NL2032835B1 - Digital core simulation based and computer implemented method for evaluating brittleness of shale oil and gas reservoir - Google Patents

Digital core simulation based and computer implemented method for evaluating brittleness of shale oil and gas reservoir Download PDF

Info

Publication number
NL2032835B1
NL2032835B1 NL2032835A NL2032835A NL2032835B1 NL 2032835 B1 NL2032835 B1 NL 2032835B1 NL 2032835 A NL2032835 A NL 2032835A NL 2032835 A NL2032835 A NL 2032835A NL 2032835 B1 NL2032835 B1 NL 2032835B1
Authority
NL
Netherlands
Prior art keywords
core
shale
mineral
brittleness
dimensional
Prior art date
Application number
NL2032835A
Other languages
Dutch (nl)
Other versions
NL2032835A (en
Inventor
Lai Fuqiang
Tan Xianfeng
Zhong Lulu
Huang Zhaohui
Wang Ruyue
Yan Jianping
Wang Haitao
Zhang Guotong
Zhang Xiaoshu
Wang Min
Liu Yuejiao
Su Junlei
Xia Xiaoxue
Original Assignee
Chongqing Univ Of Science & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Univ Of Science & Technology filed Critical Chongqing Univ Of Science & Technology
Publication of NL2032835A publication Critical patent/NL2032835A/en
Application granted granted Critical
Publication of NL2032835B1 publication Critical patent/NL2032835B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0846Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0216Finite elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Disclosed is a digital core simulation based and computer implemented method for evaluating brittleness of a shale oil and gas reservoir. The method includes: step 1, 5 constructing a three-dimensional digital core model of shale on the basis of a two-dimensional core image; step 2, constructing three-dimensional digital core models of shale having different micropore development, fluid characteristics, fracture occurrences and mineral component features, step 3, using digital rock physical experiments to carry out single-factor analysis on influences of porosities, the fluid 10 characteristics, the fracture occurrences and minerals on rock brittleness, and step 4, establishing a brittleness indeX model comprehensively reflecting mineral components, the fracture occurrences, pores and the fluid characteristics. The present invention provides a new method for shale rock physics and rock mechanics research, and uses the digital core based digital rock physical experiments, to provide a basic theoretical 15 support for shale brittleness logging evaluation.

