NL2034627A - Method and device for improving bulk density of titanium dioxide - Google Patents

Method and device for improving bulk density of titanium dioxide Download PDF

Info

Publication number
NL2034627A
NL2034627A NL2034627A NL2034627A NL2034627A NL 2034627 A NL2034627 A NL 2034627A NL 2034627 A NL2034627 A NL 2034627A NL 2034627 A NL2034627 A NL 2034627A NL 2034627 A NL2034627 A NL 2034627A
Authority
NL
Netherlands
Prior art keywords
material transport
transport cylinder
inner cavity
filter cloth
side wall
Prior art date
Application number
NL2034627A
Other languages
Dutch (nl)
Other versions
NL2034627B1 (en
Inventor
Gong Tianna
Liu Hongjin
Jiang Ge
Ma Mingjian
Xu Tianlong
Liu Lin
Original Assignee
Panzhihua Haifengxin Chemical Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panzhihua Haifengxin Chemical Ind Co Ltd filed Critical Panzhihua Haifengxin Chemical Ind Co Ltd
Publication of NL2034627A publication Critical patent/NL2034627A/en
Application granted granted Critical
Publication of NL2034627B1 publication Critical patent/NL2034627B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G33/00Screw or rotary spiral conveyors
    • B65G33/08Screw or rotary spiral conveyors for fluent solid materials
    • B65G33/14Screw or rotary spiral conveyors for fluent solid materials comprising a screw or screws enclosed in a tubular housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G33/00Screw or rotary spiral conveyors
    • B65G33/24Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G33/00Screw or rotary spiral conveyors
    • B65G33/24Details
    • B65G33/26Screws
    • B65G33/265Screws with a continuous helical surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G33/00Screw or rotary spiral conveyors
    • B65G33/24Details
    • B65G33/32Adaptations of bearings or couplings for supporting and connecting screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/04Bulk

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

The present disclosure provides a method and a device for improving a bulk density of titanium dioxide. The method for improving the bulk density of the titanium dioxide includes the following steps of: arranging filter cloth on an outer side wall of a circumference of a material conveying cylinder, the filter cloth being arranged in an inner cavity of a vacuum tank and corresponding to air vents; installing a vacuum pump on the vacuum tank through a pipeline, vacuumizing the inner cavity of the vacuum tank through the vacuum pump, air in the inner cavity of the material conveying cylinder and the filter cloth entering the vacuum tank through the air vents, vacuumizing the inner cavity of the material conveying cylinder, a powder material being intercepted by the filter cloth to leave in the material conveying cylinder, and removing most of air in the material.

