NL2032714A - Inertia friction welding device and method for turbine disc shaft of aircraft engine - Google Patents

Inertia friction welding device and method for turbine disc shaft of aircraft engine Download PDF

Info

Publication number
NL2032714A
NL2032714A NL2032714A NL2032714A NL2032714A NL 2032714 A NL2032714 A NL 2032714A NL 2032714 A NL2032714 A NL 2032714A NL 2032714 A NL2032714 A NL 2032714A NL 2032714 A NL2032714 A NL 2032714A
Authority
NL
Netherlands
Prior art keywords
welding
box body
shaft
turbine
end surface
Prior art date
Application number
NL2032714A
Other languages
Dutch (nl)
Other versions
NL2032714B1 (en
Inventor
Li Yunlei
Zhang Wenhan
Zhao Yushan
Wu Yanquan
Wang Qi
Yan Hanlin
Lin Yue
Qin Feng
Yang Haifeng
Liang Wu
Zhang Chunbo
Zhai Limin
Zhou Jun
Li Rui
Original Assignee
Harbin Welding Inst Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Welding Inst Co Ltd filed Critical Harbin Welding Inst Co Ltd
Publication of NL2032714A publication Critical patent/NL2032714A/en
Application granted granted Critical
Publication of NL2032714B1 publication Critical patent/NL2032714B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0426Fixtures for other work
    • B23K37/0435Clamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • F01D25/285Temporary support structures, e.g. for testing, assembling, installing, repairing; Assembly methods using such structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention discloses an aircraft engine turbine disc shaft inertia friction welding device, wherein the welding device comprises an inertia friction welding machine main body 5 structure and a welding tooling fixture, the main body structure of the inertia friction welding machine comprises a main shaft box body assembly and a tailstock box body assembly, and the welding tooling fixture comprises a drum shaft tooling fixture, a turbine disc tooling fixture, a turbine rear shaft tooling fixture and a combination tooling fixture. Compared with the prior art, the welding device and method disclosed in the present 10 invention ensure the stability, dimensional accuracy and joint performance in the welding process of the aircraft engine turbine disc shaft, improve the production rate of the aircraft engine turbine disc shaft assembly and reduce the production cost.