Description

DIGITAL CORE SIMULATION BASED AND COMPUTER IMPLEMENTED
METHOD FOR EVALUATING BRITTLENESS OF SHALE OIL AND GAS
RESERVOIR
BACKGROUND ART
[01] Shale gas is an unconventional oil and gas resource having great potential.
The exploitation of shale gas depends on effective volume fracturing transformation.
The better the brittleness of shale is, the stronger the fracture making ability is, and the better the transformation effect is. Therefore, brittleness is one of the important contents of shale reservoir geological evaluation and an important parameter to select favorable areas and favorable intervals.
[02] The research on shale brittleness is still in the exploratory stage in China, and the current research mainly focuses on characterizing shale brittleness by means of shale mineral components or elastic parameters. However, the problem of mineral method characterization of rock brittleness 1s mainly shown as follows: (1) brittle minerals are vaguely defined, and it is widely believed that quartz is a brittle mineral, but whether the carbonate mineral (calcite and dolomite) and pyrite belong to brittle minerals is controversial; (2) the influence of porosity, fracture and fluid brittleness lacks of consideration; and (3) the degree of influence of the content and distribution of brittle minerals on the brittleness is not fully reflected in the brittleness index of minerals.
[03] In addition, the research on the brittle failure features, fracture mechanism and brittleness mechanism of shale is still limited to the macroscopic core scale, and the macroscopic fracture of rock is closely related to the microstructure features such as microcracks, pores and laminae inside the rock. It is of great significance to carry out the experimental research on the mechanical properties of shale on the microscopic scale and establish the relation between the microstructure features and macroscopic mechanical properties for deeply understanding the brittleness mechanism of shale.
However, the sample analysis and rock mechanics experiment have a long period and high cost. For rock having strong heterogeneity and anisotropy such as shale gas reservoir, it 1s difficult to obtain representative samples due to the limited factors such as core source and yield rate. With limitation by the sample quantity and individual difference, the experiment results are not universal. Therefore, it is extremely difficult to carry out traditional rock physical experiment for the shale gas reservoir.
SUMMARY
[04] The technical problem to be solved by the present invention is:
[05] (1) difficulty of a traditional physical experiment of shale is great;
[06] (2) brittle minerals are vaguely defined;
[07] (3) influences of pores, fractures and fluids on brittleness lack of consideration; and
[08] (4) influences of the content and distribution of brittle minerals on brittleness is not reflected in a mineral brittleness index.
[09] The present invention provides a digital core simulation based and computer implemented method for evaluating brittleness of a shale oil and gas reservoir. The method includes:
[10] step 1, constructing a three-dimensional digital core model of shale on the basis of a two-dimensional core image; [HI] step 2, constructing three-dimensional digital core models of shale having different micropore development, fluid characteristics, fracture occurrences and mineral component features on the basis of a core embedment technology,
[12] step 3, using digital rock physical experiments to carry out single-factor analysis on influences of porosities, the fluid characteristics, the fracture occurrences and minerals on rock brittleness on the basis of the three-dimensional digital core models of shale; and
[13] step 4, determining main influence factors and a weight factor of each of influence factors on the basis of an influence degree of each of the influence factors, so as to establish a brittleness index model comprehensively reflecting mineral components, the fracture occurrences, pores and the fluid characteristics.
[14] Further, step 1 includes:
[15] step 1.1, determining main mineral components of a shale core according to geological data and core mineral analysis data;
[16] step 1.2, aiming at the obtained two-dimensional core image of shale, identifying the main mineral components, and using a multi-threshold segmentation method to carry out image segmentation according to an image gray level data histogram to obtain distribution of main minerals in the two-dimensional core image;
[17] step 1.3, on the basis of the two-dimensional core image after mineral component identification, using a Markov chain-Monte Carlo based method to reconstruct a three-dimensional digital core of shale to establish the three-dimensional digital core model of shale; and
[18] step 1.4, verifying the three-dimensional digital core model of shale, and comparing types and relative contents of mineral components of the two-dimensional core image with types and relative contents of mineral components of the constructed three-dimensional digital core.
[19] Further, step 2 includes:
[20] step 2.1: determining core porosities according to geological data and core analysis data, and then using a random method to construct the three-dimensional digital core models having different porosities;
[21] step 2.2, using a lattice Boltzmann method to carry out two-phase displacement simulation in a pore space to obtain three-dimensional digital core models having different oil and gas saturations;
[22] step 2.3, obtaining basic information of the fracture occurrences according to the geological data, then extracting fractures developed in the core by means of an image filtering technology and an image segmentation technology on the basis of the two-dimensional core image, computing parameters of fracture widths, fracture dips, etc, and finally, using a slab model to establish the three-dimensional digital core models having different fracture occurrences;
[23] step 2.4, determining components and contents of main minerals according to the core analysis data or experimental data, and then using a random method to construct three-dimensional digital core models having different mineral types and different mineral contents; and
