 2, studie van diagenese en hydrothermale mineralendiagenetische volgorde; in stap 3, temperatuurmeting en samenstellingsanalyse van vloeistofinsluitsels in transparante mineralen van opvullingen; in stap 4, in situ microgebied U-Pb dateringsanalyse van carbonaatmineralen en andere secundaire mineralen; in stap 5, systematische analyse van reflectantie en andere kenmerken van vast bitumen; in stap 6, het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen door te combineren met de structurele geschiedenis, begraving-thermische evolutiegeschiedenis en dateringsdata, insluitsels en bitumenkenmerken.1. A method for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks from mineral dating and co-inclusions, comprising the following steps: step 1, systematic sampling; step 2, study of diagenesis; step 3, temperature measurement and compositional analysis of fluid inclusions; step 4, dating analysis; step 5, analysis of the characteristics of solid bitumen; step 6, determining the accumulation time; characterized by: in step 1, systematic sampling of volcanic clastic rocks in developed strata; in step 2, study of diagenesis and hydrothermal mineral diagenetic sequence; in step 3, temperature measurement and compositional analysis of fluid inclusions in transparent minerals of fills; in step 4, in situ microarea U-Pb dating analysis of carbonate minerals and other secondary minerals; in step 5, systematic analysis of reflectance and other characteristics of solid bitumen; in step 6, to accurately determine the time of hydrocarbon accumulation in volcanic clastic rocks by combining with the structural history, burial-thermal evolution history and dating dates, inclusions and bitumen features. 2. De werkwijze volgens conclusie 1 voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 1, het kiezen van representatieve bemonsteringspunten in ontwikkelde lagen van vulkanische klastische rotsen, systematisch bemonsteren met bepaalde intervallen en diepten om ervoor te zorgen dat de monsters verschillende types van vulkanische klastische rotsen bevatten, en het registreren van de bemonsteringsdiepte en locatie- informatie, gevolgd door het reinigen, drogen, zeven van de verzamelde monsters, en het nummeren en bewaren van de geschikte monsters.The method according to claim 1 for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 1, choosing representative sampling points in developed layers of volcanic clastic rocks, systematically sampling at certain intervals and depths to ensure ensuring that the samples contain different types of volcanic clastic rocks, and recording the sampling depth and location information, followed by cleaning, drying, sieving the collected samples, and numbering and storing the appropriate samples. 3. De werkwijze volgens conclusie 1 of 2 voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 2, het analyseren van de bemonsterde vulkanische klastische rotsen in het laboratorium, inclusief mineralensamenstelling, structuur en structurele kenmerken, het bepalen van de soorten diagenese die de vulkanische klastische rotsen hebben ondergaan, waaronder verdichting, cementatie en recristallisatie.The method according to claim 1 or 2 for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 2, analyzing the sampled volcanic clastic rocks in the laboratory, including mineral composition, structure and structural characteristics, determining the types of diagenesis that the volcanic clastic rocks have undergone, including compaction, cementation, and recrystallization. 4. De werkwijze volgens conclusie 3 voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 2, het bepalen van het type hydrothermale actie dat de vulkanische klastische rotsen hebben ondergaan op basis van de groeiwijze, structurele kenmerken en chemische samenstelling van de mineralen in de rotsen, zoals hydrothermale etsing, hydrothermale recristallisatie en hydrothermale metasomatose, en op basis van de analyseresultaten, het combineren van diagenesetypes met hydrothermale actietypes om een hydrothermale mineralendiagenetische volgorde te vestigen, het analyseren van de coëxistentie, evolutie en vormingsmechanismen van mineralen tijdens het diageneseproces.The method according to claim 3 for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 2, determining the type of hydrothermal action that the volcanic clastic rocks have undergone based on the growth habit, structural features and chemical composition of the minerals in the rocks, such as hydrothermal etching, hydrothermal recrystallization and hydrothermal metasomatosis, and based on the analysis results, combining diagenesis types with hydrothermal action types to establish a hydrothermal mineral diagenetic sequence, analyzing the coexistence, evolution and formation mechanisms of minerals during the diagenesis process. 5. De werkwijze volgens een der voorgaande conclusies voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 3, het extraheren van transparante mineralen uit opvullingen, en het reinigen, drogen en slijpen van insluitsel dunne secties, het bepalen van de positie, vorm, grootte, type en distributiekenmerken van vloeistofinsluitsels in mineralen door middel van geologische koude en hete tafels, fluorescentieanalyse, het meten van hun homogenisatietemperaturen en vriestemperaturen, en het berekenen van hun zoutgehalte en drukcondities, uiteindelijk het afleiden van de timing en omgeving van diagenese en hydrothermale actie.The method according to any one of the preceding claims for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 3, extracting transparent minerals from fills, and cleaning, drying and grinding inclusion thin sections, determining the position, shape, size, type and distribution characteristics of fluid inclusions in minerals by means of geological cold and hot tables, fluorescence analysis, measuring their homogenization temperatures and freezing temperatures, and calculating their salinity and pressure conditions, finally deriving the timing and environment of diagenesis and hydrothermal action. 