Description

INERTIA FRICTION WELDING DEVICE AND METHOD FOR TURBINE DISC
SHAFT OF AIRCRAFT ENGINE
TECHNICAL FIELD
[OI] The present invention relates to the field of inertia friction welding, and more particularly to an aircraft engine turbine disc shaft inertia friction welding device and method.
BACKGROUND ART
[02] Inertial friction welding is a typical welding method in the solid phase welding process. In the welding process, the mechanical kinetic energy is stored by the rotating flywheel, which drives one of the parts to rotate at high speed. Under the action of axial friction pressure, heat is generated by friction with the other stationary part. Under the action of upsetting welding pressure, plastic deformation and flow of friction interface material occur, and the welding of the two parts is realized. In the inertia friction welding process, because the friction interface temperature does not reach the melting point of the material, and the welding speed is fast and the welding time is short, the interface material is in a high-temperature plastic state, after the welding upsetting, part of the high-temperature metal material on the interface is extruded out of the weld seam to form a welding flash, which can eliminate the oil stain and oxide inclusion in the end surface of the test piece during the flash extrusion process, and has a self-cleaning function, which can avoid the existence of inclusion defects. At the same time, the weld seam is in a closed state during the welding process, which prevents the entry of air, and completely avoids the air holes, inclusion, cracks and non-fusion defects which often occur in the fusion welding head. It is especially suitable for the welding of axisymmetric parts of homogeneous/heterogeneous materials with large difference in mechanical properties, and can obtain high quality welded joints.
[03] With the development of high performance aircraft engine, new superalloy materials have been used more and more in aircraft engine turbine disc shaft assembly.
Especially, powder metallurgy superalloy (such as U720Li, Rene’88DT, RR1000, etc.) has many outstanding advantages, such as fine grain, uniform structure, no macro-segregation, high yield strength, good fatigue performance, etc. which has become the best material for aircraft engine turbine disc shaft. However, it is difficult to obtain high-quality welded joints by electron beam welding for the welding of dissimilar high-temperature alloy materials represented by powder metallurgy high-temperature alloy, mainly because the high volume percentage of y’ strengthening phase composition is complex in the welding process of high-temperature alloy as a high-energy density fusion welding process, which results in the formation of crystallization cracks, heat affected zone liquefaction cracks and strain aging cracks in the welding process. In addition, because of the difference of microstructure, melting point, thermal conductivity, thermal expansion coefficient and other parameters, the dissimilar high-temperature alloy materials in the welding process tend to cause microstructure segregation, and generate large thermal stress, resulting in cracks and other defects. In particular, the microcracks caused by grain boundary liquefaction during melting and welding of high temperature alloys are difficult to avoid, but difficult to effectively detect by non-destructive testing method. Therefore, fusion welding processes such as electron beam welding are not suitable for the welding of homogeneous and heterogeneous powder superalloy materials. Inertial friction welding, as a solid phase welding process, will avoid the problem of cracks and quality detection in fusion welding.
[04] At present, the bolting or electron beam welding process is still more used in the rotating parts of turbine disc shaft of aircraft engine in China, which greatly limits the application of high-performance homogeneous/heterogeneous powder superalloy materials in the rotating parts of turbine disc shaft of aircraft engine, and also limits the improvement of the overall performance of aircraft engine.
SUMMARY
[05] It is an object of the present invention to provide an aircraft engine turbine disc shaft inertia friction welding device and method for ensuring high quality and high precision connection requirements for rotating parts of an aircraft engine turbine disc shaft.
[06] In order to achieve the above object, the present invention provides the following scheme:
[07] An aircraft engine turbine disc shaft inertia friction welding device is disclosed comprising:
[08] an inertia friction welding machine main body structure, the inertia friction welding machine main body structure comprising a main shaft box body assembly and a tailstock box body assembly;
[09] a welding tooling fixture, the welding tooling fixture comprising a drum shaft tooling fixture, a turbine disc tooling fixture, a turbine rear shaft tooling fixture and a combination tooling fixture, wherein the drum shaft tooling fixture is used for mounting a drum shaft on the main shaft box body assembly, the turbine disc tooling fixture is used for mounting a turbine disc on the tailstock box body assembly, the turbine rear shaft tooling fixture is used for mounting a turbine rear shaft on the main shaft box body assembly, and the combination tooling fixture is used for mounting a first welding combination of a drum shaft and a turbine disc on the tailstock box body assembly.
[10] Preferably, the main shaft box body assembly includes a main shaft box body, a main shaft box body side spindle, a main shaft box body side mandrel and a main shaft spring chuck, wherein the main shatt spring chuck is fixed on the spindle box side spindle and the main shaft box body by bolts.
[11] Preferably, the tailstock box body assembly comprises a tailstock box body, a tailstock box body inner cylinder body, a tailstock box body side mandrel, and a tailstock spring chuck, wherein the tailstock spring chuck is threadedly connected to the tailstock box body inner cylinder body, and the tailstock box body spring chuck is bolted to the tailstock box body.
[12] Preferably, the drum shaft tooling fixture comprises a first welding tooling bolted to the main shaft box body side mandrel and a first spring ring positioned between the main shaft spring chuck and the drum shaft.
[13] Preferably, the turbine disc tooling fixture comprises a second welding tooling, a third welding tooling and a second spring ring, wherein the second welding tooling is bolted together with the tailstock box body side mandrel to the tailstock box body inner cylinder body, the third welding tooling is bolted to the second welding tooling, and the second spring ring is located between the tailstock spring chuck and turbine disc. |14] Preferably, the turbine rear shaft tooling fixture comprises a first welding tooling bolted to the main shaft box body side mandrel and a third spring ring positioned between the main shaft spring chuck and turbine rear shaft.
[15] Preferably, the combination tooling fixture comprises a fourth welding tooling and a third spring ring, wherein the fourth welding tooling is sleeved on the tailstock box body side mandrel, and the third spring ring is positioned between the tailstock spring chuck and turbine disc.
[16] The present invention also discloses an aircraft engine turbine disc shaft inertia friction welding method using the above-mentioned aircraft engine turbine disc shaft inertia friction welding device, which comprises the steps of:
[17] SI, mounting a drum shaft tooling fixture on the main shaft box body assembly, and mounting a turbine disc tooling fixture on the tailstock box body assembly;
[18] SZ, placing the drum shaft on the main shaft box body assembly on which the drum shaft tooling fixture has been mounted, locating the drum shaft inside the first spring ring, and making the end surface of the drum shaft contact the end surface of the first welding tooling, and clamping, by the main shaft spring chuck, the first spring ring and the drum shaft by means of radial pressure;
[19] S3, placing the turbine on the tailstock box body assembly on which the turbine disc tooling fixture has been mounted, locating the turbine disc inside the second spring ring, contacting the end surface of the turbine disc with the end surface of the third welding tooling, and clamping, by the tailstock spring chuck, the second spring ring and the turbine disc by means of radial pressure;
[20] S4, wiping the welding end surface of the drum shaft and the welding end surface of the turbine disc by dipping an alcohol or acetone solution with a dust-free cloth, respectively, to remove oily impurities on the welding end surface of the drum shaft and the turbine disc;
[21] S5, moving the tailstock box body assembly towards the main shaft box body assembly under the action of an axial force, so that the end surface of the drum shaft is in close contact with the end surface of the turbine disc and keeping stationary, removing the 5 radial pressure from the main shaft spring chuck and the tailstock spring chuck, and then applying the radial pressure again, and moving the tailstock box body assembly towards the opposite direction of the main shaft box body assembly by a distance under the action of the axial force and then keeping stationary;
[22] So, inputting welding process parameters of the drum shaft and the turbine disc to a control system of the inertia friction welding machine, including an initial rotation speed, a welding rotation speed, a friction pressure and a welding pressure;
[23] S7, starting the first welding, starting the main shaft motor of the inertia friction welding machine, so as to stop supplying power to the main shaft motor of the inertia friction welding machine after the rotation speed of the drum shaft reaches the initial rotation speed, and moving the tailstock box body side assembly by a distance to the main shaft box body side assembly under the action of the axial friction pressure, so that the end surface of the drum shaft is in close contact with the end surface of the turbine disc to generate friction heat, and keeping the axial friction pressure unchanged; when the rotation speed of the drum shaft decreases to the welding rotation speed, the axial friction pressure changes into the welding pressure and remains unchanged until after the drum shaft stops rotating, keeping the axial welding pressure for a period of time and then withdrawing the axial welding pressure;
[24] S8, removing the radial pressure from the main shaft spring chuck, fixing the tailstock box body assembly after moving a distance in the opposite direction of the main shaft box body assembly under the axial force, removing the radial pressure from the tailstock spring chuck, and removing the first welding combination of the drum shaft and the turbine disc;
[25] S9, disassembling the drum shaft tooling fixture and the turbine disc tooling fixture;
