NL2033396A - Test device and method for measuring frictional resistance of thixotropic mud - Google Patents

Test device and method for measuring frictional resistance of thixotropic mud Download PDF

Info

Publication number
NL2033396A
NL2033396A NL2033396A NL2033396A NL2033396A NL 2033396 A NL2033396 A NL 2033396A NL 2033396 A NL2033396 A NL 2033396A NL 2033396 A NL2033396 A NL 2033396A NL 2033396 A NL2033396 A NL 2033396A
Authority
NL
Netherlands
Prior art keywords
box
loading
sliding
frictional resistance
concrete
Prior art date
Application number
NL2033396A
Other languages
Dutch (nl)
Other versions
NL2033396B1 (en
Inventor
Zhou Xionghao
Wang Yebin
Wang Yin
Yu Kun
Zhang Meng
An Gangjian
Zhang Kunyong
Fu Juye
Sun Bin
Yuan Qihu
Yuan Zhengpu
Original Assignee
China Railway No 4 Group Co Ltd
The Fourth Eng Co Ltd Of Ctce Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway No 4 Group Co Ltd, The Fourth Eng Co Ltd Of Ctce Group filed Critical China Railway No 4 Group Co Ltd
Publication of NL2033396A publication Critical patent/NL2033396A/en
Application granted granted Critical
Publication of NL2033396B1 publication Critical patent/NL2033396B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A. test apparatus and. method for measuring the frictional resistance of a thixotropic mud, the test apparatus comprising: a test platform. A. prefabricated concrete block is filled in a sliding box and is used for simulating an on—site reinforced concrete box culvert, and a thixotropic mud is spread on the surface of the concrete. A loading apparatus is loaded above the concrete along the longitudinal direction, and a soil sample is filled in the loading apparatus, in order to simulate an overlying soil mass on the box culvert in a jacking construction process, and. once loaded, the soil sample is in contact with. the thixotropic mud. A horizontal force gauge is horizontally fixed onto a side portion of the loading apparatus, and a baffle facing the horizontal force gauge is arranged on the test platform. The sliding box is driven to slide along the test platform towards the baffle, and the baffle blocks the horizontal force gauge, so as to produce sliding displacement between the loading apparatus and the sliding box, and the frictional resistance between the soil sample and the concrete is displayed by means of the horizontal force gauge, thereby simulating the interactions between a box culvert, mudJ and. overlying' soil in. the box culvert jacking process.