6. De werkwijze volgens conclusie 5 voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 3, het plaatsen van insluitseldunne sectiemonsters in een laser-Raman-analysator, het bepalen van de samenstelling van insluitsels door het meten van kenmerkende Raman-spectrumpieken van insluitsels.The method of claim 5 for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 3, placing inclusion thin section samples in a laser Raman analyzer, determining the composition of inclusions by measuring characteristic Raman spectrum peaks of inclusions. 7. De werkwijze volgens een der voorgaande conclusies voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 4, het gebruik van de LA-MC-ICPMS-werkwijze voor in situ microgebied U-Pb dateringsanalyse van carbonaatmineralen en andere secundaire mineralen, het selecteren van representatieve monsters, het snijden ervan in dunne secties, het bevestigen ervan op het monsterplatform met geleidende lijm, het instellen van geschikte scanintervallen en scantijden, en het gebruik van het lasersysteem voor ablatie om de monsters punt voor punt te scannen.The method according to any one of the preceding claims for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 4, the use of the LA-MC-ICPMS method for in situ micro-area U-Pb dating analysis of carbonate minerals and other secondary minerals, selecting representative samples, cutting them into thin sections, attaching them to the sample platform with conductive adhesive, setting appropriate scan intervals and scan times, and using the laser ablation system to cut the samples point by point to scan. 8. De werkwijze volgens conclusie 7 voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 4, het transporteren van de geablateerde monster-gassen naar een MC-ICPMS- instrument, het ioniseren en scheiden van verschillende element-isotopen, het meten van hun concentraties en verhoudingen, en het uitvoeren van isotopenratio- berekeningen en foutcorrecties op de gegevens, het verkrijgen van U-Pb-leeftijden op basis van de analyseresultaten.The method according to claim 7 for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 4, transporting the ablated sample gases to an MC-ICPMS instrument, ionizing and separating different element isotopes, measuring their concentrations and ratios, and performing isotope ratio calculations and error corrections on the data, obtaining U-Pb ages based on the analysis results. 9. De werkwijze volgens een der voorgaande conclusies voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 5, het vermalen en drogen van vaste bitumenmonsters, het maken van monsterstukken van vast bitumen, het gebruik van de werkwijze van organische stofgrijsheidswaarden om de reflectantie te berekenen, het eerst verkrijgen van een lineaire regressievergelijking tussen de reflectantiewaarden en grijsheidswaarden van standaardmaterialen, het verzamelen van grijsheidswaardengegevens met een gepolariseerde microscoop, het nemen van het gemiddelde van de grijsheidswaarden voor reflectantieberekeningen, en het tegelijkertijd analyseren van het type, het gehalte en de pyrolysetemperatuurkenmerken van organische stof.The method according to any one of the preceding claims for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 5, grinding and drying solid bitumen samples, preparing solid bitumen sample pieces, using the method of organic matter grayness values to calculate reflectance, first obtaining a linear regression equation between the reflectance values and grayness values of standard materials, collecting grayness value data with a polarized microscope, averaging the grayness values for reflectance calculations, and simultaneously analyzing the type, content and pyrolysis temperature characteristics of organic matter. 10. De werkwijze volgens een der voorgaande conclusies voor het nauwkeurig bepalen van de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen, gekenmerkt door: in stap 6, het integreren van de gemeten gegevens, het combineren met de structurele evolutiegeschiedenis, begravingsgeschiedenis en thermische evolutiegeschiedenis van het gebied, in het bijzonder de timing en kenmerken van vulkanische en structurele bewegingen, het bepalen van de vormingsachtergrond en - tijd van vulkanische klastische rotskoolwaterstofreservoirs, en het bouwen van een dynamisch gekoppeld model van de evolutie en accumulatieprocessen van vulkanische klastische rotsreservoirs, om zo de tijd van koolwaterstofaccumulatie in vulkanische klastische rotsen verder te bepalen.The method according to any one of the preceding claims for accurately determining the time of hydrocarbon accumulation in volcanic clastic rocks, characterized by: in step 6, integrating the measured data, combining it with the structural evolution history, burial history and thermal evolution history of the area, in particular the timing and characteristics of volcanic and structural movements, determining the formation background and time of volcanic clastic rock hydrocarbon reservoirs, and building a dynamically coupled model of the evolution and accumulation processes of volcanic clastic rock reservoirs, in order to time of hydrocarbon accumulation in volcanic clastic rocks.
NL2036925A 2024-01-30 2024-01-30 Method for Precisely Determining the Hydrocarbon Accumulation Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid Inclusion Synergy NL2036925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2036925A NL2036925A (en) 2024-01-30 2024-01-30 Method for Precisely Determining the Hydrocarbon Accumulation Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid Inclusion Synergy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2036925A NL2036925A (en) 2024-01-30 2024-01-30 Method for Precisely Determining the Hydrocarbon Accumulation Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid Inclusion Synergy