[26] S10, mounting a turbine rear shaft tooling fixture on the main shaft box body assembly, and mounting a combination tooling fixture on the tailstock box body assembly;
[27] S11, placing the turbine rear shaft inside the third spring ring, contacting an end surface of the turbine rear shaft with an end surface of the first welding tooling, and clamping, by the main shaft spring chuck, the third spring ring and the turbine rear shaft by radial pressure;
[28] S12, placing the first welding combination on the tailstock box body assembly, placing the first welding combination inside the second spring ring, contacting the end surface of the turbine disc on the first welding combination with the end surface of the tailstock box body side mandrel, contacting the end surface of the turbine disc on the first welding combination with the end surface of the fourth welding tooling, and clamping, by the tailstock spring chuck, the second spring ring and the turbine disc on the first welding combination by means of radial pressure;
[29] S13, respectively wiping the end surface of the turbine rear shaft and the end surface of the turbine disc on the first welding combination by dipping an alcohol or acetone solution with a dust-free cloth to remove oily impurities on the end surface of the turbine rear shaft and the end surface of the turbine disc on the welding combination;
[30] S14, moving the tailstock box body assembly by a distance to the main shaft box body assembly under the action of the axial force, so that the end surface of the turbine rear shaft is in close contact with the end surface of the turbine disc on the first welding combination and keeping stationary, removing the radial pressure from the main shaft spring chuck and the tailstock spring chuck, and then applying the radial pressure again, and moving the tailstock box body assembly by a distance in the opposite direction to the main shaft box body assembly under the action of the axial force and then keeping stationary;
[31] S15, inputting the welding process parameters of the turbine rear shaft and the turbine disc on the first welding combination to the control system of the inertia friction welding machine, comprising an initial rotation speed, a welding rotation speed, a friction pressure and a welding pressure;
[32] S16, starting the second welding, starting the main shaft motor of the inertia friction welding machine, so that after the rotation speed of the turbine rear shaft reaches the initial rotation speed, stopping supplying power to the main shaft motor of the inertia friction welding machine, moving, by the tailstock box body assembly, a distance to the main shaft box body assembly under the action of the axial friction pressure, so that the end surface of the turbine rear shaft is in close contact with the end surface of the turbine disc on the first welding combination to generate friction heat, and when the rotation speed of the turbine rear shaft decreases to the welding rotation speed, converting the friction pressure to the welding pressure until after the turbine rear shaft stops rotating, removing the axial welding pressure after maintaining the axial welding pressure for a period of time;
[33] S17, removing the radial pressure from the main shaft spring chuck, fixing the tailstock box body assembly after moving a distance in the opposite direction of the main shaft box body assembly under the action of the axial force, removing the radial pressure from the tailstock side spring chuck, and discharging the second welding combination formed by welding the turbine rear shaft and the first welding combination;
[34] S18, disassembling the turbine rear shaft tooling fixture and the combination tooling fixture, closing the control system of the inertia friction welding machine, and finishing all the welding processes.
[35] The present invention achieves the following technical effects with respect to the prior art:
[36] The welding device and method disclosed in the present invention ensure the stability, dimensional accuracy and joint performance in the welding process of the turbine disc shaft of an aircraft engine, improve the production rate of the turbine disc shaft assembly of an aircraft engine and reduce the production cost, and realize the high-quality and high-precision welding production of the rotating parts of the turbine disc shaft of homogeneous and heterogeneous high-temperature alloy and powder high-temperature alloy materials for an aircraft engine.
BRIEF DESCRIPTION OF THE DRAWINGS
[37] In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, a brief description will be given below of the drawings which need to be used in the embodiments. It is obvious that the drawings in the following description are only some embodiments of the present invention, and it would have been obvious for a person skilled in the art to obtain other drawings according to these drawings without involving any inventive effort.
[38] Fig. 1 is a front view of a main shaft box body assembly and a tailstock box body assembly according to the embodiment;
[39] Fig. 2 is a front view showing a structure of a first welding tooling according to the embodiment;
[40] Fig. 3 is a front view of a second welding tooling structure according to the embodiment;
[41] Fig. 4 is a front view of a third welding tooling structure according to the embodiment;
[42] Fig. 5 is a front view showing a structure of a fourth welding tooling according to the embodiment;
[43] Fig 61s a front view of a first spring ring structure according to the embodiment;
[44] Fig. 7 is a front view of a second spring ring structure according to the embodiment;
[45] Fig. 8 is a front view of a third spring ring structure according to the embodiment;
[46] Fig. 9 is a front view of a first bolt structure according to the embodiment;
[47] Fig. 101s a front view of a second bolt structure according to the embodiment;
[48] Fig. 11 is a front view of a third bolt structure according to the embodiment;
[49] Fig. 12 is a front view of a fourth bolt structure according to the embodiment;
[50] Fig. 13 is a front view of a drum shaft according to the embodiment;
[51] Fig. 14 is a front view of a turbine disc according to the embodiment;
[52] Fig. 1515 a front view of a turbine rear shaft according to the embodiment;
[53] Fig. 16 is an assembly view of a drum shaft tooling fixture and a turbine disc tooling fixture according to the embodiment;
[54] Fig 171s a welded assembly view of the drum shaft and the turbine disc according to the embodiment;
[55] Fig. 18 is a front view of a first welding combination according to the embodiment;
[56] Fig. 19 is an assembly view of a turbine rear shaft tooling fixture and a combination tooling fixture according to the embodiment;
[57] Fig. 20 is a welding assembly view of the turbine rear shaft and the first welding combination according to the embodiment;
[58] Fig. 21 is a turbine disc shaft welding assembly formed by welding a turbine rear shaft to a first welding combination;
[59] Description of Reference Numerals: 1-main shaft box body; 2-tailstock box body; 3-Spindle box side spindle; 4-tailstock box side inner cylinder body; S-external thread section; 6-Spindle box side mandrel; 7-tailstock box side mandrel; 8-main shaft spring chuck; 9-tailstock spring chuck; 10-first welding tooling; 11-second welding tooling; 12-third welding tooling; 13-a fourth welding tool; 14-first coil; 15-Third spring ring; 16-second spring ring; 17-first bolt; 18-second bolt; 19-third bolt; 20-fourth bolt; a-drum shaft; b-turbine discs; c-turbine rear shaft; d-first welding combination; e-second welding combination.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[60] The embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. It is to be understood that the embodiments described are only a few, but not all embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by a person of ordinary skill in the art without inventive effort fall within the scope of the present invention.
[61] It is an object of the present invention to provide an aircraft engine turbine disc shaft inertia friction welding device and method for ensuring high quality and high precision connection requirements for rotating parts of an aircraft engine turbine disc shaft.
[62] The above objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings. |63] As shown in Figs. 1-21, the embodiment provides an aircraft engine turbine disc shaft inertia friction welding device including an inertia friction welding machine main body structure and a welding tooling fixture.
[64] The main body structure of the inertia friction welding machine comprises a main shaft box body assembly and a tailstock box body assembly, and the welding tooling fixture comprises a drum shaft tooling fixture, a turbine disc tooling fixture, a turbine rear shaft tooling fixture and a combination tooling fixture. The drum shaft tooling fixture is used for mounting a drum shaft a on the main shaft box body assembly, the turbine disc tooling fixture is used for mounting a turbine disc b on the tailstock box body assembly, the turbine rear shaft tooling fixture is used for mounting a turbine rear shaft c on the main shaft box body assembly, and the combination tooling fixture is used for mounting a first welding combination d of the drum shaft a and the turbine disc b on the tailstock box body assembly.
[65] When the inertia friction welding device for an aircraft engine turbine disc b of the embodiment is used, the drum shaft a is mounted on the main shaft box body assembly via the drum shaft tooling fixture, the turbine disc b is mounted on the tailstock box body assembly via the turbine disc tooling fixture, and the drum shaft a and the turbine disc b are subjected to a first inertia friction welding to form a first welding combination d; then, the turbine rear shaft c is mounted on the main shaft box body 1 via the turbine rear shaft tooling fixture, the first welding combination d is mounted on the tailstock box body assembly via the combination tooling fixture, and the turbine rear shaft c and the first welding combination d are subjected to a second inertia friction welding to form a second welding combination e.
[66] Specifically, the main shaft box body assembly comprises a main shaft box body 1, a main shaft box body side spindle 3, a main shaft box body side mandrel 6 and a main shaft spring chuck 8, wherein the main shaft spring chuck 8 is fixed on the main shaft box body side spindle 3 and the main shaft box body 1 via a first bolt 17 and a third bolt 19, the main shaft spring chuck 8 is used for applying a radial clamping force to an inner part, and the main shaft box body side spindle 3 is fixedly connected to the main shaft box body side spindle 6, i.e., the two rotate synchronously.
[67] The tailstock box body assembly comprises a tailstock box 2, a tailstock box-side inner cylinder body 4, a tailstock box-side mandrel 7 and a tailstock spring chuck 9, wherein the tailstock box-side inner cylinder body 4 has an external thread section 5, the tailstock spring chuck 9 is in threaded connection with the tailstock box-side inner cylinder body 4, the tailstock box 2 spring chuck is fixed on the tailstock box 2 via a second bolt 18, and the tailstock spring chuck 9 is used for applying a radial clamping force to an inner part.