[4] step 2.5, using the core embedment technology to embed the three-dimensional digital core models having pores, fluid characteristics, fracture occurrences and minerals established from steps 2.1 to 2.4 into the three-dimensional digital core model of shale established in step 1.3, so as to establish three-dimensional digital core models of shale having different porosities, fluid characteristics, fracture occurrences, mineral components and distributions.
[25] Further, step 3 includes:
[26] step 3.1, on the basis of the three-dimensional digital core models of shale, using a finite element method to simulate and compute elastic parameters of rock, i.e.,
Young's modulus and Poisson's ratio;
[27] step 3.2: using the following formula to compute a rock brittleness index:
EE Ein VV gin
BI=50 4 rer)
[28] Er En Vax TV min
[29] where BI is a brittleness index, E is a Young's modulus, v is a Poisson's ratio,
Emax represents a maximum Young's modulus of the rock, Emin represents a minimum
Young's modulus, Vmax is a maximum Poisson's ratio of the rock, and Vmin is a minimum Poisson's ratio of the rock; and
[30] step 3.3, using a single factor method to research influences of the porosities, the fluid characteristics, the fracture occurrences and the mineral components on rock brittleness respectively, and determining the influence degree of each of the influence factors. 31] Further, step 4 includes:
[32] step 4.1, selecting fractures and mineral components as main factors, and taking corresponding sensitive degrees in sensitive factor analysis as weight factors
Weiracture and W minerat;
[33] step 4.2, establishing a new brittleness index model according to the main influence factors and the weight factors:
[34] BI new = Wfacte*BL fracture+Wminera<BL mineral,
[35] where BI new represents the new brittleness index model, BI fracture 5 represents a computed brittleness index of the fracture, BI mineral represents a computed brittleness index of a mineral, Wiacture represents the weight factor of the fracture, and Wminerat represents the weight factor of the mineral; and
[36] the brittleness index BI facture of the fracture is determined according to the fracture porosity, and
[37] the brittleness index BI mineral of the mineral is determined by using the following formula: son tin a ore Poe Veere 100
BI mineral nar Pon Voer Vonn Pew “Lown Vas Vonn Vane
[38] - 2
[39] where Vquanz is the content of quartz, Veateite 1s the content of calcite, and
Vminerat is the content of all the minerals.
[40] The present invention has the beneficial effects:
[41] (1) aiming at the problem of great difficulty of a traditional physical experiment of shale, the present invention uses a digital core technology to construct the multi-component digital core of the shale reservoir for a digital rock physical experiment;
[42] (2) aiming at the problem of vague definition of brittle minerals, the present invention uses a digital rock physical experiment method to research influences of different mineral components on the elastic parameters and the brittleness indexes of the rock;
[43] (3) aiming at the lack of consideration of influences of pores, fractures and fluids on brittleness, the present invention uses the digital core technology to construct digital cores having different pores, fracture features and fluid saturations to research influences of the above factors on the elastic parameters and brittleness indexes of rock;
[44] (4) aiming at the fact that influences of the content and the distribution form of brittle minerals on brittleness are not reflected in the mineral brittleness index, the present invention selects the main influence factors to establish the new brittleness index model on the basis that a digital rock physical experiment researches an influence of each of the factors on the brittleness index; and
[45] (5) the present invention may replace the traditional physical experiment extremely difficult to complete in practice, to provide a new method and idea for shale rock physics and rock mechanics research, and moreover, uses a digital core based digital rock physical experiment, to carry out exploratory research on a shale brittleness mechanism, and provide a basic theoretical support for shale brittleness logging evaluation and even fracturing transformation research of the shale reservoir.
Along with development of shale gas exploration and development in China, the requirement for transformation and fracturing of the shale reservoir is continuously increased, and an increasing number of reservoir brittleness evaluation is required, and the present invention has an important effect of brittleness evaluation and fracturability evaluation of the shale reservoir at present and in the future.
BRIEF DESCRIPTION OF THE DRAWINGS
[46] FIG. 1 is a flow chart of a digital core simulation based and computer implemented method for evaluating brittleness of a shale oil and gas reservoir;
[47] FIG. 2 is a core image (b) after different mineral components are obtained by means of multi-threshold segmentation on the basis of a two-dimensional core image (a);
[48] FIG. 3 1s construction of a multi-component three-dimensional digital core (a) of shale and a verification (b) of mineral components and contents of a three-dimensional digital core by using a Markov chain-Monte Carlo based method on the basis of the two-dimensional core image after mineral identification;
[49] FIG. 4 is use of image segmentation to extract pores (d-f) and use of image filtering to obtain fractures (g-i) for core images (a-c) of xoy, yoz and xoz planes;
[50] FIG. 5 is an establishment of three-dimensional digital core models of shale having different microscopic features by using a core embedment technology to embed three-dimensional digital core models having different fracture occurrences (a)-(c), different porosities (d)-(f), different fluid characteristics (g)-(1), mineral contents and distribution features (j)-(I) into a multi-component three-dimensional digital core model (m) of shale;
[51] FIG. 6 is determination of a sensitive degree of each of influence factors by using single-factor analysis; and