Description

No. P141537NL00
TEST DEVICE AND METHOD FOR MEASURING FRICTIONAL RESISTANCE
OF THIXOTROPIC MUD
BACKGROUND Field of the Invention
The present invention is in the field of thixotropic mud evaluation, and particularly relates to test device and method for measuring the frictional resistance of thixotropic mud.
Background Information
With the rapid development of urban modernization in China, Construction of Box Jacking with Pipe Roof is widely used in urban underground space development. As an indispensable material in Construction of Box Jacking with
Pipe Roof, thixotropic mud can not only play a role in reducing resistance lubrication, but also play a supporting role in reducing settlement. Therefore, it is very important to accurately determine the frictional resistance of thixotropic mud, effectively evaluate the drag reduction effect of thixotropic mud, and select the appropriate proportion of thixotropic mud for engineering. The existing test device for measuring the frictional resistance of thixotropic mud is complex and the operation process is complicated, so it is difficult to accurately measure the true frictional resistance.
Accordingly, it is necessary to provide an improved solution to the above-mentioned deficiencies of the prior art.
SUMMARY
In order to achieve the above object, the present invention provides the following technical solutions: a test device for measuring frictional resistance of thixotropic mud, the test device comprising: a test platform; a sliding box where a concrete is filled in and is used for simulating an on-site box culvert, and a thixotropic mud is spread on the surface of concrete; a loading apparatus is loaded above the concrete along longitudinal direction, and a soil sample is filled in the loading apparatus, in order to simulate an overlying soll mass on the box culvert in a Jacking construction process, the soil sample is in contact with the thixotropic mud; a horizontal force gauge is horizontally fixed onto a side portion of the loading apparatus, and a baffle facing the horizontal force gauge is arranged on the test platform, the sliding box is driven to slide along the test platform towards the baffle, and the baffle blocks the horizontal force gauge, so as to produce sliding displacement between the loading apparatus and the sliding box, and the frictional resistance between the soil sample and the concrete is displayed by means of the horizontal force gauge, thereby simulating the interactions between a box culvert and overlying soil in the box culvert jacking process.
Advantageous Effects:
By using the device and method for measuring the frictional resistance of thixotropic mud according to the present invention, the problem of loss of thixotropic mud during the test can be prevented, not only the overlying soil pressure of the on-site box culvert can be simulated, but also the jacking speed of the box culvert can be simulated, the magnitude of the frictional resistance of thixotropic mud can be accurately measured, and the drag reduction effect of thixotropic mud can be accurately evaluated, so that a suitable proportion of drag reduction mud is recommended for the on-site construction, and the volume is small, the weight is light, the operation is convenient and the portability is convenient.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a structure diagram of the test device according to the detailed embodiment of the present invention.
Fig. 2 is a installation diagram of the loading frame according to the detailed embodiment of the present invention.
In the figures, 1: test platform; 2: sliding box; 3: driving device; 4: loading box; 5: loading frame; 6: vertical deformation dial test indicator; 7: horizontal force gauge; 8: lever; 9: weight; 10: sand; 11: waterproof plate; 12: concrete; 13: thixotropic mud; 14: soil sample; 15: water permeable plate; 16: loading plate; 17: fixing plate; 18: baffle; 19: upright ; 20: hinge shaft; 21: roller; 22: balance block; 23: sliding rod.
DETAILED DESCRIPTION OF EMBODIMENTS
As shown in Figs. 1-2, a test device for measuring frictional resistance of thixotropic mud, the test device comprising: a test platform 1 having at least one smooth upper surface for placing a sliding box 2; the sliding box 2, which is used for simulating an on-site box culvert, placed on the upper surface of the test platform 1 and can slide along the upper surface of the test platform 1, and a concrete 12 is filled in the sliding box 2 and a thixotropic mud 13 is spread on the surface of concrete 12; a loading apparatus is loaded above the concrete 12 along longitudinal direction, and a soil sample 14,which is preferably obtained by sampling at the on-site construction, so as to ensure that the humidity and density of the soil sample 14 are consistent at the on-site construction to the maximum extent, is filled in the loading apparatus, and once loaded, in order to simulate an overlying soil mass on the box culvert in a Jacking construction process, the soil, the mud and the concrete block is contacted; a horizontal {force gauge 7 is horizontally fixed onto a side portion of the loading apparatus, and a baffle 18 facing the horizontal force gauge 7 is arranged on the test platform 1, the sliding box 2 is driven to slide along the test platform 1 towards the baffle 18, and the baffle 18 blocks the horizontal force gauge 7, so as to produce sliding displacement between the loading apparatus and the sliding box 2, and the frictional resistance between the soil sample 14 and the concrete 12 is displayed by means of the horizontal force gauge 7, thereby simulating the interactions between a box culvert and overlying soil in the box culvert jacking process after the thixotropic mud 13 is injected. Wherein, the data showed on the horizontal force gauge 7 is the frictional resistance between the soil sample 14 and the concrete 12 after being filled with the thixotropic mud 13, thereby simulating the interactions between a box culvert, mud, and overlying soil in the box culvert jacking process, and then the drag reduction effect of the thixotropic mud 13 is evaluated. Wherein, the concrete 1s a prefabricated concrete block.
In another alternative embodiment, the loading apparatus comprises a loading box 4 and a loading plate 16 which is slidably fitted inside the loading box 4 along the longitudinal direction, and the soil sample 14 is filled between the loading plate 14 and the thixotropic mud 13 in the loading box 4; the loading box 4 is placed above the concrete 12 and the thixotropic mud 13, and at least the length in the driving direction of the sliding box 2 is less than the length corresponding to the inner cavity of the sliding box 2, so that during the test, the loading box 4 can perform a sliding displacement at a certain distance relative to the sliding box 2. In addition, the loading 5 plate 16 is loaded with a counterweight, and the counterweight is increased or decreased on the loading box 4 to change the magnitude of loading pressure so as to simulate different overlying soil pressures during the box culvert jacking process.