[68] The drum shaft tooling fixture comprises a first welding tooling 10 and a first spring ring 14, wherein the first welding tooling 10 is fixed on the main shaft box body-side mandrel 6 via a third bolt 19, and the first spring ring 14 is located between the main shaft spring chuck 8 and the drum shaft a. The first welding tooling 10 is used for axially positioning the drum shaft a, and the first spring ring 14 is used for transmitting the clamping force applied by the main shaft spring chuck 8 for radially positioning the drum shaft a.
[69] The turbine disc tooling fixture comprises a second welding tooling 11, a third welding tooling 12 and a second spring ring 16, wherein the second welding tooling 11 and the tailstock box body-side mandrel 7 are fixed together on the tailstock box body-side inner cylinder body 4 via a fourth bolt 20, the third welding tooling 12 is fixed on the second welding tooling 11 via a third bolt 19, and the second spring ring 16 is located between the tailstock spring chuck 9 and the turbine disc b. The second welding tooling 11 and the third welding tooling 12 are arranged in sequence and coaxial in the axial direction for axially positioning the turbine disc b, and the second spring ring 16 is used for transmitting the clamping force applied by the tailstock spring chuck 9 and radially positioning the turbine disc b.
[70] The turbine rear shaft tooling fixture comprises a first welding tooling 10 and a third spring ring 15, wherein the first welding tooling 10 is fixed on the main shaft box body-side mandrel 6 via a third bolt 19, and the first spring ring 15 is located between the main shaft spring chuck 8 and the turbine rear shaft c. The first welding tooling 10 is used for axially positioning the turbine rear shaft c, and the third spring ring 15 is used for transmitting the clamping force applied by the main shaft spring chuck 8 for radially positioning the turbine rear shaft c.
[71] The combination tooling fixture comprises a fourth welding tooling 13 and a third spring ring 15, wherein the fourth welding tooling 13 is sleeved on the tailstock box body side mandrel 7, and the third spring ring 15 is positioned between the tailstock spring chuck 9 and turbine disc b. The fourth welding tooling 13 is used for axially positioning the first welding combination d, and the third spring ring 15 is used for transmitting the clamping force applied by the tailstock spring chuck 9 for radially positioning the turbine disc b in the first welding combination d.
[72] The embodiment also discloses an aircraft engine turbine disc shaft inertia friction welding method using the above-mentioned aircraft engine turbine disc shaft inertia friction welding device, which comprises the steps of:
[73] Sl, mounting a drum shaft tooling fixture on the main shaft box body assembly, and mounting a turbine disc tooling fixture on the tailstock box body assembly;
[74] S2, placing the drum shaft a on the main shaft box body assembly on which the drum shaft tooling fixture has been mounted, locating the drum shaft a inside the first spring ring 14, and contacting the end surface F of the drum shaft a with the end surface B of the first welding tooling 10, and clamping, by the main shaft spring chuck 8, the first spring ring 14 and the drum shaft a by means of radial pressure;
[75] S3, placing the turbine b on the tailstock box body assembly on which the turbine disc tooling fixture has been mounted, locating the turbine disc b inside the second spring ring 16, contacting the end surface J of the turbine disc b with the end surface D of the third welding tooling 12, and clamping, by the tailstock spring chuck 9, the second spring ring 16 and the turbine disc b by means of radial pressure;
[76] S4, wiping the welding end surface G of the drum shaft a and the welding end surface H of the turbine disc b by dipping an alcohol or acetone solution with a dust-free cloth, respectively, to remove oily impurities on the welding end surface of the drum shaft a and the turbine disc b;
[77] SS, moving the tailstock box body assembly towards the main shaft box body assembly under the action of an axial force, so that the end surface G of the drum shaft a is in close contact with the end surface H of the turbine disc b and keeping same stationary, removing the radial pressure from the main shaft spring chuck 8 and the tailstock spring chuck 9, and then applying the radial pressure again, and moving the tailstock box body assembly towards the opposite direction of the main shaft box body assembly by a distance under the action of the axial force and then keeping same stationary;
[78] 56, inputting welding process parameters of the drum shaft a and the turbine disc b to a control system of the inertia friction welding machine, including an initial rotation speed, a welding rotation speed, a friction pressure and a welding pressure;
[79] S7, starting the first welding, starting the main shaft motor of the inertia friction welding machine, so as to stop supplying power to the main shaft motor of the inertia friction welding machine after the rotation speed of the drum shaft a reaches the initial rotation speed, and moving the tailstock box body side assembly by a distance to the main shaft box body side assembly under the action of the axial friction pressure, so that the end surface G of the drum shaft a is in close contact with the end surface H of the turbine disc b to generate friction heat, and keeping the axial friction pressure unchanged; when the rotation speed of the drum shaft a decreases to the welding rotation speed, the axial friction pressure changes into the welding pressure and remains unchanged until after the drum shaft a stops rotating, keeping the axial welding pressure for a period of time and then withdrawing the axial welding pressure;
[80] S8, removing the radial pressure from the main shaft spring chuck 8, fixing the tailstock box body assembly after moving a distance in the opposite direction of the main shaft box body assembly under the axial force, removing the radial pressure from the tailstock spring chuck 9, and removing the first welding combination a of the drum shaft a and the turbine disc b;
[81] S9, disassembling the drum shaft tooling fixture and the turbine disc tooling fixture;
[82] S10, mounting a turbine rear shaft tooling fixture on the main shaft box body assembly, and mounting a combination tooling fixture on the tailstock box body assembly;
[83] S11, placing the turbine rear shaft c inside the third spring ring 15, contacting an end surface L of the turbine rear shaft c with an end surface B of the first welding tooling 10, and clamping, by the main shaft spring chuck 8, the third spring ring 15 and the turbine rear shaft c by radial pressure;
[84] S12, placing the first welding combination a on the tailstock box body assembly, placing the first welding combination d inside the second spring ring 16, contacting the end surface F of the drum shaft a on the first welding combination d with the end surface A of the tailstock box body side mandrel 7, contacting the end surface K of the turbine disc b on the first welding combination d with the end surface E of the fourth welding tooling 13, and clamping, by the tailstock spring chuck 9, the second spring ring 16 and the turbine disc b on the first welding combination d by means of radial pressure;
[85] S13, respectively wiping the end surface M of the turbine rear shaft ¢ and the end surface J of the turbine disc b on the first welding combination d by dipping an alcohol or acetone solution with a dust-free cloth to remove oily impurities on the end surface M of the turbine rear shaft c and the end surface J of the turbine disc b on the welding combination;
[86] S14, moving the tailstock box body assembly by a distance to the main shaft box body assembly under the action of the axial force, so that the end surface M of the turbine rear shaft c is in close contact with the end surface J of the turbine disc b on the first welding combination d and keeping same stationary, removing the radial pressure from the main shaft spring chuck 8 and the tailstock spring chuck 9, and then applying the radial pressure again, and moving the tailstock box body assembly by a distance in the opposite direction to the main shaft box body assembly under the action of the axial force and then keeping same stationary;
[87] S15, inputting the welding process parameters of the turbine rear shaft c and the turbine disc b on the first welding combination a to the control system of the inertia friction welding machine, comprising an initial rotation speed, a welding rotation speed, a friction pressure and a welding pressure;
[88] S16, starting the second welding, starting the main shaft motor of the inertia friction welding machine, so that after the rotation speed of the turbine rear shaft c reaches the initial rotation speed, stopping supplying power to the main shaft motor of the inertia friction welding machine, moving, by the tailstock box body assembly, a distance to the main shaft box body assembly under the action of the axial friction pressure, so that the end surface M of the turbine rear shaft c is in close contact with the end surface J of the turbine disc b on the first welding combination d to generate friction heat, and when the rotation speed of the turbine rear shaft c decreases to the welding rotation speed, converting the friction pressure to the welding pressure until after the turbine rear shaft c stops rotating, removing the axial welding pressure after maintaining the axial welding pressure for a period of time;
[89] S17, removing the radial pressure from the main shaft spring chuck 8, fixing the tailstock box body assembly after moving a distance in the opposite direction of the main shaft box body assembly under the action of the axial force, removing the radial pressure from the tailstock side spring chuck, and discharging the second welding combination e formed by welding the turbine rear shaft c and the first welding combination d;
[90] S18, disassembling the turbine rear shaft tooling fixture and the combination tooling fixture, closing the control system of the inertia friction welding machine, and finishing all the welding processes.
[91] While the principles and embodiments of the description have been described herein with reference to specific examples, the foregoing description of the examples has been presented only to aid in the understanding of the methods and principles of the invention. At the same time, a person skilled in the art will appreciate that many changes can be made in the specific embodiments and applications of the present invention in light of the above teachings. In view of the above, this description should not be construed as limiting the invention.