[52] FIG. 7 is obtainment of a new brittleness index model (Brittleness index new) for a shale reservoir on the basis of a three-dimensional digital core technology for log interpretation.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[53] The present invention provides a digital core simulation based and computer implemented method for evaluating brittleness of a shale oil and gas reservoir. The method includes:
[54] step 1, construct a three-dimensional digital core model of shale on the basis of a two-dimensional core image.
[59] Step 1.1, determine main mineral components of a shale core according to geological data and core mineral analysis data;
[56] step 1.2, aiming at the obtained two-dimensional core image of shale, identify the main mineral components, and use a multi-threshold segmentation method to carry out image segmentation according to an image gray level data histogram to obtain distribution of main minerals in the two-dimensional core image;
[57] step 1.3, on the basis of the two-dimensional core image after mineral component identification, use a Markov chain-Monte Carlo based method to reconstruct a three-dimensional digital core of shale to establish the three-dimensional digital core model of shale; and
[58] step 1.4, verify the three-dimensional digital core model of shale, and compare types and relative contents of mineral components of the two-dimensional core image with types and relative contents of mineral components of the constructed three-dimensional digital core.
[59] Step 2, construct three-dimensional digital core models of shale having different micropore development, fluid characteristics, fracture occurrences and mineral component features on the basis of a core embedment technology.
[60] Step 2.1: determine core porosities according to geological data and core analysis data, and then use a random method to construct the three-dimensional digital core models having different porosities;
[61] step 2.2, use a lattice Boltzmann method to carry out two-phase displacement simulation in a pore space to obtain three-dimensional digital core models having different oil and gas saturations;
[62] step 2.3, obtain basic information of the fracture occurrences according to the geological data, then extract fractures developed in the core by means of an image filtering technology and an image segmentation technology on the basis of the two-dimensional core image, compute parameters of fracture widths, fracture dips, etc., and finally, use a slab model to establish the three-dimensional digital core models having different fracture occurrences;
[63] step 2.4, determine components and contents of main minerals according to the core analysis data or experimental data, and then use a random method to construct three-dimensional digital core models having different mineral types and different mineral contents; and
[64] step 2.5, use the core embedment technology to embed the three-dimensional digital core models having pores, fluid characteristics, fracture occurrences and minerals established from steps 2.1 to 2.4 into the three-dimensional digital core model of shale established in step 1.3, so as to establish three-dimensional digital core models of shale having different porosities, fluid characteristics, fracture occurrences, mineral components and distributions.
[65] Step 3, use digital rock physical experiments to carry out single-factor analysis on influences of porosities, the fluid characteristics, the fracture occurrences and minerals on rock brittleness on the basis of the three-dimensional digital core models of shale.
[66] Step 3.1, on the basis of the three-dimensional digital core models of shale, use a finite element method to simulate and compute elastic parameters of rock, i.e,
Young's modulus and Poisson's ratio;
[67] step 3.2: use the following formula to compute a rock brittleness index:
E-E VV nis
BI=50( ZL 4 lj)
[68] Far =F Vows Vo (1)
[69] where Bl is a brittleness index, E is a Young's modulus, v is a Poisson's ratio,
Emax represents a maximum Young's modulus of the rock, Emin represents a minimum
Young's modulus, vmax is a maximum Poisson's ratio of the rock, and Vmin is a minimum Poisson's ratio of the rock; and
[70] step 3.3, use a single factor method to research influences of the porosities, the fluid characteristics, the fracture occurrences and the mineral components on rock brittleness respectively, and determine the influence degree of each of the influence factors.
[71] Step 4, determine main influence factors and a weight factor of each of influence factors on the basis of an influence degree of each of the influence factors, so as to establish a brittleness index model comprehensively reflecting mineral components, the fracture occurrences, pores and the fluid characteristics.
[72] Step 4.1, determine weight factors of the main influence factors on the basis of single-factor analysis; and
[73] step 4.2, establish a new brittleness index model according to the main influence factors and the weight factors.
[74] The specific implementation of the present invention will be further described below in combination with the drawings and particular embodiments:
[75] Embodiment 1
[76] With a new brittleness index model provided on the basis of a digital core technology for a shale reservoir of 4050 m-4125 m of a well Z of an oilfield in China as an example, FIG. 1 is a digital core simulation based and computer implemented method for evaluating brittleness of a shale oil and gas reservoir. The method specifically includes:
[77] step 1, construct a three-dimensional digital core model of shale on the basis of a two-dimensional core image.
[78] Step 1.1, determine main mineral components of a shale core as an organic matter, clay, quartz and calcite according to geological data and core mineral analysis data;
[79] step 1.2, for the obtained two-dimensional core image of the shale (FIG. 2(a and b)), use multi-threshold segmentation to obtain different mineral distributions, i.e.,
O-organic matter, 1-clay, 2-quartz and 3-calcite; and
[80] step 1.3, on the basis of the two-dimensional image of the shale core after mineral component identification, use a Markov chain-Monte Carlo based method to establish a three-dimensional digital core model of shale, which is shown in FIG. 3(a); and then compare types and relative contents of mineral components of the two-dimensional core image with types and relative contents of mineral components of the constructed three-dimensional digital core, which is shown in FIG. 3(b), to verify correctness of the constructed three-dimensional digital core of shale.