Specifically, the sliding box 2 is a square box mass with an open upper end, the loading box 4 is a square cylinder mass, and the overall size of the loading box 4 is smaller than that of the sliding box 2.
In another alternative embodiment, a square loading frame 5 is sleeved on the outside of the test platform 1 and the sliding box 2, a lever is hinged on the bottom of the test platform 1, and the counterweight is provided on the lever so as to load loading frame 5 with a pressure via the lever, so that the loading frame 5 exerts the pressure on the loading plate along the longitudinal direction. Based on the viewpoint of convenience of operation, the loading plate is placed above the test platform 1, the loading frame 5 is sleeved with the test platform 1 and the sliding box 2, and the counterweight is placed below the test platform 1, so as to effectively reduce the gravity center of the counterweight, improve the stability of the loading device during the test, and facilitate the operation, without transporting the counterweight through the test platform 1, the working intensity of the operator is reduced.
In another alternative embodiment, a sliding seat located directly below the loading plate is provided below the test platform 1, a sliding groove extending along the sliding direction of the sliding box 2 is provided on the sliding seat, the lever 8 is slidably fitted in the sliding groove via a hinge shaft 20, and the loading frame 5 is located at one side of the lever 8 corresponding to the counterweight and close to the hinge shaft 20, correspondingly. During the test, the lever 8 can slide along the sliding groove to ensure the stable load of the loading device during the test. A plurality of counterweights are detachably connected, and the force arm of the loading frame 5 on the lever 8 is smaller than the force arm of the counterweights. According to the principle of the lever 8, the force arm corresponding to the weight is larger, so that the counterweights with smaller weight can be used to generate a larger loading pressure, and the operation is convenient. By increasing or decreasing the weights or adjusting the weights, the pressure of the overlying soil at different depths can be simulated.
In the present embodiment, the counterweight can be the weight 9, the force arm of the counterweight is more than five times of the force arm of the loading frame 5, and the specific loading pressure is obtained after calculation according to the lever 8 theoren.
In the present embodiment, the sliding seat comprises two L-shaped fixing plates 17 arranged opposite to each other, the sliding groove is formed between two fixing plates 17, the middle part of the lever 8 is provided with an ear plate extending between two fixing plates 17, and the hinge shaft 20 is provided on the ear plate,
Preferably, a contact point corresponding to the loading frame 5 is provided on the lever 8 to fix the force arm corresponding to the loading frame 5. the contact point may be an arc notch, and on the premise of ensuring that the loading frame 5 can rotate relative to the lever 8, the position of the loading frame 5 on the lever 8 is defined, alternatively, a hinge plate is provided on the loading frame 5, and the loading frame 5is hinged on the lever 8 by hinge plate.
In some embodiments, in order to reduce the frictional resistance between the hinge shaft 20 and the sliding groove, a roller 21 is provided on the hinge shaft
: 20, and the roller 21 slides along the sliding groove, wherein the roller 21 is provided corresponding to both sides of the lever 8, the roller 21 is correspondingly placed on the horizontal portions of the two L-shaped fixing plates 17, and the distance between the horizontal portions of the two fixing plates 17 is adapted with the width of the lever so that the lever has sufficient rotation space, and the roller 21 may also be a ball bearing.
In another alternative embodiment, the loading frame 5 is square structure formed by combining four support rods, wherein the middle part of the support rods corresponding to the upper part of the loading plate is connected to a upright via a bolt, the upright is directed to the loading plate along the longitudinal direction, and a placement groove corresponding to the upright is provided on the loading plate. The placement groove corresponding to the upright 19 is provided on the loading plate 16, so as to ensure that the loading position of the upright 19 is constant, thereby improving the accuracy of the test data, in addition, it can also ensure that the upright 19 does not displace relative to the sliding box 2 during the test, and the placement groove is provided at the center of the loading plate 16, so as to ensure that the force is balanced, and always keep the load applied to the center of the soil sample. Specifically, the upright is provided between the loading frame 5 and the loading plate, a longitudinal through hole is provided on the upright above the loading frame 5, and a bolt passes through the through hole and is threadedly connected to the upright so as to fix the upright and the loading frame 5 and ensure stable load.
In another alternative embodiment, a sliding rod is extended at the end of the lever away from the weight, and a balance block 22 is slidably fitted in the sliding rod, the balance block 22 has a certain weight, so that the lever can be kept horizontal in an unloaded state, and preferably, a scale is provided on the sliding rod 23, so as to calculate the actual loading weight. Preferably, the balance block 22 is threadedly connected to the sliding rod 23 so as to keep the position of the balance block 22 from being displaced as the lever rotates, alternatively, the balance block is designed beforehand to determine the mass and is fixed on the sliding rod so as to maintain the lever balance in the unloaded state.
In an alternative embodiment, the bolt is provided with the vertical deformation dial test indicator 6 to observe the compression deformation of the soil sample after loading.
In another embodiment, on the two struts on both sides of the loading {frame 5, at least the upper ends thereof protrude with studs and correspondingly pass through the struts on the upper side of the loading frame 5, the nuts are provided on the studs on the upper and lower sides of the struts on the upper side of the loading frame 5, so that adjustment of the longitudinal length of the loading frame 5 is performed by means of the nuts to accommodate different thicknesses of concrete or thixotropic mud test.