Description

METHOD AND DEVICE FOR IMPROVING BULK DENSITY OF TITANIUM
DIOXIDE
TECHNICAL FIELD
[0001] The present disclosure relates to the technical field for producing titanium dioxide, in particular to a method and a device for improving a bulk density of titanium dioxide.
BACKGROUND
[0002] Titanium dioxide is an important inorganic chemical pigment, with a main component of titanium dioxide. Two process routes are provided for the production of the titanium dioxide: a sulfuric acid process and a chlorination process.
[0003] The existing titanium dioxide has a more fluffy material after being crushed through air flow, and a bulk density is usually 0.4-0.5 g/cm3. A packaging damage on a valve opening is easily caused during a packaging and extruding process.
SUMMARY
[0004] The purpose of the present disclosure is to provide a method and a device for improving a bulk density of titanium dioxide, to solve the problem that the existing titanium dioxide has a more fluffy material after being crushed through air flow, a bulk density is usually 0.4-0.5 g/cm3, and a packaging damage on a valve opening is easily caused during a packaging and extruding process in the above background art.
[0005] In order to implement the above purpose, the present disclosure provides the following technical solution: a method for improving a bulk density of titanium dioxide, and the method for improving the bulk density of the titanium dioxide includes the following steps of:
[0006] S1: forming air vents that are in an arc shape on an outer side wall of a circumference of a material conveying cylinder, and the air vents communicating with an inner cavity of the material conveying cylinder;
[0007] S2: arranging a vacuum tank on the outer side wall of the circumference of the material conveying cylinder, and the vacuum tank communicating with the air vents;
[0008] S3: arranging filter cloth on the outer side wall of the circumference of the material conveying cylinder, the filter cloth being arranged in an inner cavity of the vacuum tank, and the filter cloth corresponding to the air vents; and
[0009] S4: installing a vacuum pump on the vacuum tank through a pipeline, vacuumizing the inner cavity of the vacuum tank through the vacuum pump, air in the inner cavity of the material conveying cylinder and the filter cloth entering the vacuum tank through the air vents, vacuumizing the inner cavity of the material conveying cylinder, a powder material being intercepted by the filter cloth to leave in the material conveying cylinder, and removing most of air in the material by vacuumizing the material conveying cylinder, thereby improving the bulk density of the material.
[0010] A device for improving a bulk density of titanium dioxide, including:
[0011] a material convening cylinder assembly, which includes a material conveying cylinder, air vents that are in an arc shape are formed on an outer side wall of a circumference of the material conveying cylinder, the air vents are arranged upwards, and the air vents communicate with an inner cavity of the material conveying cylinder;
[0012] a vacuum tank, which is arranged on the outer side wall of the circumference of the material conveying cylinder, and the vacuum tank is arranged outside the air holes; and
[0013] a filter cloth assembly, which includes filter cloth arranged on the outer side wall of the circumference of the material conveying cylinder in an arc shape and corresponding to the air holes, and bolts symmetrically installed at two sides of the filter cloth and connected to the material conveying cylinder.
[0014] Preferably, the material conveying cylinder assembly further includes a feeding port that is arranged at a top end face of the outer side wall of the circumference of the material conveying cylinder, a discharging port that is arranged on a bottom of the outer side wall of the circumference of the material conveying cylinder and keeps away from one side of the feeding port, and a bearing that is arranged on the material conveying cylinder and closed to an end face of the discharging port.
[0015] Preferably, further including a power mechanism, and the power mechanism includes a motor, a speed reducer that is installed on an output shaft of the motor, and a bearing block that is installed on an output shaft of the speed reducer, arranged on the material conveying cylinder and closed to the end face the feeding port.
[0016] Preferably, further including a material conveying shaft assembly, and the material conveying shaft assembly includes a material conveying shaft that is arranged in the inner cavity of the material conveying cylinder, one end of the material conveying shaft is connected to a bearing while the other end is connected to the output shaft of the speed reducer through the bearing block, and a material conveying blade that is helically arranged on an outer side wall of a circumference of the material conveying shaft and arranged in the inner cavity of the material conveying cylinder.
[0017] Compared with the prior art, the present disclosure has the following beneficial effects: the method and device for improving the bulk density of the titanium dioxide may vacuumize the inner cavity of the material conveying cylinder through a vacuumizing form, so as to remove most of air in the material and to improve the bulk density of the material.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] FIG. 1 is a structure schematic diagram of the present disclosure;
[0019] FIG. 2 is a structure schematic diagram of a material conveying cylinder assembly of the present disclosure;
[0020] FIG. 3 is a structure schematic diagram of a power mechanism of the present disclosure;
[0021] FIG. 4 is a structure schematic diagram of a material conveying shaft assembly of the present disclosure;
[0022] FIG. 51s a profile view of a vacuum tank of the present disclosure; and
[0023] FIG. 6 is a structure schematic diagram of a filter cloth assembly of the present disclosure.
[0024] In the drawing: 100. Material conveying cylinder assembly, 110. Material conveying cylinder, 111. Air vent, 120. Feeding port, 130. Discharging port, 140.
Bearing, 200. Power mechanism, 210. Motor, 220. Speed reducer, 230. Bearing block, 300. Material conveying shaft assembly, 310 Material conveying shaft, 320. Material conveying blade, 400. Vacuum tank, 500. Filter cloth assembly, 510. Filter cloth, 520.
Bolt.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[0025] The technical solutions in the embodiments of the present disclosure are clearly and completely elaborated below in combination with the drawings. It is apparent that the described embodiments are only a part of the embodiments of the present disclosure but not all. Based on the embodiments of the present disclosure, all the other embodiments obtained by those of ordinary skill in the art on the premise of not contributing creative effort should belong to the protection scope of the present disclosure.