[81] Step 2, construct three-dimensional digital core models of shale having different micropore development, fluid characteristics, fracture occurrences and mineral component features on the basis of a core embedment technology.
[82] Step 2.1:
[83] firstly; on the basis of core images of three planes of xoy(FIG. 4a), yoz(FIG. 4b) and xoz(FIG. 4c), extract fractures developed in the core (FIG. 4(g-1)) by means of an image filtering technology (FIG. 4(d-f)) and an image segmentation technology;
[84] secondly, define a fracture width as the number of voxels occupied by the fractures, where voxels having widths of 8.2, 19.2 and 7.2 are obtained respectively;
define a fracture length as a ratio of the fracture length to a core length in the two-dimensional core image, where the fracture length is mainly 38.3%; and define a fracture dip as an angle between the fracture and a horizontal direction in the core image, where an average fracture dip angle 1s 66.8°; and
[85] finally, use a slab model to establish three-dimensional digital core models having different fracture occurrences, which is shown in FIG. 5(a-c);
[86] step 2.2, determine a core porosity according to geological data and core analysis data, and then use a random method to construct three-dimensional digital core models having different porosities, which is shown in FIG. 5(d-f);
[87] step 2.3, use a lattice Boltzmann method to carry out two-phase displacement simulation in a pore space to obtain three-dimensional digital core models having different oil and gas saturations, which is shown in FIG. 5(h-1), where dark black is gas, and light grey is formation water;
[88] step 2.4, use a random method to construct three-dimensional digital core models having different mineral types and different mineral contents, which is shown in FIG. 5 (1-1); and
[89] step 2.5, use the core embedment technology to embed the three-dimensional digital core models having pores, fluid characteristics, fracture occurrences and minerals established from steps 2.1 to 2.4 into the three-dimensional digital core model of shale (FIG. 5m) established in step 1.3, so as to establish three-dimensional digital core models of shale having different porosities, fluid characteristics, fracture occurrences, mineral components and distributions.
[90] Step 3, use digital rock physical experiments to carry out single-factor analysis on influences of porosities, the fluid characteristics, the fracture occurrences and minerals on rock brittleness on the basis of the three-dimensional digital core models of shale.
[91] Step 3.1, on the basis of the three-dimensional digital core models, use a finite element method to simulate and compute elastic parameters of rock, 1.e., Young's modulus and Poisson's ratio;
[92] step 3.2: use the following formula to compute a rock brittleness index:
LEE Vn
BI=50 +) 93] Foor“ Fim Vaar “Vaar (3)
[94] where Bl is a brittleness index, E is a Young's modulus, v is a Poisson's ratio,
Emax and Emin represent a maximum Young's modulus and a minimum Young's modulus of the rock respectively, and vmax and Vmin are a maximum Poisson's ratio and a minimum Poisson's ratio of the rock respectively, and it may be seen by means of analysis of rock mechanics experimental data that a range of the elastic parameters of the rock in a research area is: Vmax = 0.4, Vmin = 0.15, Emax = 55.2 Gpa and Ewin = 6.9
Gpa; and
[99] step 3.3: use a single factor method to obtain a sensitive degree of each of influence factors, which is shown in FIG. 6, sensitivity is sequentially reduced from the fractures, the mineral components, the fluid characteristics to the pores.
[96] Step 4, determine main influence factors and a weight factor of each of influence factors on the basis of an influence degree of each of the influence factors, so as to establish a brittleness index model comprehensively reflecting mineral components, the fracture occurrences, pores and the fluid characteristics.
[97] Step 4.1, select fractures and mineral components as main factors, and take corresponding sensitive degrees in sensitive factor analysis as weight factors W fractre and Wminerat, and
[98] step 4.2, establish a new brittleness index model according to the main influence factors and the weight factors:
[99] BI new = Wfacme*BL fracture+W minera”BL mineral,
[100] where BI new represents the new brittleness index model, BI fracture and
BI mineral represent computed brittleness indexes of the fracture and the mineral, and
Wiacture and Wminera represent weight factors of the fracture and the mineral; and
[101] the brittleness index BI facture of the fracture is related to the fracture porosity, and the brittleness index BI mineral of the mineral is mainly related to types and mechanical parameters of the mineral:
son pr Yn yo Laer Poten oere 190 } Eras Eon Var Vin Vomered
BI mineral = —m™m™mWm ™ mmm
[102] - 2 , (3),
[103] where it may be seen from analysis of rock mechanics experimental data that a range of elastic parameters of the rock in the research area IS: Vmax = 0.4, Vmin = 0.15,
Emax = 55.2 Gpa and Emin = 6.9 Gpa, Vqawtz is the content of quartz, Veit is the content of calcite, and Vminerat 15 the content of all minerals.
[104] The twelfth column in FIG. 7 provides a brittleness index computed on the basis of the new brittleness index.
[105] It may be seen from comparison between Brittleness index new and the brittleness index Brittleness index computed according to mineral types that the new brittleness index is greater than the mineral components based brittleness index when there are fractures and pores, which indicates that the new brittleness index comprehensively reflects an influence of fractures and mineral components on rock brittleness
[106] What is described above is only preferred embodiments of the present invention and is not intended to limit the present invention, which may be modified and changed, for those skilled in the art. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention should fall within the scope of protection of the present invention.