In an alternative embodiment, the shape of the loading plate 16 matches the loading box 4, and the water permeable plate 15 is provided between the loading plate 16 and the soil sample 14, so as to avoid direct contact between the loading plate and the soil sample, and water may be added on the loading plate to ensure the water content of the soil sample.
In another alternative embodiment, the bottom of the sliding box 2 is made flat by sand 10, and a waterproof plate 11 is placed above the sand 10, and the concrete 12 is filled above the waterproof plate 11. The waterproof plate 11 is set to simulate the waterproof layer of the on- site construction, more realistically simulate the on-site construction situation, so as to standardize the test and ensure the reliability of the test results.
In an alternative embodiment, a driving device 3 is provided on the test platform 1, and the driving device 3 acts on the side of the sliding box 2 away from the baffle 18 and simulates the dynamic construction process of box culvert jacking by controlling the pushing rate. The driving device 3 may be any one of an oil cylinder and an air cylinder, and the driving speed is controlled by a control valve, so as to completely simulate the speed of the box culvert pushing, thereby simulating the dynamic construction process of the box culvert jacking, so as to simulate the frictional resistance experienced by the box culvert.
In another alternative embodiment, the distance between the upper surface of the thixotropic mud 13 and the upper surface of the sliding box 2 is not less than twice the thickness of the thixotropic mud 13. Since the thixotropic mud 13 will be partially squeezed out under the action of longitudinal load, there should be a certain distance between the mud and the top of the sliding box 2 to prevent the loss of the thixotropic mud 13 during the experiment, the effective contact area of the concrete 12 - thixotropic mud 13 - soil is the cross-sectional area of the soil sample 14, the level of the contact surface should be strictly controlled during the coating process of the thixotropic mud 13.
In an alternative embodiment, the upright 19 is provided with the vertical deformation dial test indicator 6 to observe the compression deformation of the soil sample after loading.
In some embodiments, a ball groove is provided on the upper surface of the test platform 1, and a ball is provided in the ball groove, wherein at least two of the ball grooves respectively correspond to two sides of the sliding box 2 and are directed towards the baffle 18, so as to reduce the frictional resistance between the sliding box 2 and the test platform 1. In another embodiment, an idler may be provided above the test platform 1, by means of which the sliding box 2 is carried.
In another alternative embodiment, there is also provided a test method for measuring the frictional resistance of a thixotropic mud 13, comprising:
Step S1, placing a sliding box 2, where a concrete 12 is filled in and is used for simulating an on- site box culvert, on a test platform 1 for simulating an on-site box culvert, and spreading a thixotropic mud 13 on the surface of the concrete 12;
Step S2, loading the loading apparatus, where the soil sample 14 filled in, above the concrete 12 along longitudinal direction, in order to simulate an overlying soil mass on the box culvert in a jacking construction process, the soil sample 14 is in contact with the thixotropic mud 13;
Step S3, making a horizontal force gauge 7 face a baffle 18 arranged on the test platform 1;
Step 54, driving the sliding box 2 to slide along the test platform 1 towards the baffle 18, and the baffle 18 blocks the horizontal force gauge 7, so as to produce sliding displacement between the loading apparatus and the sliding box 2, and the frictional resistance between the soil sample l4and the concrete 12 is displayed by means of the horizontal force gauge 7, thereby simulating the interactions between a box culvert and overlying soil in the box culvert jacking process.
In an alternative embodiment, the following detailed procedure is used for testing: 1) Placing the test platform 1, and applying a proper amount of lubricating oil in the ball grooves in the test platform 1 for lubrication, and then evenly place six balls of a certain size in each ball grooves. 2) Placing the sliding box 2 on the balls, making flat the bottom of the sliding box 2 by sand, and placing the waterproof plate 11, so as to avoid the adverse effect of subsequent filling inside the sliding box 2 of making flat by sand, more realistically simulate on-site construction conditions, and ensure the reliability of the test results.
3) Filling the concrete 12 into the sliding box 2 ‚ and the strength and material thereof are the same as those of the box culvert, so as to simulate the state of the box culvert in actually construction.
4) Uniformly spreading the thixotropic mud 13 on the surface of the concrete 12, the level of the contact surface is strictly controlled, and the distance between the surface of the thixotropic mud 13 and the top of the sliding box 2 should not be less than twice the thickness of the thixotropic mud 13.
5) Pe-filling the soil sample 14 into the loading box 4, and the soil mass should be sampled from the soil mass overlying the actual box culvert, the density of the soil sample 14 is the same as the density of the soil mass overlying the actual box culvert, the soil mass actually contacting the box culvert is simulated, the water permeable plate 15 is placed on the upper part of the soil sample 14, and the loading box 4 is placed inside the sliding box 2, and then the loading plate 16 and the loading frame 5 are placed, wherein the upright 19 is placed in a placement groove above the loading plate 16.
6) Zero setting the force gauge reading.
7) Calculating the weight of the weight 3 according to the test parameters, and the weight 9 is correspondingly set on the lever 8 to simulate the overlying soil pressure of the on-site box culvert.
8) Starting the stopwatch, moving the driving device 3 at the speed of 0.8-1.2mm/min, controlling the time within 3-5min, and simulating the speed of box culvert jacking.
The test is terminated if the force gauge reading are stable or if there is significant back-off.