Claims (8)

ConclusiesConclusions 1. Inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas, met het kenmerk dat deze omvat: een hoofdlichaamstructuur van de inrichting voor het met mechanische energie wrijvingslassen, waarbij de hoofdlichaamstructuur van de inrichting voor het met mechanische energie wrijvingslassen een hoofdasboxlichaamsamenstel en een rijstokboxlichaamsamenstel omvat; een lasgereedschapbevestiging, waarbij de lasgereedschapbevestiging een drum-as-gereedschapsbevestiging, een turbineschijfgereedschapsbevestiging, een turbine-achterasgereedschapsbevestiging en een combinatiegereedschapsbevestiging omvat, waarbij de drum-as-gereedschapsbevestiging wordt gebruikt voor het bevestigen van een drum-as op het hoofdasboxlichaamsamenstel, de turbineschijfgereedschapsbevestiging wordt gebruikt voor het bevestigen van een turbineschijf op het rijstokboxlichaamsamenstel, de turbine- achterasgereedschapsbevestiging wordt gebruikt voor het bevestigen van een turbine- achteras op het hoofdasboxlichaamsamenstel, en de combinatiegereedschapsbevestiging wordt gebruikt voor het bevestigen van een eerste lascombinatie van een drum-as en een turbineschijf op het rijstokboxlichaamsamenstel.An aircraft engine turbine disc shaft friction welding apparatus, characterized in that it comprises: a main body structure of the mechanical energy friction welding apparatus, the main body structure of the mechanical energy friction welding apparatus being a main axle box body assembly and a lane box body assembly includes; a welding tool mount, where the welding tool mount includes a drum shaft tool mount, a turbine disc tool mount, a turbine rear shaft tool mount, and a combination tool mount, where the drum shaft tool mount is used for attaching a drum shaft to the main axle box body assembly, the turbine disc tool mount is used for attaching a turbine sheave to the lane box body assembly, the turbine rear axle tool mount is used for attaching a turbine rear axle to the main axle box body assembly, and the combination tool attachment is used for attaching a first welding combination of a drum shaft and turbine sheave to the lane box body assembly. 2. Inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas volgens conclusie 1, met het kenmerk dat het hoofdasboxlichaamsamenstel een hoofdasboxlichaam, een hoofdasboxlichaamzijspindel, een hoofdasboxlichaamzijspandoorn en een hoofdasklauwplaat omvat, waarbij de hoofdasklauwplaat door middel van bouten is gefixeerd op de spindelboxzijspindel en het hoofdasboxlichaam.An apparatus for friction welding an aircraft engine turbine sheave shaft with mechanical energy according to claim 1, characterized in that the main axle box body assembly comprises a main axle box body, a main axle box body side spindle, a main axle box body sidecar mandrel and a main axle chuck, the main axle chuck being bolted to the spindle box side spindle and the main axle box body. 3. Inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas volgens conclusie 1, met het kenmerk dat het rijstokboxlichaamsamenstel een rijstokboxlichaam, een rijstokboxlichaambinnencilinderlichaam, een rijstokboxlichaamzijspandoorn, en een rijstokklauwplaat omvat, waarbij de rijstokklauwplaat middels een schroefdraad verbonden is met het rijstokboxlichaambinnencilinderlichaam, en de rijstokboxlichaamklauwplaat door middel van bouten aan het rijstokboxlichaam is bevestigd.The apparatus for friction welding an aircraft engine turbine sheave shaft with mechanical energy according to claim 1, characterized in that the lane box body assembly comprises a lane box body, a lane box body inner cylinder body, a lane box body sidecar mandrel, and a lane chuck, the lane chuck being threadedly connected to the lane box body inner barrel body, and the lane box body chuck is bolted to the lane box body. 4. Inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas volgens conclusie 2, met het kenmerk dat de drum- asgereedschapsbevestiging een eerste lasgereedschap dat door middel van bouten is bevestigd aan de hoofdasboxlichaamzijspandoorn en een eerste ringveer die tussen de hoofdasklauwplaat en de drum-as is geplaatst omvat.4. The apparatus for friction welding an aircraft engine turbine disc shaft with mechanical energy according to claim 2, wherein the drum shaft tool mount includes a first weld tool bolted to the main axle box body sidecar mandrel and a first circlip installed between the main shaft chuck and the drum shaft. as is placed includes. 5. Inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas volgens conclusie 3, met het kenmerk dat de turbineschijfgereedschapsbevestiging een tweede lasgereedschap, een derde lasgereedschap en een tweede ringveer omvat, waarbij het tweede lasgereedschap samen met de rijstokboxlichaamzijspandoorn door middel van bouten is bevestigd aan het rijstokboxlichaambinnencilinderlichaam, waarbij het derde lasgereedschap door middel van bouten is bevestigd aan het tweede lasgereedschap, en waarbij de tweede ringveer tussen de rijstokklauwplaat en de turbineschijf is geplaatst.The apparatus for friction welding an aircraft engine turbine disc shaft with mechanical energy according to claim 3, characterized in that the turbine disc tool attachment includes a second welding tool, a third welding tool and a second ring spring, the second welding tool being bolted together with the lane box body sidecar mandrel to the lane box body inner cylinder body, wherein the third welding tool is bolted to the second welding tool, and wherein the second ring spring is placed between the lane chuck and the turbine disc. 6. Inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas volgens conclusie 2, met het kenmerk dat de turbine- achterasgereedschapsbevestiging een eerste lasgereedschap dat door middel van bouten aan de hoofdasboxlichaamzijspandoorn is bevestigd en een derde ringveer die tussen de hoofdasklauwplaat en turbine-achteras is geplaatst omvat.The apparatus for friction welding an aircraft engine turbine disc shaft with mechanical energy according to claim 2, characterized in that the turbine rear shaft tool attachment includes a first welding tool bolted to the main axle box body sidecar mandrel and a third circlip installed between the main shaft chuck and turbine rear axle. is placed includes. 7. Inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas volgens conclusie 3, met het kenmerk dat de combinatiegereedschapsbevestiging een vierde lasgereedschap en een derde ringveer omvat, waarbij het vierde lasgereedschap de rijstokboxlichaam zijspandoorn ommantelt, en de derde ringveer tussen de rijstokklauwplaat en turbineschijf is geplaatst.The apparatus for friction welding an aircraft engine turbine disc shaft with mechanical energy according to claim 3, characterized in that the combination tool attachment includes a fourth welding tool and a third circlip, the fourth welding tool encasing the lane box body sidecar mandrel, and the third circlip between the lane chuck and turbine disc is placed. 