Claims (5)

ConclusiesConclusions 1. Werkwijze die op digitale kernsimulatie gebaseerd is en computer- geïmplementeerd is voor het evalueren van broosheid van een reservoir van schalieolie en gas, die het volgende omvat: stap 1, het construeren van een driedimensionaal digitaal kernmodel van schalie op de basis van een tweedimensionaal kernbeeld; stap 2, het construeren van driedimensionale digitale kernmodellen van schalie met verschillende ontwikkelingen van microporiën, fluidumkarakteristieken, breukvoorkomen en mineralecomponentkarakteristieken op de basis van een kerninbeddingstechnologie; stap 3, het gebruiken van fysieke digitalerotsexperimenten om enkelefactoranalyse uit te voeren onder invloed van porositeiten, de fluidumkarakteristieken, de breukvoorkomen en mineralen op rotsbroosheid op de basis van de driedimensionale digitale kernmodellen van schalie; en stap 4, het bepalen van hoofdzakelijke invloedfactoren en een gewichtsfactor van elk van invloedfactoren op de basis van een invloedsmate van elk van de invloedfactoren, om een broosheidindexmodel tot stand te brengen dat mineraalcomponenten, de breukvoorkomen, poriën en de fluidumkarakteristieken volledig reflecteert.1. A digital core simulation-based, computer-implemented method for evaluating brittleness of a shale oil and gas reservoir, comprising: step 1, constructing a three-dimensional digital shale core model on the basis of a two-dimensional core image; step 2, constructing three-dimensional digital core models of shale with different developments of micropores, fluid characteristics, fracture occurrence and mineral component characteristics on the basis of a core embedding technology; step 3, using physical digital rock experiments to conduct single factor analysis under the influence of porosities, fluid characteristics, fracture occurrence and minerals on rock brittleness on the basis of the three-dimensional digital core models of shale; and step 4, determining major influence factors and a weight factor of each of the influence factors on the basis of an influence degree of each of the influence factors, to establish a brittleness index model that fully reflects mineral components, fracture occurrence, pores and fluid characteristics. 2. Werkwijze die op digitale kernsimulatie gebaseerd is en computer- geïmplementeerd is voor het evalueren van broosheid van een reservoir van schalieolie en gas volgens conclusie 1, waarbij stap 1 het volgende omvat: stap 1.1, het bepalen van hoofdzakelijke mineraalcomponenten van een schaliekern volgens geologische data en kernmineraalanalysedata; stap 1.2, het richten op het verkregen tweedimensionale kernbeeld van schalie, het identificeren van de hoofdzakelijke mineraalcomponenten en het gebruiken van een segmentatiewerkwijze met meerdere drempels om beeldsegmentatie uit te voeren volgens een beeldgrijsniveaudatahistogram om verdeling van hoofdzakelijke mineralen in het tweedimensionale kernbeeld te verkrijgen; stap 1.3, het, op de basis van het tweedimensionale kernbeeld na mineraalcomponentidentificatie, gebruiken van een op Markov chain-Monte Carlo gebaseerde werkwijze om een driedimensionale digitale kern van schalie te reconstrueren om het driedimensionale kernmodel van schalie tot stand te brengen; en stap 1.4, het verifiëren van het driedimensionale digitale kernmodel van schalie en het vergelijken van types en relatieve gehaltes van mineraalcomponenten van het tweedimensionale kernbeeld met types en relatieve gehaltes van mineraalcomponenten van de geconstrueerde driedimensionale digitale kern.2. A digital core simulation-based, computer-implemented method for evaluating brittleness of a shale oil and gas reservoir according to claim 1, wherein step 1 comprises: step 1.1, determining major mineral components of a shale core according to geological data and core mineral analysis data; step 1.2, focusing on the obtained two-dimensional core image of shale, identifying the main mineral components and using a multi-threshold segmentation method to perform image segmentation according to an image gray level data histogram to obtain distribution of main minerals in the two-dimensional core image; step 1.3, on the basis of the two-dimensional core image after mineral component identification, using a Markov chain Monte Carlo-based method to reconstruct a three-dimensional digital core of shale to establish the three-dimensional core model of shale; and step 1.4, verifying the three-dimensional digital core model of shale and comparing types and relative contents of mineral components from the two-dimensional core image with types and relative contents of mineral components from the constructed three-dimensional digital core. 3. Werkwijze die op digitale kernsimulatie gebaseerd is en computer- geïmplementeerd is voor het evalueren van broosheid van een reservoir van schalieolie en gas volgens conclusie 1, waarbij stap 2 het volgende omvat: stap 2.1, het bepalen van kemposities volgens geologische data en kernanalysedata en daarna het gebruiken van een willekeurige werkwijze om de driedimensionale digitale kernmodellen met verschillende posities te construeren; stap 2.2, het gebruiken van een lattice Boltzmann werkwijze om tweefasige verplaatsingssimulatie uit te voeren in een porieruimte om driedimensionale digitale kernmodellen met verschillende olie- en gasverzadigingen te verkrijgen; stap 2.3, het verkrijgen van basisinformatie van de breukvoorkomen volgens de geologische data, daarna het terugtrekken van breuken die ontwikkeld zijn in de kern door middel van een beeldfiltertechnologie en een beeldsegmentatietechnologie op de basis van het tweedimensionale kernbeeld, het berekenen van parameters van breukbreedtes, breukdips, etc., en tenslotte het gebruiken van een plaatmodel om de driedimensionale kernmodellen met verschillende breukvoorkomen tot stand te brengen; stap 2.4, het bepalen van componenten en gehaltes van hoofdzakelijke mineralen volgens kernanalysedata of experimentele data en daarna het gebruiken van een willekeurige werkwijze om driedimensionale digitale kernmodellen met verschillende mineraaltypes en verschillende mineraalgehaltes tot stand te brengen; en stap 2.5, het gebruiken van de kerninbeddingstechnologie om de driedimensionale digitale kernmodellen met ponën, fluidumkarakteristieken, breukvoorkomen en mineralen die tot stand gebracht zijn uit de stappen 2.1-2.4 in te bedden in het driedimensionale digitale kernmodel van schalie dat tot stand gebracht is in stap 1.3 om de driedimensionale digitale kernmodellen van schalie met verschillende porositeiten, fluidumkarakteristieken, breukvoorkomen, mineraalcomponenten en - verdelingen tot stand te brengen.3. A digital