9) Reading the force gauge while the horizontal displacement of sliding box 2 reaches 4 mm, and if the reading of the force gauge continues to increase, reading the reading of the force gauge when the horizontal displacement of the sliding box 2 reaches 6 mm, namely, determining the frictional resistance when the thixotropic mud 13 is applied, namely, evaluating the drag reduction effect of the thixotropic mud 13. 10) At the end of the test, removing the weight © and the loading box 4 as soon as possible and removing the soil, the thixotropic mud 13 and the concrete 12 for the next test. 11) By repeating steps 1) - 10) with different proportions of thixotropic mud 13, the frictional resistance of different proportions of thixotropic mud 13 can be determined, and the drag reduction effect of different thixotropic mud 13 can be compared. It is to be understood that the above description is intended to be illustrative, and the embodiments of the present application do not limit this.
In summary, the invention relates to a test apparatus and method for measuring the frictional resistance of a thixotropic mud, the test apparatus comprising: a test platform (1). A prefabricated concrete block is filled in a sliding box (2) and is used for simulating an on-site reinforced concrete box culvert, and a thixotropic mud (13) is spread on the surface of the concrete (12). A loading apparatus is loaded above the concrete (12) along the longitudinal direction, and a soil sample (14) is filled in the loading apparatus, in order to simulate an overlying soil mass on the box culvert in a
Jacking construction process, and once loaded, the soil sample (14) is in contact with the thixotropic mud (13). A horizontal force gauge (7) is horizontally fixed onto a side portion of the loading apparatus, and a baffle (18) facing the horizontal force gauge (7) is arranged on the test platform (1). The sliding box (2) is driven to slide along the test platform (1) towards the baffle (18), and the baffle (18) blocks the horizontal force gauge (7), so as to produce sliding displacement between the loading apparatus and the sliding box (2), and the frictional resistance between the soil sample (14) and the concrete (12) is displayed by means of the horizontal force gauge (7), thereby simulating the interactions between a box culvert, mud, and overlying soil in the box culvert jacking process.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Een testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder, het testapparaat omvattende: een testplatform. een schuifkist opgevuld met beton en die wordt gebruikt om ter plaatse een kokerduiker te simuleren, en thixotrope modder is verspreid over het oppervlak van het beton; een laadapparaat wordt in de lengterichting boven het beton geladen en een grondmonster wordt in het laadapparaat gevuld om een bovenliggende grondmassa op de kokerduiker te simuleren in een doorpersconstructie waarbij het grondmonster in contact is met de thixotrope modder; een horizontale krachtmeter wordt horizontaal bevestigd op een zijgedeelte van het laadapparaat, en een naar de horizontale krachtmeter gericht schot wordt op het testplatform aangebracht, de schuifkist wordt aangedreven om langs het testplatform naar het schot te schuiven, en het schot blokkeert de horizontale krachtmeter, zodat een schuifverplaatsing tussen het laadapparaat en de schuifkast ontstaat, en de wrijvingsweerstand tussen het grondmonster en het beton wordt weergegeven door middel van de horizontale krachtmeter, waardoor de interacties tussen een kokerduiker en bovenliggende grond bij het doorpersen van de kokerduiker worden gesimuleerd.A test apparatus for measuring the frictional resistance of thixotropic mud, the test apparatus comprising: a test platform. a sliding box filled with concrete and used to simulate a box culvert on site, and thixotropic mud is spread over the surface of the concrete; a loading device is loaded longitudinally above the concrete and a soil sample is filled into the loading device to simulate an overlying soil mass on the box culvert in a jacking construction where the soil sample is in contact with the thixotropic mud; a horizontal force gauge is fixed horizontally on a side part of the loading device, and a baffle facing the horizontal force gauge is applied to the test platform, the slide box is driven to slide along the test platform to the bulkhead, and the baffle blocks the horizontal force gauge, so that a sliding displacement between the loader and the sliding box is created, and the frictional resistance between the soil sample and the concrete is displayed by means of the horizontal force gauge, simulating the interactions between a box culvert and overlying soil when jacking the box culvert. 2. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 1, met het kenmerk dat het laadapparaat bestaat uit een laadbak en een laadplaat die langs de lengterichting in de laadbak wordt geschoven, en dat het grondmonster wordt gevuld tussen de laadplaat en de thixotrope modder in de laadbak, Waarbij de laadplaat wordt belast met een contragewicht en het contragewicht wordt verhoogd of verlaagd om verschillende bovenliggende gronddrukken tijdens het doorpersen van de kokerduiker te simuleren.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 1, characterized in that the loading apparatus consists of a loading box and a loading plate which is slid longitudinally into the loading box, and that the soil sample is filled between the loading plate and the thixotropic mud in the bucket, where the load plate is loaded with a counterweight and the counterweight is raised or lowered to simulate different overlying ground pressures during jacking of the box culvert. 3. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 2, met het kenmerk dat een vierkant laadframe aan de buitenkant van het testplatform en de schuifkist is omhuld, een hefboom op de bodem van het testplatform scharniert en het contragewicht op de hefboom is aangebracht om het laadframe via de hefboom met een druk te belasten, zodat het laadframe de druk op de laadplaat in de lengterichting uitoefent.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 2, characterized in that a square loading frame is enclosed on the outside of the test platform and the slide box, a lever pivots on the bottom of the test platform, and the counterweight on the lever is provided to load the loading frame with a pressure via the lever, so that the loading frame exerts the pressure on the loading plate in the longitudinal direction. 4. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 3, met het kenmerk dat een direct onder de laadplaat gelegen schuifzitting onder het testplateau is aangebracht, een langs de schuifrichting van de schuifkist lopende schuifgroef op de schuifzitting is aangebracht, de hefboom via een scharnieras schuifbaar in de schuifgroef is aangebracht, en het laadframe zich aan een zijde van de hefboom bevindt die overeenkomt met het contragewicht en zich dicht bij de scharnieras bevindt.