8. Werkwijze voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijf gebruikmakend van de inrichting voor het met mechanische energie wrijvingslassen van een vliegtuigmotor turbineschijfas volgens een van conclusies 1-7, met het kenmerk dat deze de stappen omvat van:A method of mechanical energy friction welding of an aircraft engine turbine disc using the apparatus for mechanical energy friction welding of an aircraft engine turbine disc shaft according to any one of claims 1 to 7, characterized in that it comprises the steps of: S1, het monteren van een drum-asgereedschapsbevestiging op het hoofdasboxlichaamsamenstel, en het monteren van een turbineschijfgereedschapsbevestiging op het rijstokboxlichaamsamenstel;S1, mounting a drum shaft tool mount on the main shaft box body assembly, and mounting a turbine disk tool mount on the lane box body assembly; S2, het plaatsen van de drum-as op het hoofdasboxlichaamsamenstel waarop de drum-asgereedschapsbevestiging is gemonteerd, het binnen de eerste ringveer positioneren van de drum-as, en het in contact brengen van het eindoppervlak van de drum-as met het eindoppervlak van het eerste lasgereedschap, en het klemmen, door de hoofdasklauwplaat, van de eerste ringveer en de drum-as door middel van radiale druk;S2, placing the drum shaft on the main shaft box body assembly on which the drum shaft tool mount is mounted, positioning the drum shaft within the first ring spring, and bringing the end surface of the drum shaft into contact with the end surface of the first welding tool, and clamping, by the main shaft chuck, the first ring spring and the drum shaft by means of radial pressure; S3, het plaatsen van de turbine op het rijstokboxlichaamsamenstel waarop de turbineschijfgereedschapsbevestiging is gemonteerd, het positioneren van de turbineschijf binnen de tweede ringveer, het in contact brengen van het eindoppervlak van de turbineschijf met het eindoppervlak van het derde lasgereedschap, en het klemmen, door de rijstokklauwplaat, van de tweede ringveer en de turbineschijf door middel van radiale druk;S3, placing the turbine on the lane box body assembly on which the turbine disc tool mount is mounted, positioning the turbine disc within the second ring spring, bringing the end surface of the turbine disc into contact with the end surface of the third weld tool, and clamping, by the lane chuck, from the second ring spring and the turbine disc by means of radial pressure; S4, het afnemen van het las-eindoppervlak van de drum-as en het las- eindoppervlak van de turbineschijf met een in een alcohol- of acetonoplossing gedompelde stofvrije doek, respectievelijk, om olie-achtige onzuiverheden op het las-S4, wiping the welding end surface of the drum shaft and the welding end surface of the turbine disk with a dust-free cloth dipped in alcohol or acetone solution, respectively, to avoid oily impurities on the welding eindoppervlak van de drum-as en de turbineschijf te verwijderen;remove the end surface of the drum shaft and turbine disk; S5, het verplaatsen van het rijstokboxlichaamsamenstel naar het hoofdasboxlichaamsamenstel onder de werking van een axiale kracht, zodat het eindoppervlak van de drum-as in nauw contact is met het eindoppervlak van de turbineschijf en het stationair houden daarvan, het wegnemen van de radiale druk van de hoofdasklauwplaat en de rijstokklauwplaat, en vervolgens het opnieuw toepassen van de radiale druk, en het over een afstand verplaatsen van de rijstokboxlichaamsamenstel naar de richting tegengestelde aan het de hoofdasboxlichaamsamenstel onder de werking van de axiale kracht en het vervolgens stationair houden daarvan;S5, moving the lane box body assembly to the main shaft box body assembly under the action of an axial force, so that the end surface of the drum shaft is in close contact with the end surface of the turbine disc and keeping it stationary, removing the radial pressure of the main axle chuck and the lane chuck, and then reapplying the radial pressure, and displacing the lane box body assembly a distance to the direction opposite to the main axle box body assembly under the action of the axial force and then holding it stationary; S6, het invoeren van lasprocesparameters van de drum-as en de turbineschijf in een besturingssysteem van de machine voor het met mechanische energie wrijvingslassen, waaronder een initiële rotatiesnelheid, een lasrotatiesnelheid, een wrijvingsdruk en een lasdruk;S6, inputting welding process parameters of the drum shaft and turbine disc into a control system of the mechanical energy friction welding machine, including an initial rotational speed, a welding rotational speed, a friction pressure and a welding pressure; S7, het starten van het eerste lassen, het starten van de hoofdasmotor van de machine voor het met mechanische energie wrijvingslassen, zodanig dat het toevoeren van vermogen aan de hoofdasmotor van de machine voor het met mechanische energie wrijvingslassen stopt nadat de rotatiesnelheid van de drum-as op de zijde van het hoofdasboxlichaam de initiële rotatiesnelheid bereikt, en het over een afstand verplaatsen van de rijstokboxlichaam zijsamenstel naar het hoofdasboxlichaamzijsamenstel onder de werking van de axiale wrijvingsdruk, zodat het eindoppervlak van de drum-as in nauw contact is met het eindoppervlak van de turbineschijf om wrijvingswarmte te genereren, en het onveranderd houden van de axiale wrijvingsdruk; waarbij wanneer de rotatiesnelheid van de drum-as vermindert tot de lasrotatiesnelheid, de axiale wrijvingsdruk verandert naar de lasdruk en onveranderd blijft tot nadat de drum-as stopt met roteren, het behouden van de axiale lasdruk voor een tijdsperiode en vervolgens het wegnemen van de axiale lasdruk;S7, starting the first welding, starting the main shaft motor of the mechanical energy friction welding machine, so that the power supply to the main shaft motor of the mechanical energy friction welding machine stops after the rotation speed of the drum shaft on the side of the main axle box body reaches the initial rotational speed, and moving the lane box body side assembly to the main axle box body side assembly over a distance under the action of the axial frictional pressure, so that the end surface of the drum shaft is in close contact with the end surface of the turbine disk to generate frictional heat, and keep the frictional axial pressure unchanged; wherein when the rotational speed of the drum shaft decreases to the welding rotational speed, the friction axial pressure changes to the welding pressure and remains unchanged until after the drum shaft stops rotating, maintaining the welding axial pressure for a period of time and then removing the axial welding pressure; S8, het wegnemen van de radiale druk van de hoofdasklauwplaat, het fixeren van het rijstokboxlichaamsamenstel na het verplaatsen van een afstand in de tegengestelde richting van het hoofdasboxlichaamsamenstel onder de axiale kracht, het wegnemen van de radiale druk van de rijstokklauwplaat, en het verwijderen van de eerste lascombinatie van de drum-as en de turbineschijf;S8, removing the radial pressure from the main axle chuck, fixing the lane box body assembly after moving a distance in the opposite direction of the main axle box body assembly under the axial force, releasing the radial pressure from the lane chuck, and removing the first welding combination of the drum shaft and the turbine disk; S9, het demonteren van de drum-as-gereedschapsbevestiging en de turbineschijfgereedschapsbevestiging;S9, disassembling the drum shaft tool attachment and the turbine disc tool attachment; S10, het monteren van een turbine-achterasgereedschapsbevestiging op de hoofdasboxlichaamsamenstel, en het monteren van een combinatiegereedschapsbevestiging op de rijstokboxlichaamsamenstel;S10, mounting a turbine rear axle tool mount on the main axle box body assembly, and mounting a combination tool mount on the lane box body assembly; S11, het plaatsen van de turbine-achteras binnen de derde ringveer, het in contact brengen van een eindoppervlak van de turbine-achteras met een eindoppervlak van het eerste lasgereedschap, en het klemmen, door de hoofdasklauwplaat, van de