core simulation-based, computer-implemented method for evaluating brittleness of a shale oil and gas reservoir according to claim 1, wherein step 2 includes: step 2.1, determining core positions according to geological data and core analysis data and then using any method to construct the three-dimensional digital core models with different positions; step 2.2, using a lattice Boltzmann method to perform two-phase displacement simulation in a pore space to obtain three-dimensional digital core models with different oil and gas saturations; step 2.3, obtaining basic information of fracture occurrence according to the geological data, then retracting fractures developed in the core by means of an image filter technology and an image segmentation technology on the basis of the two-dimensional core image, calculating parameters of fracture widths, fracture dips , etc., and finally using a plate model to create the three-dimensional core models with different fracture occurrences; step 2.4, determining components and contents of major minerals according to core analysis data or experimental data and then using any method to create three-dimensional digital core models with different mineral types and different mineral contents; and step 2.5, using the core embedding technology to embed the three-dimensional digital core models with punches, fluid characteristics, fracture occurrence and minerals created from steps 2.1-2.4 into the three-dimensional digital shale core model created in step 1.3 to establish the three-dimensional digital core models of shale with different porosities, fluid characteristics, fracture occurrence, mineral components and distributions. 4. Werkwijze die op digitale kernsimulatie gebaseerd is en computer- geïmplementeerd is voor het evalueren van broosheid van een reservoir van schalieolie en gas volgens conclusie 1, waarbij stap 3 het volgende omvat: stap 3.1, het, op de basis van de driedimensionale digitale kernmodellen van schalie, gebruiken van een eindige elementenwerkwijze om elastische parameters van rots, i.e, Youngs modulus en Poissons bereik te simuleren en te berekenen; stap 3.2, het gebruiken van de volgende formule om een rotsbroosheidindex te berekenen: BI — 50( EEn + VV in ) E ax = E sin Vax = Yin , waarbij BI een broosheidindex is, E een Youngs modulus is, v een Poissons bereik is, Emax een maximale Youngs modulus representeert van de rots, Emin een minimale Youngs modulus represnteert, vmax een maximaal Poissons bereik van de rots is en Vmin een minimaal Poissons bereik van de rots is; en stap 3.3, het gebruiken van een enkelefactorwerkwijze om invloedenvan de porositeiten, de fluïdumkarakteristieken, de breukvoorkomen en de mineraalcomponenten op de rotsbroosheid respectievelijk te onderzoeken en het bepalen van de invloedsmate van elk van de invloedfactoren.A digital core simulation-based, computer-implemented method for evaluating brittleness of a shale oil and gas reservoir according to claim 1, wherein step 3 comprises: step 3.1, based on the three-dimensional digital core models of shale, using a finite element method to simulate and calculate elastic parameters of rock, i.e., Young's modulus and Poisson's range; step 3.2, using the following formula to calculate a rock brittleness index: BI — 50( EEn + VV in ) E ax = E sin Vax = Yin , where BI is a brittleness index, E is a Young's modulus, v is a Poisson's range , Emax represents a maximum Young's modulus of the rock, Emin represents a minimum Young's modulus, vmax is a maximum Poisson's range of the rock and Vmin is a minimum Poisson's range of the rock; and step 3.3, using a single factor method to investigate influences of porosities, fluid characteristics, fracture occurrence and mineral components on rock brittleness, respectively, and determining the degree of influence of each of the influence factors. 5. Werkwijze die op digitale kernsimulatie gebaseerd is en computer- geïmplementeerd is voor het evalueren van broosheid van een reservoir van schalieolie en gas volgens conclusie 1, waarbij stap 4 het volgende omvat: stap 4.1, het selecteren van breuken en mineraalcomponenten als hoofdzakelijke factoren en het nemen van overeenkomende gevoelige mates in gevoeligheidfactoranalyse als gewichtfactoren Wiracture en W mineral; stap 4.2, het tot stand brengen van een nieuw broosheidindexmodel volgens de hoofdzakelijke invloedfactoren en de gewichtfactoren: BI new = Wiracture * BI fracture + Wminerat X BI mineral, waarbij BI new het nieuwe broosheidindexmodel representeert, BI fracture een berekende broosheidindex van de breuk representeert, BI mineral een berekende broosheidindex van een mineraal representeert, [Wrracture de gewichtfactor van de breuk representeert and Wiminera de gewichtfactor van het mineral representeer; en waarbij de broosheidindex BI facture van de breuk bepaald wordt volgens de breukporisiteit, en waarbij de broosheid index BI mineral van het mineral bepaald word door het gebruiken van de volgende formule: CEE ee IE SOL nn EEL + EE SEER 0 3E 5 Eo > Eo Vier > Parin Voest EE 05 rt sooo soso 606060000 - 5 waarbij Vquartz het gehalte van quartz is, Vcalcite het gehalte van calciet is and Vmineral het gehalte van alle mineralen is.A digital core simulation-based and computer-implemented method for evaluating brittleness of a shale oil and gas reservoir according to claim 1, wherein step 4 includes: step 4.1, selecting fractures and mineral components as main factors and taking corresponding sensitive mates in sensitivity factor analysis as weight factors Wiracture and W mineral; step 4.2, creating a new brittleness index model according to the main influence factors and the weight factors: BI new = Wiracture * BI fracture + Wminerat BI mineral represents a calculated brittleness index of a mineral, [Wrracture represents the weight factor of the fracture and Wiminera represents the weight factor of the mineral; and wherein the brittleness index BI facture of the fracture is determined according to the fracture porosity, and wherein the brittleness index BI mineral of the mineral is determined using the following formula: CEE ee IE SOL nn EEL + EE SEER 0 3E 5 Eo > Eo Vier > Parin Voest EE 05 rt sooo soso 606060000 - 5 where Vquartz is the content of quartz, Vcalcite is the content of calcite and Vmineral is the content of all minerals.
NL2032835A 2021-10-26 2022-08-23 Digital core simulation based and computer implemented method for evaluating brittleness of shale oil and gas reservoir NL2032835B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111249856.9A CN114034619B (en) 2021-10-26 2021-10-26 Shale oil and gas reservoir brittleness evaluation method based on digital core simulation

