NL2033189B1 - Non-contact motion compensation of suspended loads - Google Patents

Non-contact motion compensation of suspended loads Download PDF

Info

Publication number
NL2033189B1
NL2033189B1 NL2033189A NL2033189A NL2033189B1 NL 2033189 B1 NL2033189 B1 NL 2033189B1 NL 2033189 A NL2033189 A NL 2033189A NL 2033189 A NL2033189 A NL 2033189A NL 2033189 B1 NL2033189 B1 NL 2033189B1
Authority
NL
Netherlands
Prior art keywords
actuator
motion
suspended load
load
vessel
Prior art date
Application number
NL2033189A
Other languages
Dutch (nl)
Inventor
Vladimirovich Metrikine Andrey
Christiaan Meijers Peter
Original Assignee
Univ Delft Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delft Tech filed Critical Univ Delft Tech
Priority to NL2033189A priority Critical patent/NL2033189B1/en
Priority to PCT/NL2023/050447 priority patent/WO2024072211A1/en
Application granted granted Critical
Publication of NL2033189B1 publication Critical patent/NL2033189B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/52Floating cranes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

The present invention is in the field of suspended loads having a dynamic position, measuring and controlling said dynamic position using electro-magnetic devices, and controlling said dynamic position. The invention is in particular suited for suspended loads on a floating vessel, which float- 5 ing vessels is subjected to various sorts of motion that influence the suspended load. An example of such a suspended load is a part of a wind turbine. l 5