[0026] The present disclosure provides a method for improving a bulk density of titanium dioxide, an inner cavity of a material conveying cylinder is vacuumized through a vacuumizing mode, so as to remove most of air in the material and to improve the bulk density of the material. The method for improving the bulk density of the titanium dioxide includes the following steps:
[0027] SI: forming air vents that are in an arc shape on an outer side wall of a circumference of a material conveying cylinder, and the air vents communicating with an inner cavity of the material conveying cylinder;
[0028] S2: arranging a vacuum tank on the outer side wall of the circumference of the material conveying cylinder, and the vacuum tank communicating with the air vents;
[0029] S3: arranging filter cloth on the outer side wall of the circumference of the material conveying cylinder, the filter cloth being arranged in an inner cavity of the vacuum tank, and the filter cloth corresponding to the air vents; and
[0030] S4: installing a vacuum pump on the vacuum tank through a pipeline, vacuumizing the inner cavity of the vacuum tank through the vacuum pump, air in the inner cavity of the material conveying cylinder and the filter cloth entering the vacuum tank through the air vents, vacuumizing the inner cavity of the material conveying cylinder, a powder material being intercepted by the filter cloth to leave in the material conveying cylinder, and removing most of air in the material by vacuumizing the material conveying cylinder, thereby improving the bulk density of the material.
[0031] The present disclosure provides a device for improving a bulk density of titanium dioxide, referring to FIG. | and FIG. 5, the device includes a material conveying cylinder assembly 100, a power mechanism 200, a material conveying shaft assembly 300, a vacuum tank 400 and a filter cloth assembly 500;
[0032] Please refer to FIGs. 1-2 and FIG. 5, the material conveying cylinder assembly 100 includes a material conveying cylinder 110, air vents 111 that are in an arc shape are formed on an outer side wall of a circumference of the material conveying cylinder 110, the air vents 111 are arranged upwards, and the air vents 111 communicate with an inner cavity of the material conveying cylinder 110; the material conveying cylinder assembly 100 further includes a feeding port 120 that is arranged at a top end face of the outer side wall of the circumference of the material conveying cylinder 110, a discharging port 130 that is arranged on a bottom of the outer side wall of the circumference of the material conveying cylinder 110 and keeps away from one side of 5 the feeding port 120, and a bearing 140 that is arranged on the material conveying cylinder 110 and closed to an end face of the discharging port 130, and materials enter the inner cavity of the material conveying cylinder 110 through the feeding port 120.
[0033] Please refer to FIGs. 1-3, the power mechanism 200 includes a motor 210, a speed reducer 220 that is installed on an output shaft of the motor 210, and a bearing block 230 that is installed on an output shaft of the speed reducer 220, arranged on the material conveying cylinder 110 and closed to an end face of the feeding port 120.
[0034] Please refer to FIGs. 1-4, the material conveying shaft assembly 300 includes a material conveying shaft 310 that is arranged in the inner cavity of the material conveying cylinder 110, one end of the material conveying shaft 310 is connected to a bearing 140 while the other end is connected to an output shaft of the speed reducer 220 through the bearing block 230, and a material conveying blade 320 that is helically arranged on an outer side wall of a circumference of the material conveying shaft 310 and arranged in the inner cavity of the material conveying cylinder 110. The output shaft of the speed reducer 220 is driven to rotate through the motor 210, the material conveying shaft 310 is driven to rotate through the output shaft of the speed reducer 220, the material conveying blade 320 is driven to rotate through the material conveying shaft 310, materials entering the material conveying cylinder 110 are driven to move to the discharging port 130 through the material conveying blade 320, and the materials are discharged through the discharging port 130.
[0035] Please refer to FIGs. 1-2 and FIG. 5 again, the vacuum tank 400 is arranged on an outer side wall of a circumference of the material conveying cylinder 110, the vacuum tank 400 is arranged outside the air vents 111, one end, away from the material conveying cylinder 110, of the vacuum tank 400 is provided with a vacuum pump through a pipeline, the inner cavity of the vacuum tank 400 is vacuumized through the vacuum pump, air in the inner cavity of the material conveying cylinder 110 enters the inner cavity of the vacuum tank 400 through the air vents 111, and the air is pumped out through the vacuum pump, so as to remove most of air in the material and improve the bulk density of the material. The bulk density of the titanium dioxide may be improved to 0.6-0.8 g/cm 3.
[0036] Please refer to FIGs. 1-2 and FIGs. 5-6, the filter cloth assembly 500 includes filter cloth arranged on the outer side wall of the circumference of the material conveying cylinder 110 in an arc shape and corresponding to the air holes 111, and bolts 520 symmetrically installed at two sides of the filter cloth 510 and connected to the material conveying cylinder 110. The filter cloth 510 is fixedly installed on the outer side wall of the circumference of the material conveying cylinder 110 through the bolts 520, the filter cloth 510 covers the air vents 111, the radian of the filter cloth 510 is 120° (the great angle will increase the installing difficulty of the filter cloth, and if the angle is small, the opening size is small, and the improvement of the bulk density is limited), and when the inner cavity of the vacuum tank 400 is vacuumized, the air is filtered through the filter cloth 510, so that the material leaves in the inner cavity of the material conveying cylinder 110.
[0037] Although the present disclosure is described above with reference to the embodiments, various improvements may be made and some components may be replaced with equivalents without departing from the scope of the present disclosure.
Especially, various features in the embodiments disclosed by the present disclosure may be mutually combined for use in any form as long as there is no structural conflict, and not performing a exhaustive description on these combinations in the specification is only for the consideration of omitting the length and saving materials. Therefore, the present disclosure is not limited to the specific embodiments in this text, but includes all technical solutions falling in the scope of the claims.