derde ringveer en de turbine-achteras door middel van radiale druk;S11, placing the turbine rear shaft within the third ring spring, bringing an end surface of the turbine rear shaft into contact with an end surface of the first weld tool, and clamping, by the main shaft chuck, the third ring spring and the turbine rear axle through radial pressure; S12, het plaatsen van de eerste lascombinatie op het rijstokboxlichaamsamenstel, het binnen de tweede ringveer plaatsen van de eerste lascombinatie, het in contact brengen van het eindoppervlak van de turbineschijf op de eerste lascombinatie met het eindoppervlak van de rijstokboxlichaamzijspandoorn, het in contact brengen van het eindoppervlak van de turbineschijf op de eerste lascombinatie met het eindoppervlak van de vierde lasgereedschap, en het klemmen,S12, placing the first weld assembly on the lane box body assembly, placing the first weld assembly within the second circlip, bringing the end surface of the turbine disc on the first weld assembly into contact with the end surface of the lane box body sidecar mandrel, placing the end surface of the turbine disk on the first welding combination with the end surface of the fourth welding tool, and clamping, door de rijstokklauwplaat, van de tweede ringveer en de turbineschijf op de eerste lascombinatie door middel van radiale druk;through the lane chuck, from the second circlip and the turbine disc to the first weld combination by means of radial pressure; S13, het respectievelijk afnemen van het eindoppervlak van de turbine-achteras en het eindoppervlak van de turbineschijf op de eerste lascombinatie met een in een alcohol- of acetonoplossing gedompelde stofvrije doek om olie-achtige onzuiverheden op het eindoppervlak van de turbine-achteras en het eindoppervlak van de turbineschijf op de lascombinatie te verwijderen;S13, wiping the turbine rear shaft end surface and the turbine disc end surface on the first welding combination with a dust-free cloth dipped in alcohol or acetone solution, respectively, to remove oily impurities on the turbine rear shaft end surface and the end surface from the turbine disk on the welding combination; S14, het over een afstand verplaatsen van het rijstokboxlichaamsamenstel naar het hoofdasboxlichaamsamenstel onder de werking van de axiale kracht, zodat het eindoppervlak van de turbine-achteras in nauw contact is met het eindoppervlak van de turbineschijf op de eerste lascombinatie en het stationair houden daarvan, het wegnemen van de radiale druk van de hoofdasklauwplaat en de rijstokklauwplaat, en vervolgens het opnieuw toepassen van de radiale druk, en het over een afstand verplaatsen van het rijstokboxlichaamsamenstel in de tegengestelde richting naar het hoofdasboxlichaamsamenstel onder de werking van de axiale kracht en vervolgens het stationair houden daarvan;S14, displacing the lane box body assembly to the main axle box body assembly by a distance under the action of the axial force, so that the end surface of the rear turbine shaft is in close contact with the end surface of the turbine disc on the first welding combination and keeping it stationary, the removing the radial pressure from the main axle chuck and the trunnion chuck, and then reapplying the radial pressure, and displacing the lane box body assembly in the opposite direction to the main axle box body assembly under the action of the axial force, and then keeping it stationary of them; S15, het invoeren, in het besturingssysteem van de machine voor het met mechanische energie wrijvingslassen, van de lasprocesparameters van de turbine- achteras en de turbineschijf op de eerste lascombinatie, omvattend een initiële rotatiesnelheid, een lasrotatiesnelheid, een wrijvingsdruk en een lasdruk;S15, entering into the control system of the mechanical energy friction welding machine the welding process parameters of the turbine rear shaft and the turbine disk on the first welding combination, including an initial rotation speed, a welding rotation speed, a friction pressure and a welding pressure; S16, het starten van het tweede lassen, het starten van de hoofdasmotor van de machine voor het met mechanische energie wrijvingslassen, zodanig dat nadat de rotatiesnelheid van de turbine-achteras op de hoofdasboxlichaamzijde de initiële rotatiesnelheid bereikt het toevoeren van vermogen aan de hoofdasmotor van de machine voor het met mechanische energie wrijvingslassen stop, het verplaatsen, door het rijstokboxlichaamsamenstel, over een afstand tot het hoofdasboxlichaamsamenstel onder de werking van de axiale wrijvingsdruk, zodat het eindoppervlak van de turbine- achteras in nauw contact is met het eindoppervlak van de turbineschijf op de eerste lascombinatie om wrijvingswarmte te genereren, en wanneer de rotatiesnelheid van de turbine-achteras vermindert tot de lasrotatiesnelheid, het omzetten van de wrijvingsdruk naar de lasdruk totdat nadat de turbine-achteras stopt met roteren, het wegnemen van de axiale lasdruk na het voor een tijdsperiode behouden van de axiale asdruk;S16, starting the second welding, starting the main shaft motor of the friction welding machine with mechanical energy, such that after the rotational speed of the rear turbine shaft on the main shaft box body side reaches the initial rotational speed, the power supply to the main shaft motor of the mechanical energy friction welding machine stop, moving, through the lane box body assembly, a distance to the main axle box body assembly under the action of the axial frictional pressure, so that the end surface of the turbine rear shaft is in close contact with the end surface of the turbine disc on the first welding combination to generate frictional heat, and when the turbine rear shaft rotation speed decreases to the welding rotation speed, converting the friction pressure to the welding pressure until after the turbine rear shaft stops rotating, taking away the welding axial pressure after it for a period of time maintaining the axial thrust; S17, het wegnemen van de radiale druk van de hoofdasklauwplaat, het fixeren van het rijstokboxlichaamsamenstel na verplaatsing over een afstand in de richting tegengesteld aan het hoofdasboxlichaamsamenstel onder de werking van de axiale kracht, het wegnemen van de radiale druk van de rijstokboxlichaamzijklauwplaat, en het uitvoeren van de tweede lascombinatie die door de gelasde turbine-achteras en de eerste lascombinatie is gevormd;S17, removing the radial pressure from the main axle chuck, fixing the lane box body assembly after moving a distance in the direction opposite to the main axle box body assembly under the action of the axial force, releasing the radial pressure from the lane box body side chuck, and performing of the second weld combination formed by the welded turbine rear axle and the first weld combination; S18, het demonteren van de turbine-achterasgereedschapsbevestiging en de combinatiegereedschapsbevestiging, het afsluiten van het besturingssysteem van de machine voor het met mechanische energie wrijvingslassen, en het voltooien van alle lasprocessen.S18, disassembling the turbine rear axle tool attachment and combination tool attachment, shutting down the machine control system for mechanical energy friction welding, and completing all welding processes.
NL2032714A 2021-08-16 2022-08-10 Inertia friction welding device and method for turbine disc shaft of aircraft engine NL2032714B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110937227.9A CN113547198A (en) 2021-08-16 2021-08-16 Inertia friction welding device and method for turbine disc shaft of aircraft engine