Description

Non-contact motion compensation of suspended loads
FIELD OF THE INVENTION
The present invention 1s in the field of suspended loads having a dynamic position, measuring and controlling said dynamic position using electro-magnetic devices, and controlling said dynamic position. The invention is in particular suited for suspended loads on a floating vessel, which float- ing vessels 1s subjected to various sorts of motion that influence the suspended load. An example of such a suspended load is a part of a wind turbine.
BACKGROUND OF THE INVENTION
Floating vessels, in particular ships or lifting vehicles, may be prone to various sorts of mo- tion. These motions can be divided into translational motions, such as surge, sway, and heave, and rotational type of motions, such as roll, pitch, and yaw. These latter motions can be defined around the three virtual axes in a ship, the longitudinal, transverse, and vertical axis. The movements around them are known as roll, pitch, and yaw respectively. A tilting rotation of a vessel around its longitudinal axis is referred to as roll. An offset or deviation from normal on this axis is typically experienced, at least to some extent. Heel refers to an offset that may be intentional or may be ex- pected, as caused by wind pressure on sails, turning, or other crew actions. The rolling motion to- wards a steady state (or list) angle due to the ship's own weight distribution 1s referred in marine en- gineering as heel. List may be an unintentional or unexpected offset. as caused by flooding, battle damage, shifting cargo, etc. An up/down rotation of a vessel about its transverse axis is referred to as pitch. An offset or deviation from normal on this axis may be referred to as trim or out of trim. A tuming rotation of a vessel about its vertical axis is referred to as yaw. An offset or deviation from normal on this axis may be referred to as deviation or set. This is referred to as the heading of the boat relative to the earth magnetic field. A linear longitudinal (front/back or bow/stern) motion 1m- parted by maritime conditions, usually head or following seas, or by accelerations imparted by the propulsion system is referred to as surge. A linear transverse (side-to-side or port-starboard) motion is referred to as sway. This motion is generated directly either by the water and wind motion, partic- ularly lateral wave motion, exerting forces against the hull or by the ship's own propulsion; or indi- rectly by the inertia of the ship while turning. This movement can be compared to the vessel's lateral drift from its course. Finally, a linear vertical (up/down) motion is referred to as heave; excessive downward heave can swamp a ship [see hitps:/enaviipedi orginal’ Ship motos].
In order to compensate for the various forms of motion first of all the motion of a ship may be controlled. Such can be done actively or passively, or both. An anchor would provide a passive control, but using an anchor is quite often not possible, time consuming, and does not provide suffi- cient control. With active control much better control can be achieved. With state-of-the-art control ship movement in a translational direction can under reasonable conditions be controlled within a few meters, typically within one meter. Rotational movement is more difficult to control.
In the coming vears, the number of newly build offshore wind farms in Europe will increase significantly. Currently, each wind turbine is assembled on site such as by using a jack-up crane vessel, which can raise itself out of the water by means of extensible legs. Above the water line, the influence of currents and waves on the ship's motion is eliminated. creating a stable platform for 1 lifting operations. However, raising the vessel from the water is a time-costly procedure and it is impossible in deeper waters. In an alternative, the installation is performed by a floating heavy lift- ing vessel. During the assembly of a wind turbine, heavy components are lifted by an on-board crane. The vessel uses dynamic positioning to keep itself at the same location regardless the sea's and wind’s impact on the vessel, such as a current. However, certain motions, such as wave-induced vessel motions, are mechanically transferred to the load that is suspended in the crane, creating un- desired swinging motions. Currently, mechanical restrictions are imposed onto the suspended loads, such as tugger lines (tensioned steel cables), which are used to limit these motions to within a rea- sonable band. Connecting these additional cables to the load is time consuming and the physical contact poses a liability for the contractor in case the load is damaged due to the lines. In addition the cables attached to the load control the motion of the load typically only partly. Some motions of the load (mainly up-down, i.e. heave) can be compensated in particular using a device attached be- tween the crane hook and the load. Attaching and removing cables to/from the load is time consum- ing and requires people to physically be close to the attachment point. Getting people to such loca- tions can be dangerous. The cables might damage the load in addition. So great care is required.
In line with the above apparatuses and methods are available that compensate motion by con- tacting the suspended load, directly or indirectly. For instance, based on predicted motion of a ship an apparatus suspending the load, such as a crane, may be actively manipulated to compensate for the predicted motion, such as by extending a boom, correcting a knuckle angle, correcting a luff an- gle, by activating a winch, or the like. Motion compensation can be achieved in a direct contact manner, such as mechanically, or in an indirect contact manner, such as by applying a force to a tow or cable or the like.
The present invention relates to an improved suspended load device, which overcomes one or more of the above disadvantages, without jeopardizing functionality and advantages.
SUMMARY OF THE INVENTION
The present invention relates in a first aspect to a method of non-contact motion com- pensation of a suspended load, in a second aspect to a non-contact device for motion com- pensation of electro-magnetically influenceable suspended loads, such as steel load, and in a third aspect to a computer program comprising instructions, the instructions causing the computer to carry out the step of controlling motion. In an example it comprises an array of non-contact actuators, i.e, electromagnets and/or compressed air jets, a device to comply with the vessel motions, ¢.g., a robotic arm or a drone, at least one sensor to measure the vessel motion. and a controller, such as a PID, a fuzzy logic controller, etc. The motion- compensation device may be mounted on the vessel and the actuator array is attached to the moving end of this device. The sensors provide the input for the controller to position the actuators at a safe distance from the load and to impose a correct force in particular to neu- tralize the motion of the load with respect to the desired location, e.g., a foundation pile fixed in the seabed. A motion sensor is typically configured to measure deviations of a sus- pended load with an accuracy better than 1 cm, typically withing | mm, to obtain images at a frequency of > 10 Hz, typically at 50 Hz. As no cables have to be attached, the time needed 2 to install the load is limited, reducing cost. Moreover, anything which is attached to the load creates a risk to damage the payload. Therefore, this non-contact solution reduces the risk for the contractor to damage the load. It is noted that floating installations currently have very limited operational windows as the wave-induced motions are relatively large even us- ing cables. With this new system, floating installation becomes a much more feasible alter- native to jack-up vessel, and the window of operation is increased. The present device and method provide an opportunity to replace to state-of-the-art installation methods, i.e. jack-up vessels. In addition the present system may be used many times. This invention may use electromagnets to compensate a suspended load excited by crane tip motions in combination with a device to make the actuator comply to the ship motions (e.g. a robotic arm). This is quite a specific combination and thus easily detected.