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 3, characterized in that a sliding seat located directly below the loading plate is provided under the testing platform, a sliding groove running along the sliding direction of the sliding box is arranged on the sliding seat, the lever is slidably mounted in the slide groove via a pivot shaft, and the loading frame is on a side of the lever that corresponds to the counterweight and is close to the pivot shaft. 5. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 4, met het kenmerk dat de schuifzitting twee tegenover elkaar geplaatste L-vormige bevestigingsplaten omvat, de schuifgroef tussen twee bevestigingsplaten wordt gevormd, het middelste deel van de hefboom is voorzien van een oorplaat die zich tussen twee bevestigingsplaten uitstrekt, en de scharnieras op de oorplaat is aangebracht.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 4, characterized in that the slide seat includes two opposed L-shaped fixing plates, the sliding groove is formed between two fixing plates, the middle part of the lever is provided with an ear plate that extends between two mounting plates, and the pivot shaft is mounted on the ear plate. 6. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 3, met het kenmerk dat het laadframe een vierkante structuur is die wordt gevormd door het combineren van vier steunstangen, waarbij het middelste deel van de steunstangen, dat overeenkomt met het bovenste deel wvan de laadplaat, via een bout is verbonden met een staander, de staander in de lengterichting naar de laadplaat is gericht, en op de laadplaat een met de staander overeenkomende plaatsingsgroef is aangebracht.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 3, characterized in that the loading frame is a square structure formed by combining four support rods, the middle part of the support rods corresponding to the upper part wof the loading plate is connected to an upright via a bolt, the upright is directed in the longitudinal direction towards the loading plate, and a positioning groove corresponding to the upright is provided on the loading plate. 7. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 1, met het kenmerk dat de bodem van de schuifkast vlak is gemaakt door zand, en een waterdichte plaat is geplaatst boven het zand, en het beton is gevuld boven de waterdichte plaat.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 1, characterized in that the bottom of the sliding box is made flat by sand, and a waterproof plate is placed above the sand, and the concrete is filled above the waterproof plate. 8. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 1, met het kenmerk dat een aandrijfmechanisme op het testplatform wordt verstrekt, en het aandrijfmechanisme werkt aan de zijkant van de schuifkist niet bij het schot en simuleert het dynamische bouwproces van het doorpersen van de kokerduiker door de snelheid van het duwen te controleren.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 1, characterized in that a driving mechanism is provided on the test platform, and the driving mechanism on the side of the sliding box does not operate at the bulkhead, simulating the dynamic construction process of the jacking the culvert by controlling the speed of pushing. 9. Het testapparaat voor het meten van de wrijvingsweerstand van thixotrope modder volgens conclusie 1, met het kenmerk dat een afstand tussen het boven- oppervlak van de thixotrope modder en het bovenoppervlak van de schuifkast niet minder mag zijn dan tweemaal de dikte van de thixotrope modder.The test apparatus for measuring the frictional resistance of thixotropic mud according to claim 1, characterized in that a distance between the upper surface of the thixotropic mud and the upper surface of the sliding box should be not less than twice the thickness of the thixotropic mud . 10. Een testmethode voor het meten van de wrijvingsweerstand van een thixotrope modder, omvattende: Stap S1, het plaatsen van een schuifkist, waarin beton is opgevuld en wordt gebruikt voor het simuleren van een ter plaatse aanwezige kokerduiker, op een testplatform voor het simuleren van een ter plaatse aanwezige kokerduiker, en het verspreiden van thixotrope modder op het oppervlak van het beton;10. A test method for measuring the frictional resistance of a thixotropic mud, comprising: Step S1, placing a sliding box, filled with concrete and used to simulate an on-site culvert, on a test platform for simulating a culvert on site, and spreading thixotropic mud on the surface of the concrete; Stap $2, na het vullen van een grondmonster in een laadapparaat, het laden van het apparaat boven het beton in de lengterichting, om een bovenliggende grondmassa op de doosduiker te simuleren in een doorpersconstructie, komt het grondmonster in contact met de thixotrope modder;Step $2, after filling a soil sample into a loading device, loading the device above the concrete in the longitudinal direction, to simulate an overlying soil mass on the box culvert in jacking construction, the soil sample comes into contact with the thixotropic mud; Stap 53, het maken van een horizontale krachtmeter tegenover een schot dat op het testplatform is aangebracht;Step 53, making a horizontal force gauge opposite a bulkhead mounted on the test platform; Stap 54, waarbij de schuifkist langs het testplatform naar het schot wordt geschoven en het schot de horizontale krachtmeter blokkeert, zodat een schuif- verplaatsing ontstaat tussen het laadapparaat en de schuifkist, en de wrijvingsweerstand tussen het grond- monster en het beton wordt weergegeven door middel van de horizontale krachtmeter, waardoor de interacties tussen een kokerduiker en bovenliggende grond worden gesimuleerd tijdens het doorpersen van de kokerduiker.Step 54, where the sliding box is pushed along the test platform towards the bulkhead and the bulkhead blocks the horizontal force gauge, creating a sliding displacement between the loading device and the sliding box, and the frictional resistance between the soil sample and the concrete is represented by of the horizontal force gauge, simulating the interactions between a box diver and overlying ground during jacking of the box diver. -0-70-0-0-0-0-0-0--0-70-0-0-0-0-0-0-
NL2033396A 2021-11-05 2022-10-26 Test device and method for measuring frictional resistance of thixotropic mud NL2033396B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111308382.0A CN114216595B (en) 2021-11-05 2021-11-05 Test device and method for measuring thixotropic slurry friction resistance