Publications (1)

Publication Number Publication Date
NL2036925A true NL2036925A (en) 2024-03-12

Family

ID=90195067

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2036925A NL2036925A (en) 2024-01-30 2024-01-30 Method for Precisely Determining the Hydrocarbon Accumulation Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid Inclusion Synergy

Country Status (1)

Country Link
NL (1) NL2036925A (en)

Similar Documents

Publication Publication Date Title
AU2013308908B2 (en) Method for reconstructing the total organic carbon content from compositional modeling analysis
EP2122460B1 (en) Method for determining volume of organic matter in reservoir rock
Abrams et al. A new thermal extraction protocol to evaluate liquid rich unconventional oil in place and in-situ fluid chemistry
Agrawal et al. Molecular characterization of kerogen and its implications for determining hydrocarbon potential, organic matter sources and thermal maturity in Marcellus Shale
EP1719875B1 (en) Pyrolytic oil-productivity index method for predicting reservoir rock and oil characteristics
Liu et al. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history
Lupoi et al. Assessment of thermal maturity trends in Devonian–Mississippian source rocks using Raman spectroscopy: limitations of peak-fitting method
Hazra et al. Evaluation of shale source rocks and reservoirs
Chen et al. Generation kinetics based method for correcting effects of migrated oil on Rock-Eval data–An example from the Eocene Qianjiang Formation, Jianghan Basin, China
EP1627298B1 (en) Compositional modeling and pyrolysis data analysis methods
Hetényi et al. Stepwise Rock-Eval pyrolysis as a tool for typing heterogeneous organic matter in soils
Noah et al. Precise maturity assessment over a broad dynamic range using polycyclic and heterocyclic aromatic compounds
CN109490266B (en) Nondestructive rock sample sampling method
Faiz et al. Organic matter composition and thermal maturity evaluation of Mesoproterozoic source rocks in the Beetaloo Sub-Basin, Australia
Craddock et al. Robust determination of kerogen properties in organic-rich mudrocks via Raman Spectroscopy
NL2036925A (en) Method for Precisely Determining the Hydrocarbon Accumulation Timing in Volcaniclastic Rocks Based on Mineral Dating and Fluid Inclusion Synergy
Karg et al. Thermal maturity assessment of marine source rocks integrating Raman spectroscopy, organic geochemistry and petroleum systems modeling
Dadi et al. The use of gas data while drilling for the assessment of organic matter in Ghadames Basin (North Africa)
CN110895256A (en) Method for evaluating free hydrocarbon composition in rock sample based on FID pyrolysis
Saraswati Time resolution of the phanerozoic rock records: challenges of high-resolution palaeobiological and geochemical proxy-based interpretations
Thankan et al. Hydrocarbon fluid inclusions and source rock parameters: A comparison from two dry wells in the western offshore, India
Yitagesu et al. Prediction of volumetric shrinkage in expansive soils (role of remote sensing)
Bonetti et al. In Situ Evaluation of Oil Biodegradation in Rock Samples Through Thermal Extraction Gas Chromatography: A Case Study
Baron et al. Application of LA-ICP-MS to black stone objects used during the Iron Age in Celtic Europe
Yitagesu et al. Spectroscopy to characterize expansive soils