In a first aspect, the present invention relates to a method of non-contact motion com- pensation of a suspended load comprising providing a non-contact suspended-load-motion-sensor, such as a laser distance sensor, an ultrasonic distance sensor, and an optical tracking sensor, such as a (3D) camera, the motion sensor configured to sense motion of the suspended load m at least a plane perpendicular to a central vertical axis of the suspended load and to provide motion sensor output to at least one controller, providing at least one non-contact actuator configured to apply a force to the suspended load in at least a plane perpendicular to a central vertical axis of the sus- pended load, providing the at least one controller, the at least one controller configured to process the motion sensors output, and configured to activate the at least one actuator.
In a second aspect the present invention relates to a device for non-contact motion compensa- tion of a suspended load comprising a suspended load motion sensor, the motion sensor configured to sense motion of the suspended load m at least a plane perpendicular to a central vertical axis of the suspended load and to provide motion sensor output to at least one controller, at least one actua- tor configured to apply a force to the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load, and the at least one controller configured to process the motion sensors output, and configured to activate the at least one actuator.
In a third aspect the present invention relates to a computer program comprising instructions, the instructions causing the computer to carry out the following steps: controlling a non-contact sus- pended-load-motion-sensor, sensing motion with the motion sensor of the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load and providing motion sensor output to at least one controller, applying a force to the suspended load with at least one non-contact actuator in at least a plane perpendicular to a central vertical axis of the suspended load, and option- ally providing the at least one controller, the at least one controller configured to process the motion sensors output, and configured to activate the at least one actuator measuring motion of the floating vessel for a first time period, wherein motion comprises a horizontal motion relative to a fixed loca- tion on the surface of earth and relative to the earth gravitational field, and is further selected from at least one of motion from roll, from pitch, from yaw, from surge, from sway, and from heave, therewith obtaining vessel motion data; b) measuring at least one performance parameter of the a least one non-contact actuator, wherein the performance parameter of the actuator is selected from a 3 deviation from a predefined standard performance parameter, such as the inertia, speed, accelera- tion, or position of the actuator, from a coupling force of the actuator on the load, and the response time of the actuator to implement a control signal; ¢) generating a predicted motion model of the vessel for a subsequent second time period from the vessel motion data, and generating a predicted performance parameter of the actuator for the second time period; d) generating a control algorithm for the actuator to effect a predetermined response during the second time period using the predicted motion model and the predicted performance parameter; e) determining a first correction factor from differences between motion data and the predicted motion model and a second correction fac- tor from differences between the actuator performance parameter and predicted performance param- eter; f) repeating steps a e iteratively utilising the first and second correction factors, and controlling the at least one actuator and optionally the moveable arm therewith compensating for the measured motion of the floating vessel.
With the present method and device, one may consider that the suspended load motion is de- coupled from that to which it is attached, e.g. from a vessel or from crane, such that relative to a second location (that is the position of the fundament etc. to which the suspended load is to be trans- ferred, or to a second vessel etc) virtually no motion occurs, or at least within acceptable limits.
Controlling the motion of a load suspended from a vessel to decouple it from the vessel motion may comprise various steps, including measuring motion, providing feedback and/or feedforward con- trol. generating a model of motion, providing an algorithm, and controlling the at least one actuator accordingly. The actuator may be the present non-contact actuator. The performance parameter of the actuator may be a deviation from a predefined standard performance parameter such as the iner- tia, speed, acceleration or position of the actuator. the coupling force on the actuator from the load, or the response time of the actuator to implement a control signal.
Thereby the present invention provides a solution to one or more of the above-mentioned problems.
Advantages of the present description are detailed throughout the description. References to the figures are not limiting, and are only intended to guide the person skilled in the art through de- tails of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates in a first aspect to the method of non-contact motion com- pensation of a suspended load according to claim one.
In an exemplary embodiment of the present method the at least one actuator is provided on at least one moveable arm, wherein the at least one controller is configure to control a position of the at least one actuator relative to the suspended load, in particular to maintain the position at a substantially equal distance of the suspended load, in particular at a distance of < 5 cm, such as 0.5- 2 cm.
In an exemplary embodiment the present method may further comprise providing at least one suspended load position sensor configured to detect the position of the suspended load relative to the at least one actuator, in particular selected from at least one of a non-contact electromagnetic field sensor, an ultrasonic sensor, and an optical sensor, in particular an optical tracking system (e.g. 4
3D camera) such as using IR or laser light, more in particular at least one sensor configured to sense motion of the suspended load in at least the plane perpendicular to the central vertical axis of the suspended load, and in particular wherein the at least one sensor is configured to provide output to the at least one controller, the at least one controller configured to process the at least one sensor output, in particular wherein the at least one controller is configured to determine a position and motion of the suspended load in a feedforward loop.
In an exemplary embodiment of the present method the at least one actuator is selected from an electromagnetic actuator, and a fluid jet, such as a compressed air jet or a water jet.
In an exemplary embodiment of the present method the at least one actuator is provided in at least one array, in particular at least one array of n by m actuators, wherein ne [2-50] and me[1-10]. more in particular wherein ne[3-20] and me[2-8], even more in particular wherein ne [4-10] and me [3-3], wherein in the at least one array at least one first actuator is provided under an angle in a horizontal plane with respect to at least one second actuator, in particular under an an- gle of 10-90 degrees, such as 30-60 degrees.
In an exemplary embodiment of the present method the at least one actuator is provided in the plane perpendicular to the central vertical axis of the suspended load, in particular wherein the at least one actuator is provided at a substantially equal distance from the central vertical axis, such as in a circle or part thereof, the circle having a centre substantially overlapping with the cen- tral vertical axis.