Publications (2)

Publication Number Publication Date
NL2033396A true NL2033396A (en) 2023-06-05
NL2033396B1 NL2033396B1 (en) 2024-02-02

Family

ID=80696566

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2033396A NL2033396B1 (en) 2021-11-05 2022-10-26 Test device and method for measuring frictional resistance of thixotropic mud

Country Status (3)

Country Link
CN (1) CN114216595B (en)
NL (1) NL2033396B1 (en)
WO (1) WO2022105840A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094959B (en) * 2022-06-24 2023-08-18 山东省路桥集团有限公司 Horizontal simulation test device and method for side friction resistance of concrete pile
CN116558915A (en) * 2023-03-20 2023-08-08 中建安装集团南方建设有限公司 True triaxial experiment remolded soil sample preparation facilities
CN116858584B (en) * 2023-07-07 2024-04-05 长沙理工大学 Multifunctional pipe jacking model test device and test method
CN117288565B (en) * 2023-10-11 2024-06-11 广州番禺职业技术学院 Device and method for measuring soil pressure of limited soil body
CN117571521A (en) * 2023-11-13 2024-02-20 中国科学院力学研究所 Device and method for testing tensile bending fatigue performance of fiber and rubber composite structure
CN117890563B (en) * 2024-03-12 2024-05-28 安徽建筑大学 Rectangular jacking pipe thixotropic slurry drag reduction and fluid loss performance test system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304267A (en) * 1995-05-15 1996-11-22 Ohbayashi Corp Frictional resistance testing device
KR20010065126A (en) * 1999-12-29 2001-07-11 이기준 Method and said device of interface friction characteristics for the mixture between soils and fibers
CN108507921A (en) * 2018-03-16 2018-09-07 同济大学 Geosynthetics bentonite liner high pressure aquation consolidation keeps case apparatus
CN209784086U (en) * 2019-04-23 2019-12-13 长沙理工大学 Static pressure soil sample constant volume immersion direct shear test device
CN113567334A (en) * 2021-07-15 2021-10-29 中国地质大学(武汉) Frictional resistance quantitative test method for pipe-rock contact surfaces with different roughness

