NL2032936B1 - Brain tumor image region segmentation method and device, neural network and electronic equipment - Google Patents

Brain tumor image region segmentation method and device, neural network and electronic equipment Download PDF

Info

Publication number
NL2032936B1
NL2032936B1 NL2032936A NL2032936A NL2032936B1 NL 2032936 B1 NL2032936 B1 NL 2032936B1 NL 2032936 A NL2032936 A NL 2032936A NL 2032936 A NL2032936 A NL 2032936A NL 2032936 B1 NL2032936 B1 NL 2032936B1
Authority
NL
Netherlands
Prior art keywords
network
feature
layer
attention
input
Prior art date
Application number
NL2032936A
Other languages
English (en)
Dutch (nl)
Other versions
NL2032936A (en
Inventor
Xu Qingsheng
Lou Yufeng
Gu Pengkun
He Zhe
Cai Jianping
Huo Meimei
Original Assignee
Univ Zhejiang City College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Zhejiang City College filed Critical Univ Zhejiang City College
Publication of NL2032936A publication Critical patent/NL2032936A/en
Application granted granted Critical
Publication of NL2032936B1 publication Critical patent/NL2032936B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Probability & Statistics with Applications (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)
NL2032936A 2021-09-06 2022-09-01 Brain tumor image region segmentation method and device, neural network and electronic equipment NL2032936B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111038003.0A CN113744284B (zh) 2021-09-06 2021-09-06 脑肿瘤图像区域分割方法、装置、神经网络及电子设备

Publications (2)

Publication Number Publication Date
NL2032936A NL2032936A (en) 2023-03-10
NL2032936B1 true NL2032936B1 (en) 2023-10-11

Family

ID=78735960

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032936A NL2032936B1 (en) 2021-09-06 2022-09-01 Brain tumor image region segmentation method and device, neural network and electronic equipment

Country Status (2)

Country Link
CN (1) CN113744284B (zh)
NL (1) NL2032936B1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115330813A (zh) * 2022-07-15 2022-11-11 深圳先进技术研究院 一种图像处理方法、装置、设备及可读存储介质
CN117372458B (zh) * 2023-10-24 2024-07-23 长沙理工大学 三维脑肿瘤分割方法、装置、计算机设备和存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108364023A (zh) * 2018-02-11 2018-08-03 北京达佳互联信息技术有限公司 基于注意力模型的图像识别方法和系统
CN110533045B (zh) * 2019-07-31 2023-01-17 中国民航大学 一种结合注意力机制的行李x光违禁品图像语义分割方法
CN111028242A (zh) * 2019-11-27 2020-04-17 中国科学院深圳先进技术研究院 一种肿瘤自动分割系统、方法及电子设备
CN111046939B (zh) * 2019-12-06 2023-08-04 中国人民解放军战略支援部队信息工程大学 基于注意力的cnn类别激活图生成方法
US11270447B2 (en) * 2020-02-10 2022-03-08 Hong Kong Applied Science And Technology Institute Company Limited Method for image segmentation using CNN
CN111626300B (zh) * 2020-05-07 2022-08-26 南京邮电大学 基于上下文感知的图像语义分割模型的图像分割方法及建模方法
CN112102324B (zh) * 2020-09-17 2021-06-18 中国科学院海洋研究所 一种基于深度U-Net模型的遥感图像海冰识别方法
CN112308835A (zh) * 2020-10-27 2021-02-02 南京工业大学 一种融合密集连接与注意力机制的颅内出血分割方法
CN112418027A (zh) * 2020-11-11 2021-02-26 青岛科技大学 一种改进U-Net网络的遥感影像道路提取方法
CN112381897B (zh) * 2020-11-16 2023-04-07 西安电子科技大学 基于自编码网络结构的低照度图像增强方法
CN112365496B (zh) * 2020-12-02 2022-03-29 中北大学 基于深度学习和多引导的多模态mr影像脑肿瘤分割方法
CN112651978B (zh) * 2020-12-16 2024-06-07 广州医软智能科技有限公司 舌下微循环图像分割方法和装置、电子设备、存储介质
CN112818904A (zh) * 2021-02-22 2021-05-18 复旦大学 一种基于注意力机制的人群密度估计方法及装置
CN113344951B (zh) * 2021-05-21 2024-05-28 北京工业大学 一种边界感知双重注意力引导的肝段分割方法

Also Published As

Publication number Publication date
CN113744284B (zh) 2023-08-29
NL2032936A (en) 2023-03-10
CN113744284A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
NL2032936B1 (en) Brain tumor image region segmentation method and device, neural network and electronic equipment
Hu et al. Semi-supervised contrastive learning for label-efficient medical image segmentation
Calisto et al. BreastScreening: on the use of multi-modality in medical imaging diagnosis
Wang et al. Multimodal medical image segmentation using multi-scale context-aware network
Zhang et al. A survey on deep learning of small sample in biomedical image analysis
Ren et al. Serial attention network for skin lesion segmentation
US11610303B2 (en) Data processing apparatus and method
Ta et al. Ble-net: boundary learning and enhancement network for polyp segmentation
Ni et al. DNL-Net: deformed non-local neural network for blood vessel segmentation
Ge et al. Grayscale medical image segmentation method based on 2D&3D object detection with deep learning
Song et al. NMNet: Learning Multi-level semantic information from scale extension domain for improved medical image segmentation
Nguyen et al. AC-MAMBASEG: An adaptive convolution and Mamba-based architecture for enhanced skin lesion segmentation
Zhang et al. CIDN: A context interactive deep network with edge-aware for X-ray angiography images segmentation
Ni et al. SSCA‐Net: Simultaneous Self‐and Channel‐Attention Neural Network for Multiscale Structure‐Preserving Vessel Segmentation
Wang et al. CTCNet: A bi-directional cascaded segmentation network combining Transformers with CNNs for skin lesions
CN115908811A (zh) 一种基于Transformer和卷积注意力机制的CT图像分割方法
Arulappan et al. Liver tumor segmentation using a new asymmetrical dilated convolutional semantic segmentation network in CT images
Zhang et al. MSAA-Net: a multi-scale attention-aware U-Net is used to segment the liver
Zhao et al. VCMix-Net: A hybrid network for medical image segmentation
Naderi et al. Dynamic-Pix2Pix: Medical image segmentation by injecting noise to cGAN for modeling input and target domain joint distributions with limited training data
Nayak et al. DMF-Net: a deep multi-level semantic fusion network for high-resolution chest CT and X-ray image de-noising
Wang et al. MSA-Net: Multi-scale feature fusion network with enhanced attention module for 3D medical image segmentation
CN117726822B (zh) 基于双分支特征融合的三维医学图像分类分割系统及方法
AU2021102976A4 (en) Automatic Pancreas Segmentation using A Novel Modified Semantic Deep Learning Bottom-Up Approach
Hao et al. Learning saliently temporal-spatial features for x-ray coronary angiography sequence segmentation