In an exemplary embodiment of the present method the at least one moveable arm is a ro- botic arm, in particular a robotic arm providing three or more degrees of freedom, such as 6 degrees of freedom (x,y.z, ¢- and 9-rotations, and arm-rotation).
In an exemplary embodiment of the present method the method is applied on a floating vessel, in particular wherein motion of the vessel is controlled and limited, more in particular wherein horizontal movement of the vessel is controlled and limited, and optionally wherein sway, surge and vaw of the vessel is controlled and limited.
In an exemplary embodiment the present method may further comprise measuring motion of the floating vessel for a first time period, wherein motion comprises a horizontal motion relative to a fixed location on the surface of earth and relative to the earth gravitational field, and is further selected from at least one of motion from roll, from pitch, from yaw, from surge, from sway, and from heave, therewith obtaining vessel motion data; b) measuring at least one performance parame- ter of the a least one non-contact actuator, wherein the performance parameter of the at least one non-contact actuator is selected from a deviation from a predefined standard performance parame- ter, such as the inertia, speed, acceleration, or position of the actuator, from a coupling force of the actuator on the load, and the response time of the actuator to implement a control signal; c) generat- ing a predicted motion model of the vessel for a subsequent second time period from the vessel mo- tion data, and generating a predicted performance parameter of the actuator for the second time pe- riod; d) generating a control algorithm for the actuator to effect a predetermined response during the second time period using the predicted motion model and the predicted performance parameter; €) determining a first correction factor from differences between motion data and the predicted motion 5 model and a second correction factor from differences between the actuator performance parameter and predicted performance parameter; f) repeating steps a e iteratively utilising the first and second correction factors, and controlling the at least one actuator and optionally the moveable arm therewith compensating for the measured motion of the floating vessel.
In an exemplary embodiment of the present method the suspended load is at least a part of an off-shore wind turbine, in particular all parts of the pillar of an off-shore wind turbine.
In an exemplary embodiment of the present method the suspended load is provided with a protection, such as clamp, or jacket.
In an exemplary embodiment of the present method the method is performed under local wind conditions of up to 10 m/s, in particular of up to 8 m/s, more in particular of up to 5.5 m/s.
In an exemplary embodiment of the present method the force is applied to the suspended load substantially at a lower end or close to the lower end of the suspended load.
In an exemplary embodiment of the present device each actuator individually is config- ured to provide a force 1N-10 kN, in particular 10N-5 kN, more in particular 100N-2 kN.
In an exemplary embodiment of the present device each actuator individually is config- ured to provide an adaptable force, In an exemplary embodiment of the present device each ac- tuator individually comprises at least one coil.
In an exemplary embodiment of the present device each actuator individually comprises at least one magnetizable core.
The invention is further detailed by the accompanying figures and examples, which are exemplary and explanatory of nature and are not limiting the scope of the invention. To the person skilled in the art it may be clear that many variants, being obvious or not, may be conceivable falling within the scope of protection, defined by the present claims.
SUMMARY OF FIGURES
Figure la shows principles of the present device.
Fig. 2 shows the present control loop.
Fig. 3 shows an experimental set-up.
Fig. 4 shows experimental results.
DETAILED DESCRIPTION OF FIGURES
1 array of non-contact actuators 2 robotic arm 3 controller and sensor system 4 floating installation vessel 5 crane 6 steel suspended load 7 fixed foundation pile
Figure 1 shows a floating crane vessel (4,3) lifting a load (6) to place the load on top a foun- dation pile (7). The wave-induced motion of the load is compensated by the present device, which exists of an array of non-contact actuators (1) mounted on a robotic arm (2). The position and 6 strength of the non-contact actuator is controlled by a unit (3), which collects motion and position data with sensors.
Figure 2 shows a realization of the control loop of the device. Environmental data (wave, wind, and vessel motion) is processed via a model of the vessel to compute the desired position of the load with respect to the final position. This desired position is fed into the control loop, which contains a Proportional-Derivative controller. A mathematical model for the non-linear actuator force is used to linearize the controller action. The output of the controller is an actuator signal for the non-contact actuator, creating a force that acts on the load. The feedback loop is closed by meas- urements of the position of the load obtained by non-contact position sensors.
Figure 3 shows a basic experimental realization of the present device, comprising of a sus- pended load, a laser distance sensor ALTHEN FDRF603-100, an electromagnet, and a PD-control- ler. The motion of the load is restricted in a plane, and its direction is indicated by x.
Figure 4 shows a time trace of the desired motion imposed and the measured motion of the load. The excellent correspondence of the two lines indicate that the controller is able to control the motion of the load fully.
The invention although described in detailed explanatory context may be best under- stood in conjunction with the accompanying figures.
It should be appreciated that for commercial application it may be preferable to use one or more variations of the present system, which would similar be to the ones disclosed in the present application and are within the spirit of the invention.
For the sake of searching the following section is added reflecting embodiments of the pre- sent invention and which represents a translation of the subsequent section. 1. A method of non-contact motion compensation of a suspended load comprising providing at least one non-contact suspended-load-motion-sensor, the at least one motion sensor configured to sense motion of the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load and to provide motion sensor output to at least one controller, providing at least one non-contact actuator configured to apply a force to the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load, providing the at least one controller, the at least one controller configured to process the at least one motion sensors output, and configured to activate the at least one actuator. 