Claims (5)

Conclusies L Werkwijze voor het verbeteren van de bulkdichtheid van titaandioxide, die de volgende stappen omvat: S1: het vormen van luchtopeningen die in een boogvorm zijn op een buitenste zijwand van een omtrek van een materiaaltransportcilinder, en waarbij de luchtopeningen in verbinding staan met een binnenste holte van de materiaaltransportcilinder; S2: het rangschikken van een vacuümtank op de buitenste zijwand van de omtrek van de materiaaltransportcilinder, en waarbij de vacuümtank in verbinding staat met de luchtopeningen; S3: het rangschikken van filterdoek op de buitenste zijwand van de omtrek van de materiaaltransportcilinder, waarbij het filterdoek gerangschikt is in een binnenste holte van de vacuümtank en het filterdoek overeenkomt met de luchtopeningen; en S4: het installeren van een vacuümpomp op de vacuümtank via een pijpleiding, het vacuümzuigen van de binnenste holte van de vacuümtank via de vacuümpomp, waardoor lucht in de binnenste holte van de materiaaltransportcilinder en het filterdoek de vacuümtank binnenkomt via de ventilatieopeningen, het vacuümzuigen van de binnenste holte van de materiaaltransportcilinder, waarbij een poedermateriaal onderschept wordt door het filterdoek om in de materiaaltransportcilinder achter te laten, en het verwijderen van het grootste deel van de lucht in het materiaal door het vacuümzuigen van de materiaaltransportcilinder, waardoor een bulkdichtheid van het materiaal verbeterd wordt.Conclusions L Method for improving the bulk density of titanium dioxide, which includes the following steps: S1: forming air openings that are in an arc shape on an outer side wall of a periphery of a material transport cylinder, and wherein the air openings communicate with an inner cavity of the material transport cylinder; S2: arranging a vacuum tank on the outer side wall of the periphery of the material transport cylinder, and with the vacuum tank communicating with the air openings; S3: arranging filter cloth on the outer side wall of the periphery of the material transport cylinder, wherein the filter cloth is arranged in an inner cavity of the vacuum tank and the filter cloth corresponds to the air openings; and S4: installing a vacuum pump on the vacuum tank through a pipeline, vacuuming the inner cavity of the vacuum tank through the vacuum pump, allowing air into the inner cavity of the material transport cylinder and the filter cloth to enter the vacuum tank through the ventilation holes, vacuuming the inner cavity of the material transport cylinder, where a powder material is intercepted by the filter cloth to be left in the material transport cylinder, and removing most of the air in the material by vacuum suction of the material transport cylinder, thereby improving a bulk density of the material is becoming. 2. Inrichting voor het verbeteren van een bulkdichtheid van titaandioxide, die het volgende omvat: een materiaaltransportcilindersamenstel (100), dat het volgende omvat: een materiaaltransportcilinder (110), luchtopeningen (111) die in een boogvorm zijn gevormd zijn op een buitenste zijwand van een omtrek van de materiaaltransportcilinder (110), waarbij de luchtopeningen (111) naar boven gerangschikt zijn, en de luchtopeningen (111) in verbinding staan met een binnenste holte van de materiaaltransportcilinder (110); een vacuümtank (400), die gerangschikt is op de buitenste zijwand van de omtrek van de materiaaltransportcilinder (110), en de vacuümtank (400) gerangschikt is buiten de luchtgaten (111); en een filterdoeksamenstel (500), dat het volgende omvat: een filterdoek (510) die gerangschikt is op de buitenste zijwand van de omtrek van de materiaaltransportcilinder (110) in een boogvorm en overeenkomt met de luchtgaten (111), en bouten (520) die symmetrisch geinstalleerd zijn aan twee zijden van het filterdoek (510) en verbonden zijn met de materiaaltransportcilinder (110).2. Device for improving a bulk density of titanium dioxide, comprising: a material transport cylinder assembly (100), comprising: a material transport cylinder (110), air vents (111) formed in an arc shape on an outer side wall of an outline of the material transport cylinder (110), wherein the air openings (111) are arranged upwardly, and the air openings (111) communicate with an inner cavity of the material transport cylinder (110); a vacuum tank (400) arranged on the outer side wall of the periphery of the material transport cylinder (110), and the vacuum tank (400) arranged outside the air holes (111); and a filter cloth assembly (500), which includes: a filter cloth (510) arranged on the outer side wall of the periphery of the material transport cylinder (110) in an arc shape and corresponding to the air holes (111), and bolts (520) which are symmetrically installed on two sides of the filter cloth (510) and connected to the material transport cylinder (110). 