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2488053B (en) * 2009-08-26 2013-07-31 Wuhan Surveying Geotechnical Res Inst Co Ltd Of Mcc Testing device for coefficient of subgrade reaction test
CN105571759B (en) * 2016-01-18 2018-05-18 南京工业大学 A kind of interface frictional resistance force test device and test method for geotechnical engineering
CN208187873U (en) * 2018-05-22 2018-12-04 湖南工业大学 A kind of concrete and soil body interface shearing experimental rig
CN110146209A (en) * 2019-06-13 2019-08-20 福建工程学院 Frictional resistance force test device and method when a kind of rectangular top pipe jacking
CN110629808B (en) * 2019-09-02 2023-12-22 江苏省送变电有限公司 Test device and test method for interfacial mechanical properties of piles and foundation soil
CN214010718U (en) * 2021-02-04 2021-08-20 济南轨道交通集团有限公司 Device for measuring and calculating resistance reduction effect of pipe jacking thixotropic slurry
CN214538853U (en) * 2021-03-02 2021-10-29 郑州大学 Slope simulation test device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304267A (en) * 1995-05-15 1996-11-22 Ohbayashi Corp Frictional resistance testing device
KR20010065126A (en) * 1999-12-29 2001-07-11 이기준 Method and said device of interface friction characteristics for the mixture between soils and fibers
CN108507921A (en) * 2018-03-16 2018-09-07 同济大学 Geosynthetics bentonite liner high pressure aquation consolidation keeps case apparatus
CN209784086U (en) * 2019-04-23 2019-12-13 长沙理工大学 Static pressure soil sample constant volume immersion direct shear test device
CN113567334A (en) * 2021-07-15 2021-10-29 中国地质大学(武汉) Frictional resistance quantitative test method for pipe-rock contact surfaces with different roughness

Also Published As

Publication number Publication date
WO2022105840A1 (en) 2022-05-27
NL2033396B1 (en) 2024-02-02
CN114216595B (en) 2023-04-25
CN114216595A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
NL2033396B1 (en) Test device and method for measuring frictional resistance of thixotropic mud
CN106290006B (en) A kind of experimental rig measuring shear strength parameter variation in soft clay consolidation process
US6658921B2 (en) Testing process and apparatus for determining absorption properties of porous specimen
CN102607842B (en) Multi-operating condition extreme load testing system and method for wheel loader transmission system
CN107725006B (en) Coal seam drilling gas extraction simulation test device and method
CN111879536A (en) Test device and method for simulating operation vibration of subway tunnel train
RU2365916C1 (en) Device for investigation of physical-mechanical characteristics of soil layer
CN104074210A (en) Pile foundation side friction indoor testing device and testing method thereof
CN105890946A (en) Preparation method for cohesive soil layer for simulating static pile sinking process
Li et al. Effects of the soil water content and relative roughness on the shear strength of silt and steel plate interface
CN109680733A (en) The displacement of foundation pit rigid retaining walls induces the model test apparatus and operating method for cheating outer ground surface soil body sedimentation
WO2006128033A1 (en) Devices, systems, and methods for measuring and controlling compactive effort delivered to a soil by a compaction unit
CN209741944U (en) Improved self-balancing pile measuring equipment
CN106525596B (en) Lateral bedding counter-force coefficient indoor test device under different stress paths
CN105672378B (en) Simulate the excavation of foundation pit model test apparatus of artesian head lifting
Cui Unsaturated railway track-bed materials
CN111811950A (en) Automatic loading and unloading hydraulic type plane strain test device
CN205333459U (en) Characteristic curve of soil moisture survey device of level pressure power
CN108398319B (en) Ultra-high water filling material creep test device and use method thereof
CN113029780B (en) Method and device for simulating soil slope filling process
KR102401508B1 (en) Testing apparatus for ascon specimen and testing method using the same
CN210665731U (en) Centrifugal model test device for dynamic characteristics of cross-river subway tunnel
RU2366944C1 (en) Method for determination of physical-mechanical characteristics of soil layer
CN207974168U (en) Measure the device of limited retaining wall pressure of banketing under different displacement models
CN212300872U (en) Test device for simulating subway tunnel train operation vibration