2. The method according to embodiment 1, wherein the at least one actuator is provided on at least ong moveable arm, wherein the at least one controller is configured to control a position of the at least one actuator relative to the suspended load, in particular to maintain the position at a substan- tially equal distance of the suspended load, in particular at a distance of < 5 em, such as 0.5-2 cm. 3. The method according to any of embodiments 1-2, further comprising providing at least one suspended load position sensor configured to detect the position of the sus- pended load relative to the at least one actuator, in particular selected from at least one of a non- contact electromagnetic field sensor, an ultrasonic sensor, and an optical sensor, such as using IR or laser light, more in particular at least one sensor configured to sense motion of the suspended load 7 in at least the plane perpendicular to the central vertical axis of the suspended load. and in particular wherein the at least one sensor is configured to provide output to the at least one controller, the at least one controller configured to process the at least one sensor output, in particular wherein the at least one controller is configured to determine a position and motion of the suspended load in a feedforward loop. 4. The method according to any of embodiments 1-3, wherein the at least one actuator is selected from an electromagnetic actuator, and a fluid jet. such as a compressed air jet or a water jet. 5. The method according to any of embodiments 1-4, wherein the at least one actuator is provided in at least one array, in particular at least one array of n by m actuators, wherein ne [2-50] and me|1- 10], more in particular wherein ne [3-20] and me[2-8], even more in particular wherein ne [4-10] and me [3-5], wherein in the at least one array at least one first actuator is provided under an angle in a horizontal plane with respect to at least one second actuator, in particular under an angle of 10- 90 degrees, such as 30-60 degrees. 6. The method according to any of embodiments 1-5, wherein the at least one actuator is provided in the plane perpendicular to the central vertical axis of the suspended load, in particular wherein the at least one actuator is provided at a substantially equal distance from the central vertical axis, such as in a circle or part thereof, the circle having a centre substantially overlapping with the central verti- cal axis. 7. The method according to any of embodiments 1-6, wherein the at least one moveable arm is a ro- botic arm, in particular a robotic arm providing three or more degrees of freedom, such as 6 degrees of freedom (x,v,z, ¢- and 9-rotations, and arm-rotation). 8. The method according to any of embodiments 1-7, wherein the method is applied on a floating vessel, in particular wherein motion of the vessel is controlled and limited, more in particular wherein horizontal movement of the vessel is controlled and limited, and optionally wherein sway. surge and yaw of the vessel is controlled and limited. 9. The method according to embodiment 8, further comprising measuring motion of the floating vessel for a first time period, wherein motion comprises a horizon- tal motion relative to a fixed location on the surface of earth and relative to the earth gravitational field, and is further selected from at least one of motion from roll, from pitch, from yaw, from surge, from sway, and from heave, therewith obtaining vessel motion data; b) measuring at least one performance parameter of the a least one non-contact actuator, wherein the performance parameter of the at least one non-contact actuator is selected from a deviation from a predefined standard per- formance parameter, such as the inertia, speed, acceleration, or position of the actuator, from a cou- pling force of the actuator on the load. and the response time of the actuator to implement a control signal; c) generating a predicted motion model of the vessel for a subsequent second time period from the vessel motion data, and generating a predicted performance parameter of the actuator for the second time period: d) generating a control algorithm for the actuator to effect a predetermined response during the second time period using the predicted motion model and the predicted perfor- mance parameter; ¢) determining a first correction factor from differences between motion data and the predicted motion model and a second correction factor from differences between the actuator 8 performance parameter and predicted performance parameter; f) repeating steps a e iteratively utilis- ing the first and second correction factors, and controlling the at least one actuator and optionally the moveable arm therewith compensating for the measured motion of the floating vessel.
10. The method according to any of embodiments 1-9, wherein the suspended load is at least a part of an off-shore wind turbine, in particular all parts of the pillar of an off-shore wind turbine, and/or wherein the suspended load is provided with a protection, such as clamp, or jacket.
11. The method according to anv of embodiments 1-10, wherein the method is performed under lo- cal wind conditions of up to 10 m/s, in particular of up to 8 m/s, more in particular of up to 5.5 m/s. 12. The method according to any of embodiments 1-11, wherein the force is applied to the sus- pended load substantially at a lower end or close to the lower end of the suspended load. 13. A device for non-contact motion compensation of a suspended load comprising a suspended load motion sensor, the motion sensor configured to sense motion of the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load and to provide motion sensor output to at least one controller, at least one actuator configured to apply a force to the suspended load in at least a plane perpendicu- lar to a central vertical axis of the suspended load, and the at least one controller configured to process the motion sensors output, and configured to acti- vate the at least one actuator. 14. The device for non-contact motion compensation of a suspended load according to embodiment 13, wherein each actuator individually is configured to provide a force IN-10 kN, in particular 10N- 5 kN, more in particular 100N-2 kN, and/or wherein each actuator individually is configured to provide an adaptable force, and/or wherein each actuator individually comprises at least one coil, and/or wherein each actuator individually comprises at least one magnetizable core. 15. Computer program comprising instructions, the instructions causing the computer to carry out the following steps controlling a non-contact suspended-load-motion-sensor, sensing motion with the motion sensor of the suspended load in at least a plane perpendicu- lar to a central vertical axis of the suspended load and providing motion sensor output to at least one controller, applying a force to the suspended load with at least one non-contact actuator in at least a plane perpendicular to a central vertical axis of the suspended load, and optionally providing the at least one controller, the at least one controller configured to process the motion sen- sors output, and configured to activate the at least one actuator measuring motion of the floating vessel for a first time period, wherein motion comprises a horizontal motion relative to a fixed loca- tion on the surface of earth and relative to the earth gravitational field, and is further selected from at least one of motion from roll, from pitch, from yaw, from surge, from sway, and from heave, therewith obtaining vessel motion data; b) measuring at least one performance parameter of the a least one non-contact actuator, wherein the performance parameter of the actuator is selected from a 9 deviation from a predefined standard performance parameter, such as the inertia, speed, accelera- tion, or position of the actuator, from a coupling force of the actuator on the load, and the response time of the actuator to implement a control signal; ¢) generating a predicted motion model of the vessel for a subsequent second time period from the vessel motion data, and generating a predicted performance parameter of the actuator for the second time period; d) generating a control algorithm for the actuator to effect a predetermined response during the second time period using the predicted motion model and the predicted performance parameter; e) determining a first correction factor from differences between motion data and the predicted motion model and a second correction fac- tor from differences between the actuator performance parameter and predicted performance param- eter; f) repeating steps a e iteratively utilising the first and second correction factors, and controlling the at least one actuator and optionally the moveable arm therewith compensating for the measured motion of the floating vessel. 16. A device or method comprising at least one element according to any of the embodiments 1-15 and optionally an element from the description.
10