3. Inrichting voor het verbeteren van de bulkdichtheid van het titaandioxide volgens conclusie 2, waarbij het materiaaltransportcilindersamenstel (100) verder het volgende omvat: een toevoerpoort (120) die gerangschikt is aan een boveneindvlak van de buitenste zijwand van de omtrek van de materiaaltransportcilinder (110), een afvoerpoort (130) die gerangschikt is op een bodem van de buitenste zijwand van de omtrek van de materiaaltransportcilinder (110) en weghoudt van een zijde van de toevoerpoort (120), en een lager (140) dat gerangschikt is op de materiaaltransportcilinder (110) en gesloten is naar een eindvlak van de afvoerpoort (130).The titanium dioxide bulk density improving device of claim 2, wherein the material transport cylinder assembly (100) further comprises: a supply port (120) arranged at an upper end surface of the outer side wall of the periphery of the material transport cylinder (110) ), a discharge port (130) arranged on a bottom of the outer side wall of the periphery of the material transport cylinder (110) and away from a side of the supply port (120), and a bearing (140) arranged on the material transport cylinder (110) and is closed to an end face of the discharge port (130). 4. Inrichting voor het verbeteren van de bulkdichtheid van titaandioxide volgens conclusie 3, die verder het volgende omvat: een aandrijfmechanisme (200), en waarbij het aandrijfmechanisme (200) het volgende omvat: een motor (210), een snelheidsreductor (220) die geïnstalleerd is op een uitgaande schacht van de motor (210), en een lagerblok (230) dat geïnstalleerd is op een uitgaande schacht van de snelheidsreductor (220), die gerangschikt is op de materiaaltransportcilinder (110) en gesloten is naar het eindvlak van de voedingspoort (120).The titanium dioxide bulk density improving device according to claim 3, further comprising: a driving mechanism (200), and wherein the driving mechanism (200) comprises: a motor (210), a speed reducer (220) installed on an output shaft of the motor (210), and a bearing block (230) installed on an output shaft of the speed reducer (220), which is arranged on the material transport cylinder (110) and closed to the end face of the power port (120). 5. Inrichting voor het verbeteren van de bulkdichtheid van titaandioxide volgens conclusie 4, die verder het volgende omvat: een materiaaltransportschachtsamenstel (300), en waarbij het materiaaltransportschachtsamenstel (300) een materiaaltransportschacht (310) omvat die gerangschikt is in de binnenste holte van de materiaaltransportcilinder (110), waarbij er één uiteinde van de materiaaltransportschacht (310) verbonden is met het lager (140) terwijl het andere uiteinde verbonden is met de uitgaande schacht van de snelheidsreductor (220) door het lagerblok (230), en een materiaaltransportblad (320) dat spiraalvormig gerangschikt is op een buitenste zijwand van de omtrek van de materiaaltransportschacht (310) en gerangschikt is in de binnenste holte van de materiaaltransportcilinder (110).The titanium dioxide bulk density improving device of claim 4, further comprising: a material transport shaft assembly (300), and wherein the material transport shaft assembly (300) includes a material transport shaft (310) arranged in the inner cavity of the material transport cylinder (110), wherein one end of the material transport shaft (310) is connected to the bearing (140) while the other end is connected to the output shaft of the speed reducer (220) through the bearing block (230), and a material transport blade (320 ) which is spirally arranged on an outer side wall of the periphery of the material transport shaft (310) and arranged in the inner cavity of the material transport cylinder (110).
NL2034627A 2022-08-30 2023-04-19 Method and device for improving bulk density of titanium dioxide NL2034627B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211054725.XA CN115321115A (en) 2022-08-30 2022-08-30 Method and device for increasing bulk density of titanium dioxide

