NL2032936B1 - Brain tumor image region segmentation method and device, neural network and electronic equipment - Google Patents
Brain tumor image region segmentation method and device, neural network and electronic equipment Download PDFInfo
- Publication number
- NL2032936B1 NL2032936B1 NL2032936A NL2032936A NL2032936B1 NL 2032936 B1 NL2032936 B1 NL 2032936B1 NL 2032936 A NL2032936 A NL 2032936A NL 2032936 A NL2032936 A NL 2032936A NL 2032936 B1 NL2032936 B1 NL 2032936B1
- Authority
- NL
- Netherlands
- Prior art keywords
- network
- feature
- layer
- attention
- input
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Probability & Statistics with Applications (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Processing (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111038003.0A CN113744284B (zh) | 2021-09-06 | 2021-09-06 | 脑肿瘤图像区域分割方法、装置、神经网络及电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
NL2032936A NL2032936A (en) | 2023-03-10 |
NL2032936B1 true NL2032936B1 (en) | 2023-10-11 |
Family
ID=78735960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NL2032936A NL2032936B1 (en) | 2021-09-06 | 2022-09-01 | Brain tumor image region segmentation method and device, neural network and electronic equipment |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113744284B (zh) |
NL (1) | NL2032936B1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115330813A (zh) * | 2022-07-15 | 2022-11-11 | 深圳先进技术研究院 | 一种图像处理方法、装置、设备及可读存储介质 |
CN117372458B (zh) * | 2023-10-24 | 2024-07-23 | 长沙理工大学 | 三维脑肿瘤分割方法、装置、计算机设备和存储介质 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108364023A (zh) * | 2018-02-11 | 2018-08-03 | 北京达佳互联信息技术有限公司 | 基于注意力模型的图像识别方法和系统 |
CN110533045B (zh) * | 2019-07-31 | 2023-01-17 | 中国民航大学 | 一种结合注意力机制的行李x光违禁品图像语义分割方法 |
CN111028242A (zh) * | 2019-11-27 | 2020-04-17 | 中国科学院深圳先进技术研究院 | 一种肿瘤自动分割系统、方法及电子设备 |
CN111046939B (zh) * | 2019-12-06 | 2023-08-04 | 中国人民解放军战略支援部队信息工程大学 | 基于注意力的cnn类别激活图生成方法 |
US11270447B2 (en) * | 2020-02-10 | 2022-03-08 | Hong Kong Applied Science And Technology Institute Company Limited | Method for image segmentation using CNN |
CN111626300B (zh) * | 2020-05-07 | 2022-08-26 | 南京邮电大学 | 基于上下文感知的图像语义分割模型的图像分割方法及建模方法 |
CN112102324B (zh) * | 2020-09-17 | 2021-06-18 | 中国科学院海洋研究所 | 一种基于深度U-Net模型的遥感图像海冰识别方法 |
CN112308835A (zh) * | 2020-10-27 | 2021-02-02 | 南京工业大学 | 一种融合密集连接与注意力机制的颅内出血分割方法 |
CN112418027A (zh) * | 2020-11-11 | 2021-02-26 | 青岛科技大学 | 一种改进U-Net网络的遥感影像道路提取方法 |
CN112381897B (zh) * | 2020-11-16 | 2023-04-07 | 西安电子科技大学 | 基于自编码网络结构的低照度图像增强方法 |
CN112365496B (zh) * | 2020-12-02 | 2022-03-29 | 中北大学 | 基于深度学习和多引导的多模态mr影像脑肿瘤分割方法 |
CN112651978B (zh) * | 2020-12-16 | 2024-06-07 | 广州医软智能科技有限公司 | 舌下微循环图像分割方法和装置、电子设备、存储介质 |
CN112818904A (zh) * | 2021-02-22 | 2021-05-18 | 复旦大学 | 一种基于注意力机制的人群密度估计方法及装置 |
CN113344951B (zh) * | 2021-05-21 | 2024-05-28 | 北京工业大学 | 一种边界感知双重注意力引导的肝段分割方法 |
-
2021
- 2021-09-06 CN CN202111038003.0A patent/CN113744284B/zh active Active
-
2022
- 2022-09-01 NL NL2032936A patent/NL2032936B1/en active
Also Published As
Publication number | Publication date |
---|---|
CN113744284B (zh) | 2023-08-29 |
NL2032936A (en) | 2023-03-10 |
CN113744284A (zh) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NL2032936B1 (en) | Brain tumor image region segmentation method and device, neural network and electronic equipment | |
Hu et al. | Semi-supervised contrastive learning for label-efficient medical image segmentation | |
Calisto et al. | BreastScreening: on the use of multi-modality in medical imaging diagnosis | |
Wang et al. | Multimodal medical image segmentation using multi-scale context-aware network | |
Zhang et al. | A survey on deep learning of small sample in biomedical image analysis | |
Ren et al. | Serial attention network for skin lesion segmentation | |
US11610303B2 (en) | Data processing apparatus and method | |
Ta et al. | Ble-net: boundary learning and enhancement network for polyp segmentation | |
Ni et al. | DNL-Net: deformed non-local neural network for blood vessel segmentation | |
Ge et al. | Grayscale medical image segmentation method based on 2D&3D object detection with deep learning | |
Song et al. | NMNet: Learning Multi-level semantic information from scale extension domain for improved medical image segmentation | |
Nguyen et al. | AC-MAMBASEG: An adaptive convolution and Mamba-based architecture for enhanced skin lesion segmentation | |
Zhang et al. | CIDN: A context interactive deep network with edge-aware for X-ray angiography images segmentation | |
Ni et al. | SSCA‐Net: Simultaneous Self‐and Channel‐Attention Neural Network for Multiscale Structure‐Preserving Vessel Segmentation | |
Wang et al. | CTCNet: A bi-directional cascaded segmentation network combining Transformers with CNNs for skin lesions | |
CN115908811A (zh) | 一种基于Transformer和卷积注意力机制的CT图像分割方法 | |
Arulappan et al. | Liver tumor segmentation using a new asymmetrical dilated convolutional semantic segmentation network in CT images | |
Zhang et al. | MSAA-Net: a multi-scale attention-aware U-Net is used to segment the liver | |
Zhao et al. | VCMix-Net: A hybrid network for medical image segmentation | |
Naderi et al. | Dynamic-Pix2Pix: Medical image segmentation by injecting noise to cGAN for modeling input and target domain joint distributions with limited training data | |
Nayak et al. | DMF-Net: a deep multi-level semantic fusion network for high-resolution chest CT and X-ray image de-noising | |
Wang et al. | MSA-Net: Multi-scale feature fusion network with enhanced attention module for 3D medical image segmentation | |
CN117726822B (zh) | 基于双分支特征融合的三维医学图像分类分割系统及方法 | |
AU2021102976A4 (en) | Automatic Pancreas Segmentation using A Novel Modified Semantic Deep Learning Bottom-Up Approach | |
Hao et al. | Learning saliently temporal-spatial features for x-ray coronary angiography sequence segmentation |