Claims (16)

ConclusiesConclusions 1. Een werkwijze voor contactloze bewegingscompensatie van een hangende last, omvattend het verschaffen van een contactloze hangende-last-bewegingssensor, waarvan de bewegingssensor is geconfigureerd om beweging van de opgehangen last te voelen in ten minste een vlak dat lood- recht staat op een centrale verticale as van de opgehangen last en om bewegingssensorgegevens te verschaffen aan ten minste één regelaar, het verschaffen van ten minste één contactloze actuator die geconfigureerd is om een kracht uit te oefenen op de hangende last in ten minste een vlak loodrecht op een centrale verticale as van de hangende last. het verschaffen van ten minste één regelaar, waarbij de ten minste één regelaar geconfigureerd is om de output van de bewegingssensor te verwerken, en geconfigureerd is om de ten minste één ac- tuator te activeren.CLAIMS 1. A method for non-contact motion compensation of a suspended load, comprising providing a non-contact suspended load motion sensor, the motion sensor of which is configured to sense motion of the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load and to provide motion sensor data to at least one controller, providing at least one non-contact actuator configured to apply a force to the suspended load in at least a plane perpendicular to a central vertical axis of the hanging load. providing at least one controller, the at least one controller configured to process the output of the motion sensor, and configured to activate the at least one actuator. 2. De werkwijze volgens conclusie 1, waarin de ten minste één actuator is aangebracht op ten min- ste één beweegbare arm, waarin de ten minste één regelaar is geconfigureerd om een positie van de ten minste één actuator ten opzichte van de hangende last te regelen, in het bijzonder om de positie op vrijwel gelijke afstand van de hangende last te handhaven, in het bijzonder op een afstand van < 5 cm, zoals 0,5-2 cm.The method of claim 1, wherein the at least one actuator is mounted on at least one movable arm, wherein the at least one controller is configured to control a position of the at least one actuator relative to the suspended load , in particular to maintain the position at approximately equal distance from the hanging load, in particular at a distance of < 5 cm, such as 0.5-2 cm. 3. De werkwijze volgens een van de conclusies 1-2, verder omvattend het verstrekken van ten minste één opgehangen-last- positie-sensor die is geconfigureerd om de po- sitie van de opgehangen last ten opzichte van de ten minste één actuator te bepalen, met name geko- zen uit een contactloze elektromagnetische veldsensor, een ultrasone sensor, en een optische sensor, bijvoorbeeld met IR- of laserlicht, meer in het bijzonder ten minste één sensor die de beweging van de opgehangen last kan bepalen in ten minste het vlak loodrecht op de centrale verticale as van de opgehangen last, en in het bijzonder waarbij de ten minste één sensor geconfigureerd is om output te leveren aan de ten minste één regelaar, waarbij de ten minste één regelaar geconfigureerd is om de output van de ten minste één sensor te verwerken, in het bijzonder waarbij de ten minste één re- gelaar geconfigureerd is om een positie en beweging van de hangende last te bepalen in een feedfor- ward-lus.The method of any one of claims 1 to 2, further comprising providing at least one suspended load position sensor configured to determine the position of the suspended load relative to the at least one actuator , in particular selected from a contactless electromagnetic field sensor, an ultrasonic sensor, and an optical sensor, for example with IR or laser light, more in particular at least one sensor that can determine the movement of the suspended load in at least the plane perpendicular to the central vertical axis of the suspended load, and in particular wherein the at least one sensor is configured to provide output to the at least one controller, wherein the at least one controller is configured to provide output to the at least one sensor, in particular where the at least one controller is configured to determine a position and movement of the suspended load in a feedforward loop. 4. De werkwijze volgens een van de conclusies 1-3, waarbij de ten minste één actuator is gekozen uit een elektromagnetische actuator, en een vloeistofstraal, zoals een persluchtstraal, of een water- straal.The method according to any of claims 1-3, wherein the at least one actuator is selected from an electromagnetic actuator, and a liquid jet, such as a compressed air jet, or a water jet. 5. De werkwijze volgens een van de conclusies 1-4, waarbij de ten minste één actuator in ten minste gen matrix is geplaatst. in het bijzonder een matrix van n bij m actuatoren, waarm ne [2-50] en me [1-10]. meer in het bijzonder ne [3-20] en me [2-8], meer in het bijzonder ne [4-10] en me [3-5]. waarbij in de ten minste één matrix ten minste één eerste actuator is geplaatst onder een hoek in een horizontaal vlak ten opzichte van ten minste één tweede actuator, in het bijzonder onder een hoek van 10-90 graden, zoals 30-60 graden.The method according to any of claims 1-4, wherein the at least one actuator is placed in at least one gene matrix. in particular, a matrix of n by m actuators, where ne [2-50] and me [1-10]. more specifically ne [3-20] and me [2-8], more specifically ne [4-10] and me [3-5]. wherein at least one first actuator is placed in the at least one matrix at an angle in a horizontal plane relative to at least one second actuator, in particular at an angle of 10-90 degrees, such as 30-60 degrees. 6. De werkwijze volgens een van de conclusies 1-5, waarin de ten minste één actuator is aange- bracht in het vlak loodrecht op de centrale verticale as van de opgehangen last, in het bijzonder 11 waarin de ten minste één actuator is aangebracht op nagenoeg gelijke afstand van de centrale verti- cale as, zoals in een cirkel of een deel daarvan, waarvan het middelpunt grotendeels samenvalt met de centrale verticale as.The method according to any one of claims 1 to 5, wherein the at least one actuator is arranged in the plane perpendicular to the central vertical axis of the suspended load, in particular 11 wherein the at least one actuator is arranged on approximately equidistant from the central vertical axis, as in a circle or part thereof, the center of which largely coincides with the central vertical axis. 7. De werkwijze volgens een van de conclusies 1-6, waarbij de ten minste één beweegbare arm een robotarm is, in het bijzonder een robotarm met drie of meer vrijheidsgraden, zoals 6 vrijheidsgraden (x,y.z, - en -rotaties, en armrotatie).7. The method according to any one of claims 1-6, wherein the at least one movable arm is a robot arm, in particular a robot arm with three or more degrees of freedom, such as 6 degrees of freedom (x, y.z, - and - rotations, and arm rotation ). 8. De werkwijze volgens een van de conclusies 1-7, waarbij de werkwijze wordt toegepast op een drijvend vaartuig, in het bijzonder waarbij de beweging van het vaartuig wordt gecontroleerd en be- perkt, meer in het bijzonder waarbij de horizontale beweging van het vaartuig wordt gecontroleerd en beperkt, en optioneel waarbij de slingering, stamping, en giering van het vaartuig wordt gecon- troleerd en beperkt.The method according to any one of claims 1 to 7, wherein the method is applied to a floating vessel, in particular where the movement of the vessel is controlled and limited, more particularly where the horizontal movement of the vessel is controlled and limited, and optionally where the roll, pitch, and yaw of the vessel is controlled and limited. 9. De werkwijze volgens conclusie 8, verder omvattend het meten van de beweging van het drijvende vaartuig gedurende een eerste tijdsperiode, waarbij de beweging een horizontale beweging omvat ten opzichte van een vaste plaats op het aardoppervlak en ten opzichte van het zwaartekrachtsveld van de aarde, en verder gekozen wordt uit ten minste één van de bewegingen van slingeren, stampen, gieren, verzetten, schrikken, en deinen, b) het meten van ten minste één prestatieparameter van de ten minste één contactloze actuator, waarbij de prestatieparameter van de ten minste één contactloze actuator wordt gekozen uit een af- wijking van een vooraf gedefinieerde standaardprestatieparameter, zoals de traagheid, snelheid, ver- snelling, of positie van de actuator, uit een koppelkracht van de actuator op de last, en de reactietijd van de actuator om een besturingssignaal te implementeren; c) het genereren van een voorspeld be- wegingsmodel van het vaartuig voor een volgende tweede tijdsperiode op basis van de bewegings- gegevens van het vaartuig, en het genereren van een voorspelde prestatieparameter van de actuator voor de tweede tijdsperiode; d) het genereren van een besturingsalgoritme voor de actuator om een vooraf bepaalde respons tijdens de tweede tijdsperiode te bewerkstelligen met behulp van het voor- spelde bewegingsmodel en de voorspelde prestatieparameter; e) het bepalen van een eerste correc- tiefactor uit verschillen tussen de bewegmgsgegevens en het voorspelde bewegingsmodel en een tweede correctiefactor uit verschillen tussen de prestatieparameter van de actuator en de voorspelde prestatieparameter; f) het herhalen van de stappen a-e waarbij iteratief gebruik wordt gemaakt van de eerste en tweede correctiefactor, en het besturen van de ten minste één actuator en eventueel de beweegbare arm, waarbij de gemeten beweging van het drijvende schip wordt gecompenseerd. The method of claim 8, further comprising measuring the motion of the floating vessel during a first period of time, the motion comprising horizontal motion relative to a fixed location on the Earth's surface and relative to the Earth's gravitational field, and furthermore selected from at least one of the movements of swaying, pitching, yawing, shifting, startling, and heaving, b) measuring at least one performance parameter of the at least one contactless actuator, wherein the performance parameter of the at least one contactless actuator is selected from a deviation from a predefined standard performance parameter, such as the inertia, speed, acceleration, or position of the actuator, from a coupling force of the actuator on the load, and the response time of the actuator to a control signal to implement; c) generating a predicted vessel motion model for a subsequent second time period based on the vessel motion data, and generating a predicted actuator performance parameter for the second time period; d) generating a control algorithm for the actuator to achieve a predetermined response during the second time period using the predicted motion model and the predicted performance parameter; e) determining a first correction factor from differences between the motion data and the predicted motion model and a second correction factor from differences between the performance parameter of the actuator and the predicted performance parameter; f) repeating steps a-e, using iteratively the first and second correction factors, and controlling the at least one actuator and possibly the movable arm, whereby the measured movement of the floating ship is compensated. 