Publications (2)

Publication Number Publication Date
NL2034627A true NL2034627A (en) 2024-03-05
NL2034627B1 NL2034627B1 (en) 2024-04-19

Family

ID=83927902

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2034627A NL2034627B1 (en) 2022-08-30 2023-04-19 Method and device for improving bulk density of titanium dioxide

Country Status (2)

Country Link
CN (1) CN115321115A (en)
NL (1) NL2034627B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299640A (en) * 1988-05-30 1989-12-04 Mitsubishi Kasei Corp Deaerator for particulate matter
CA1309954C (en) * 1987-07-29 1992-11-10 Yasuo Yamada Deaerator for particulates
WO2011114468A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Photocatalyst filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1309954C (en) * 1987-07-29 1992-11-10 Yasuo Yamada Deaerator for particulates
JPH01299640A (en) * 1988-05-30 1989-12-04 Mitsubishi Kasei Corp Deaerator for particulate matter
WO2011114468A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Photocatalyst filter

Also Published As

Publication number Publication date
CN115321115A (en) 2022-11-11
NL2034627B1 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
CN214878521U (en) Dry-mixing feeding system
NL2034627B1 (en) Method and device for improving bulk density of titanium dioxide
CN209350688U (en) A kind of energy-saving thin film leftover material recyclable device
CN213648393U (en) Cooling device for processing building polyurethane composite board
CN218402941U (en) Corrugated medium conveyor
CN116351178A (en) Wet impurity removal zinc oxide dust treatment device and method
CN216031800U (en) Cutting device for PPO plastic granulation
CN113859900B (en) Dust removal and noise reduction device for powder metallurgy powder preparation
CN212101143U (en) Lithium ion battery die cutting waste material winding device
CN209699699U (en) A kind of vacuum forming machine of calendering formation
CN217296376U (en) Vacuum suction machine
CN110949699A (en) Automatic change vacuum feeding bagging apparatus
CN218930741U (en) Improved generation mud transmission device and mud hold utensil
CN215206912U (en) Sealed screw conveyer is used in snakehead feed production
CN217704599U (en) Raw material extrusion molding device for waterproof board for railway tunnel
CN218809206U (en) Material conveying and conveying dustproof device
CN218809059U (en) Positive-pressure discharging conveying device capable of improving discharging speed
CN213766786U (en) Cooling device for cooling materials
CN220392712U (en) Elevator base convenient to maintain
CN218342603U (en) Feed arrangement is used in rubber product production
CN103625940A (en) Clammy material loader
CN218465114U (en) Paper passing rack for food clutch production
CN212221190U (en) Vacuumizing dewatering hopper device
CN212681859U (en) Automatic cleaning machine for roller glass particle acid liquor
CN218664268U (en) Closed material conveying device for mixing machine