Publications (2)

Publication Number Publication Date
NL2032835A NL2032835A (en) 2022-09-26
NL2032835B1 true NL2032835B1 (en) 2023-11-28

Family

ID=80141983

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032835A NL2032835B1 (en) 2021-10-26 2022-08-23 Digital core simulation based and computer implemented method for evaluating brittleness of shale oil and gas reservoir

Country Status (2)

Country Link
CN (1) CN114034619B (en)
NL (1) NL2032835B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115407045B (en) * 2022-08-02 2023-05-09 西南石油大学 Rock mechanical parameter evaluation model construction method and rock mechanical property evaluation method
CN115356772B (en) * 2022-08-16 2023-04-04 重庆科技学院 Method for evaluating brittleness of continental facies shale gas reservoir by considering interlayer type
CN115808353A (en) * 2022-11-21 2023-03-17 西安石油大学 Rock fracability characterization method and device based on digital core
CN116537773B (en) * 2023-05-26 2024-05-07 中国石油大学(华东) Shale reservoir compressibility confidence evaluation method considering parameter uncertainty
CN117421890B (en) * 2023-10-19 2024-05-10 重庆科技学院 Mineral filling-based fracture-cavity reservoir conductive model construction method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103485759B (en) * 2013-09-10 2016-09-07 中国石油大学(北京) Oil/gas Well hydraulically created fracture extension visualized experiment method and device thereof
CN104853822A (en) * 2014-09-19 2015-08-19 杨顺伟 Method for evaluating shale gas reservoir and searching sweet spot region
CN104832169B (en) * 2015-05-30 2017-06-13 重庆地质矿产研究院 Indoor experimental shaft device and method for horizontal well two-well synchronous or asynchronous multi-section clustering fracturing
CN105115874B (en) * 2015-08-18 2018-02-02 中国石油天然气股份有限公司 The multicomponent 3-dimensional digital rock core construction method of Multi-source Information Fusion
CN105156103B (en) * 2015-09-29 2018-06-05 西南石油大学 A kind of multiple dimensioned shale reservoir three-dimensional compressibility evaluation method of landwaste-rock core-wellbore-reservoir
CN106837315B (en) * 2015-12-03 2020-05-12 中国石油化工股份有限公司 Method for representing coupling effect of fractured carbonate rock matrix and fractures
CN105928957B (en) * 2016-04-20 2018-08-17 西安石油大学 A kind of construction method of fractured carbonate rock 3-dimensional digital rock core
CN109242970B (en) * 2018-10-11 2021-06-25 中国科学院力学研究所 Shale LRREV scale digital core reconstruction method and device
CN109887083A (en) * 2019-01-29 2019-06-14 中国石油集团测井有限公司西南分公司 A kind of method for building up of Fracture-Pore dual media coupling penetration rate model
CN111911142B (en) * 2020-08-04 2022-05-13 中国地质大学(北京) Digital core construction method for fractured compact sandstone gas reservoir water saturation model
CN111894568A (en) * 2020-08-04 2020-11-06 中国地质大学(北京) Digital core analysis method for fractured carbonate reservoir saturation model
CN112348880B (en) * 2020-11-10 2021-08-03 重庆科技学院 Construction method of unconventional reservoir multi-scale and multi-component digital core
CN113138107B (en) * 2021-04-15 2022-08-26 东北石油大学 Rock brittleness evaluation method based on while-drilling rock debris logging information

Also Published As

Publication number Publication date
CN114034619A (en) 2022-02-11
CN114034619B (en) 2022-08-16
NL2032835A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
NL2032835B1 (en) Digital core simulation based and computer implemented method for evaluating brittleness of shale oil and gas reservoir
US10083258B2 (en) Combining downhole fluid analysis and petroleum systems modeling
CN105426612B (en) A kind of determining method and device of stratum component optimization
CA2911247C (en) Digital core sensitivity analysis
CA2847693C (en) Core-plug to giga-cells lithological modeling
CA2692425C (en) Method, program and computer system for scaling hydrocarbon reservoir model data
Wang et al. Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins
AU2010340274B2 (en) System and method for integrated reservoir and seal quality prediction
NO335631B1 (en) Procedure for simulating geomechanical behavior of a subsurface reservoir
CN107366534B (en) Method and device for determining coarsening permeability
US10620340B2 (en) Tuning digital core analysis to laboratory results
Santos et al. Characterization of natural fracture systems: Analysis of uncertainty effects in linear scanline results
US20190203593A1 (en) Method and System for Modeling in a Subsurface Region
Kamali et al. 3D geostatistical modeling and uncertainty analysis in a carbonate reservoir, SW Iran
Olson et al. Estimating natural fracture producibility in tight gas sandstones: Coupling diagenesis with geomechanical modeling
Byrnes et al. Analysis of critical permeabilty, capillary pressure and electrical properties for Mesaverde tight gas sandstones from western us basins
Liu et al. Geochemical characteristics and thermal evolution of paleogene source rocks in Lunpola basin, Tibet Plateau
CN111236934A (en) Method and device for determining flooding level
Amanipoor Providing a subsurface reservoir quality maps in oil fields by geostatistical methods
US20240093592A1 (en) Quantification of pore-filling dolomite and calcite cement in carbonate reservoirs in post hydrocarbon charge stage
CN111894537B (en) Method and device for exploiting oil field in high water cut period
Timothy Whitten Mathematical geology in perspective: Has objective hypothesis testing become overlooked?
Wan et al. Intelligent prediction of fracture parameters in ultra-deep carbonate rocks based on knowledge and data dual drive
Jonk et al. A sequence-stratigraphic approach to constructing earth models of shale gas systems
Mohamad et al. Advanced Reservoir Characterisation of Meandering Fluvial Environment, 3D Modelling Study Offshore Malaysia