10 De werkwijze volgens een van de conclusies 1-9, waarbij de hangende last ten minste een deel van cen offshore windturbine is, in het bijzonder alle delen van de pijler van een offshore windtur- bine, en/of waarin de hangende last is voorzien van een bescherming, zoals een klem, of een mantel.The method according to any one of claims 1-9, wherein the hanging load is at least part of an offshore wind turbine, in particular all parts of the pier of an offshore wind turbine, and/or in which the hanging load is provided of protection, such as a clamp or a jacket. 11. De werkwijze volgens een van de conclusies 1-10, waarbij de werkwijze wordt uitgevoerd bij plaatselijke windomstandigheden tot 10 m/s, in het bijzonder tot 8 m/s, meer in het bijzonder tot 5,5 m/s. 12The method according to any of claims 1-10, wherein the method is carried out in local wind conditions up to 10 m/s, in particular up to 8 m/s, more in particular up to 5.5 m/s. 12 12. De werkwijze volgens een van de conclusies 1-11, waarbij de kracht wordt uitgeoefend op de hangende last aan de onderkant of dicht bij de onderkant van de hangende last.The method of any one of claims 1 to 11, wherein the force is applied to the hanging load at the bottom or close to the bottom of the hanging load. 13. Een apparaat voor contactloze bewegingscompensatie van een hangende last, omvattend gen bewegingssensor voor hangende lasten, waarbij de bewegingssensor geconfigureerd is om be- weging van de hangende last te detecteren in ten minste een vlak loodrecht op een centrale verticale as van de hangende last en om bewegingsdetecticoutput te leveren aan ten minste één regelaar, ten minste één actuator die een kracht uitoefent op de opgehangen last in ten minste een vlak lood- recht op een centrale verticale as van de hangende last, en de ten minste één regelaar is geconfigureerd om de output van de bewegingssensoren te verwerken, en geconfigureerd om de ten minste óén actuator te activeren.13. A non-contact motion compensation device for a suspended load, comprising a suspended load motion sensor, wherein the motion sensor is configured to detect motion of the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load and to provide motion detection output to at least one controller, at least one actuator that applies a force to the suspended load in at least a plane perpendicular to a central vertical axis of the suspended load, and the at least one controller is configured to process output from the motion sensors, and configured to activate at least one actuator. 14. Het apparaat voor contactloze bewegingscompensatie van een hangende last volgens conclusie 13, waarbij elke actuator afzonderlijk geconfigureerd is om een kracht van IN-10 kN te leveren, in het bijzonder ION-5 kN, meer in het bijzonder 100N-2 kN, en/of waarbij elke actuator afzonderlijk geconfigureerd is om een aanpasbare kracht te leveren, en/of waarbij elke actuator afzonderlijk ten minste één spoel omvat, en/of waarbij elke actuator afzonderlijk ten minste één magnetiseerbare kern omvat.The device for non-contact motion compensation of a suspended load according to claim 13, wherein each actuator is individually configured to deliver a force of IN-10 kN, in particular ION-5 kN, more in particular 100N-2 kN, and /or wherein each actuator is individually configured to provide an adjustable force, and/or wherein each actuator individually comprises at least one coil, and/or wherein each actuator individually comprises at least one magnetizable core. 15. Computerprogramma dat instructies omvat, waardoor de computer de volgende stappen uitvoert het aansturen van een contactloze hangende-last-bewegingssensor, het voelen van beweging met de bewegingssensor van de hangende last in ten minste een vlak lood- recht op een centrale verticale as van de hangende last en het verschaffen van de output van de be- wegingssensor aan ten minste één controller, een kracht uitoefenen op de opgehangen last met ten minste één contactloze actuator in ten minste een vlak loodrecht op een centrale verticale as van de opgehangen last, en optioneel het verstrekken van de ten minste één controller, de ten minste één controller geconfigureerd om de output van de bewegingssensoren te verwerken, en geconfigureerd om de ten minste één actuator te activeren die de beweging van het drijvende vaartuig meet gedurende een eerste tijdsperiode, waar- bij de beweging een horizontale beweging omvat ten opzichte van een vaste locatie op het aardop- pervlak en ten opzichte van het zwaartekrachtsveld van de aarde, en voorts geselecteerd is uit ten minste één van de bewegingen van gieren, van deinen, van stampen, van slingeren, van verzetten, en van schrikken, waarbij gegevens over de beweging van het vaartuig worden verkregen; b) het meten van ten minste één prestatieparameter van de contactloze actuator, waarbij de prestatiepara- meter van de actuator wordt gekozen uit een afwijking van een vooraf gedefinieerde standaardpres- tatieparameter, zoals de traagheid, snelheid, versnelling of positie van de actuator, uit een koppel- kracht van de actuator op de lading, en de reactietijd van de actuator om een besturingssignaal te implementeren; c) het genereren van een voorspeld bewegingsmodel van het vaartuig voor een vol- gende tweede tijdsperiode op basis van de bewegingsgegevens van het vaartuig, en het genereren van een voorspelde prestatieparameter van de actuator voor de tweede tijdsperiode: d) het genereren van een besturingsalgoritme voor de actuator om een vooraf bepaalde respons tijdens de tweede tijdsperiode te bewerkstelligen met behulp van het voorspelde bewegingsmodel en de voorspelde 13 prestatieparameter; e) het bepalen van een eerste correctiefactor uit verschillen tussen de bewe- gingsgegevens en het voorspelde bewegingsmodel en een tweede correctiefactor uit verschillen tus- sen de prestatieparameter van de actuator en de voorspelde prestatieparameter; f) het iteratief herha- len van de stappen a-e waarbij gebruik wordt gemaakt van de eerste en tweede correctiefactor, en het besturen van de ten minste één actuator en eventueel de beweegbare arm, waarbij de gemeten beweging van het drijvende vaartuig wordt gecompenseerd.15. Computer program containing instructions through which the computer performs the following steps: controlling a contactless hanging load motion sensor, sensing movement with the motion sensor of the hanging load in at least a plane perpendicular to a central vertical axis of the suspended load and providing the motion sensor output to at least one controller, applying a force to the suspended load with at least one non-contact actuator in at least a plane perpendicular to a central vertical axis of the suspended load, and optionally providing the at least one controller, the at least one controller configured to process the output of the motion sensors, and configured to activate the at least one actuator that measures the motion of the floating vessel for a first period of time, where the movement involves a horizontal movement relative to a fixed location on the Earth's surface and relative to the Earth's gravitational field, and is further selected from at least one of the movements of yaw, heave, pitch, and roll , of resistance, and of startle, whereby data on the movement of the vessel are obtained; (b) measuring at least one performance parameter of the non-contact actuator, where the actuator performance parameter is selected from a deviation from a predefined standard performance parameter, such as the inertia, speed, acceleration or position of the actuator, from a coupling force of the actuator on the load, and the response time of the actuator to implement a control signal; c) generating a predicted vessel motion model for a subsequent second time period based on the vessel motion data, and generating a predicted actuator performance parameter for the second time period: d) generating a control algorithm for the actuator to achieve a predetermined response during the second time period using the predicted motion model and the predicted 13 performance parameter; e) determining a first correction factor from differences between the motion data and the predicted motion model and a second correction factor from differences between the actuator performance parameter and the predicted performance parameter; f) iteratively repeating steps a-e using the first and second correction factors, and controlling the at least one actuator and possibly the movable arm, whereby the measured movement of the floating vessel is compensated. 16. Een apparaat of werkwijze die ten minste één element bevat volgens een van de conclusies 1-15 en facultatief een element uit de beschrijving. 14An apparatus or method containing at least one element according to any one of claims 1-15 and optionally an element of the description. 14
NL2033189A 2022-09-29 2022-09-29 Non-contact motion compensation of suspended loads NL2033189B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2033189A NL2033189B1 (en) 2022-09-29 2022-09-29 Non-contact motion compensation of suspended loads
PCT/NL2023/050447 WO2024072211A1 (en) 2022-09-29 2023-08-31 Non-contact motion compensation of suspended loads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2033189A NL2033189B1 (en) 2022-09-29 2022-09-29 Non-contact motion compensation of suspended loads