Publications (2)

Publication Number Publication Date
NL2032714A true NL2032714A (en) 2023-02-24
NL2032714B1 NL2032714B1 (en) 2023-06-30

Family

ID=78133899

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032714A NL2032714B1 (en) 2021-08-16 2022-08-10 Inertia friction welding device and method for turbine disc shaft of aircraft engine

Country Status (3)

Country Link
CN (1) CN113547198A (en)
NL (1) NL2032714B1 (en)
WO (1) WO2023020205A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547198A (en) * 2021-08-16 2021-10-26 哈尔滨焊接研究院有限公司 Inertia friction welding device and method for turbine disc shaft of aircraft engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224522B (en) * 2008-01-30 2010-07-28 中国兵器工业第五九研究所 Inertia friction welding machine
CN104400210B (en) * 2014-10-28 2016-07-20 沈阳黎明航空发动机(集团)有限责任公司 A kind of inertia friction weld method of aero-engine turbine disk and axle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101596665B (en) * 2008-06-03 2012-01-18 中国兵器工业集团第七○研究所 Technology method for connecting three-body structure of titanium aluminum alloy turbine rotation shaft
CN101844271A (en) * 2010-05-20 2010-09-29 西北工业大学 Friction welding method of titanium-aluminum alloy turbine and 42CrMo quenched and tempered steel shaft
CN103286437B (en) * 2012-02-29 2016-04-27 沈阳黎明航空发动机(集团)有限责任公司 Drum barrel flywheel friction welding clamp system before engine
US20130323074A1 (en) * 2012-05-31 2013-12-05 Hamilton Sundstrand Corporation Friction welded turbine disk and shaft
CN102990220B (en) * 2012-08-28 2015-09-09 沈阳黎明航空发动机(集团)有限责任公司 The method that friction-welding machine main shaft side and tailstock side coaxial accuracy adjust
FR3016819B1 (en) * 2014-01-24 2016-02-12 Snecma INERTIAL FRICTION WELDING PROCESS OF TWO PARTS OF A TURBOMACHINE ROTATING SUBASSEMBLY
CN106141469B (en) * 2016-07-14 2018-04-03 西北工业大学 The frictional diffusion complex welding method of TiAl alloy turbine and quenched and tempered steel shaft
CN113547198A (en) * 2021-08-16 2021-10-26 哈尔滨焊接研究院有限公司 Inertia friction welding device and method for turbine disc shaft of aircraft engine
CN215824521U (en) * 2021-08-16 2022-02-15 哈尔滨焊接研究院有限公司 Inertia friction welding device for turbine disc shaft of aircraft engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101224522B (en) * 2008-01-30 2010-07-28 中国兵器工业第五九研究所 Inertia friction welding machine
CN104400210B (en) * 2014-10-28 2016-07-20 沈阳黎明航空发动机(集团)有限责任公司 A kind of inertia friction weld method of aero-engine turbine disk and axle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MILLER J J O'CONNOR J A: "POWER SHAFT", WELDING JOURNAL,, vol. 59, no. 5, 1 May 1980 (1980-05-01), pages 17 - 22, XP001343622 *

Also Published As

Publication number Publication date
NL2032714B1 (en) 2023-06-30
WO2023020205A1 (en) 2023-02-23
CN113547198A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
NL2032714B1 (en) Inertia friction welding device and method for turbine disc shaft of aircraft engine
CN107803583B (en) Drawing type inertia friction welding method and device
US8662851B2 (en) Method of manufacturing a turbine rotor
NL2032715B1 (en) Aero-engine compressor disc assembly inertia friction welding device and method
CA2975784C (en) Apparatus and method for mobile friction stir welding of two tubular structures
Lammlein et al. The friction stir welding of small-diameter pipe: an experimental and numerical proof of concept for automation and manufacturing
CN110977137B (en) Ti2Method for controlling welding cracks of AlNb-based alloy inertia friction welding
US7721938B2 (en) Friction stirring-joining method and method of manufacturing hollow body
Crossland Friction welding
CA2262784C (en) Linear friction welding process for making wheel rims
CN112496521B (en) Improve Ti2Welding and heat treatment method for welding seam quality of AlNb alloy
US20220266388A1 (en) A method for making a ball valve for regulating a fluid, a ball valve and a welding tool for holding and handling valve parts
CN110899952A (en) Drawing type friction plug repair welding spindle head device with rotary shaft shoulder
US6138896A (en) Superspeed inertia welding
CN215824521U (en) Inertia friction welding device for turbine disc shaft of aircraft engine
US5248078A (en) Inertia bonding of long shafts
JP2003530222A (en) Solid phase welding
Mohan et al. A review on friction stir welded T-joint
US5188279A (en) Inertia bonding utilizing alternative axial load paths
Zhang et al. Friction stir welding
Yadav Solid-state friction welding technology for joining of lightweight metal and alloys
Mall et al. Friction stir welding process & parameters: A review
CN111633374A (en) Method for repairing damage inside attitude control engine combustion chamber shell
CN118081310B (en) Titanium-aluminum composite ring piece forming device and method
Akinlabi et al. Friction Welding