Publications (1)

Publication Number Publication Date
NL2033189B1 true NL2033189B1 (en) 2024-04-08

Family

ID=84360002

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2033189A NL2033189B1 (en) 2022-09-29 2022-09-29 Non-contact motion compensation of suspended loads

Country Status (2)

Country Link
NL (1) NL2033189B1 (en)
WO (1) WO2024072211A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919022A (en) * 1996-02-06 1999-07-06 La Coste; Lee Electromagnetic positioning system for containers
JP3045920B2 (en) * 1994-03-31 2000-05-29 三菱重工業株式会社 Hanging posture control device using gyroscope and control method thereof
US6777833B1 (en) * 2001-12-17 2004-08-17 Ultratech Stepper, Inc. Magnetic levitation stage apparatus and method
US20180244505A1 (en) * 2017-02-28 2018-08-30 J. Ray Mcdermott S.A. Offshore ship-to-ship lifting with target tracking assistance
WO2021245175A1 (en) * 2020-06-05 2021-12-09 Macgregor Norway As Pile installation facility and methods thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045920B2 (en) * 1994-03-31 2000-05-29 三菱重工業株式会社 Hanging posture control device using gyroscope and control method thereof
US5919022A (en) * 1996-02-06 1999-07-06 La Coste; Lee Electromagnetic positioning system for containers
US6777833B1 (en) * 2001-12-17 2004-08-17 Ultratech Stepper, Inc. Magnetic levitation stage apparatus and method
US20180244505A1 (en) * 2017-02-28 2018-08-30 J. Ray Mcdermott S.A. Offshore ship-to-ship lifting with target tracking assistance
WO2021245175A1 (en) * 2020-06-05 2021-12-09 Macgregor Norway As Pile installation facility and methods thereof

Also Published As

Publication number Publication date
WO2024072211A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
EP2776359B1 (en) Vessel and crane with full dynamic compensation for vessel and wave motions and a control method thereof
WO2017107936A1 (en) Offshore crane heave compensation control system and method using video rangefinding
JP4355288B2 (en) Mooring system with active control
US7731157B2 (en) Apparatus and method for heave compensation
CN109534188B (en) Rigid-flexible hybrid wave motion compensation device of offshore floating hoisting platform
EP2896589B1 (en) Method and apparatus
CN109553005B (en) Rigid-flexible type multi-dimensional wave motion compensation device for offshore floating platform
CN109292647B (en) Active rigid-flexible hybrid wave motion compensation device and control method thereof
NO337483B1 (en) Device and method for providing active motion compensation control of a joint gangway
CN107161882B (en) A kind of novel Active Compensation loop wheel machine system
WO2015044898A1 (en) Two body motion compensation system for marine applications
CN108862056B (en) Marine A type portal base of wave compensation
WO2015028636A1 (en) Power control in marine vessel
NL2022366B1 (en) Supervisory control arrangement for a vessel
US6039193A (en) Integrated and automated control of a crane&#39;s rider block tagline system
NL2033189B1 (en) Non-contact motion compensation of suspended loads
NL2023415B1 (en) hoisting arrangement for assembly of wind turbines
KR20230145146A (en) Marine assemblies containing motion compensation platforms and carrying objects 30 to 50 meters or more in height, the use of motion compensation platforms and marine assemblies
CN214776409U (en) Automatic magnetic mooring device and automatic magnetic mooring system
CN106081945B (en) A kind of crane on ship/floating platform with Three Degree Of Freedom systems stabilisation
CN113135263A (en) Automatic magnetic mooring device and automatic magnetic mooring system
CN115594098B (en) Active wave heave compensation device control system based on force and position combined control
CN115196521B (en) Control system for adjusting marine hoisting equipment by using ship stability
KR20150078763A (en) Method using a hydraulic winch and auto shipping mooring
Nayfeh et al. Control of ship-mounted cranes