NL2032643B9 - Method for identifying deposit types based on chlorite characteristic elements - Google Patents

Method for identifying deposit types based on chlorite characteristic elements Download PDF

Info

Publication number
NL2032643B9
NL2032643B9 NL2032643A NL2032643A NL2032643B9 NL 2032643 B9 NL2032643 B9 NL 2032643B9 NL 2032643 A NL2032643 A NL 2032643A NL 2032643 A NL2032643 A NL 2032643A NL 2032643 B9 NL2032643 B9 NL 2032643B9
Authority
NL
Netherlands
Prior art keywords
chlorite
content
characteristic
elements
deposit
Prior art date
Application number
NL2032643A
Other languages
Dutch (nl)
Other versions
NL2032643B1 (en
Inventor
Li Xingsi
Liu Zilong
Yan Jun
Dou Xiaofang
Wu Song
Kang Yimin
Ma Ying
Zheng Youye
Original Assignee
Tibet Huaxia Mining Ind Co Ltd
Univ China Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tibet Huaxia Mining Ind Co Ltd, Univ China Geosciences Beijing filed Critical Tibet Huaxia Mining Ind Co Ltd
Publication of NL2032643B1 publication Critical patent/NL2032643B1/en
Application granted granted Critical
Publication of NL2032643B9 publication Critical patent/NL2032643B9/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/007Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00 by detecting gases or particles representative of underground layers at or near the surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Disclosed is a method for identifying deposit types based on chlorite characteristic elements, 5 which comprises the following steps: Acquiring favourable metallogenic areas, according to the historical data of the mining area, collecting lithologic samples containing chlorite, acquiring the characteristics of rock samples, and recording the coordinate data of the rock samples; acquiring the characteristic element content value based on the characteristics of the lithologic sample, processing the characteristic value of the characteristic element content, drawing a scatter plot of 10 the characteristic element content value, and judging the deposit types corresponding to different sampling places according to the spatial distribution of the scatter plot. The application has the advantages of short testing time, low cost, convenience, quickness, environmental protection, and can effectively shorten the mineral exploration period without damaging the environment. The method can greatly improve the accuracy of rapid discrimination of prospecting types and 15 prediction of target areas in mining areas.

Description

METHOD FOR IDENTIFYING DEPOSIT TYPES BASED ON CHLORITE CHARACTERISTIC
ELEMENTS
TECHNICAL FIELD
The application belongs to the technical field of mineral exploration methods, and in particular to a method for identifying deposit types based on chlorite characteristic elements.
BACKGROUND
In the fragile area of plateau ecological environment, the conventional exploration methods cost a lot and take a long time, so it is difficult to provide a clear exploration direction quickly.
How to predict and evaluate the resource potential at the scale of ore concentration area through limited exploration and evaluation techniques and methods, and effectively guide deposit exploration, is the focus of deposit prospectors at home and abroad. The conventional discrimination of prospecting types has the following disadvantages: In order to carry out comprehensive research such as large-scale mapping and systematic sampling analysis, the genesis or prospecting type of the deposit can be determined only after the occurrence of the ore body, the relationship with the surrounding rock, mineralization, ore-forming materials, and the sources of ore-forming fluids are clear. The cycle is long and the cost is high, which cannot meet the urgent need for rapid exploration and evaluation at the scale of ore concentration areas.
SUMMARY
The application aims to provide a method for identifying deposit types based on chlorite characteristic elements. Based on the quantitative difference of chlorite characteristic elements of different deposits, the method organically combines mineral geochemistry with ore prospecting prediction, and solves the technical problem of rapid exploration and evaluation of mineral resources in the plateau area.
To achieve the above objects, the application provides a method for identifying deposit types based on chlorite characteristic elements, which comprises the following steps:
Acquiring favourable metallogenic areas, according to the historical data of the mining area, collecting lithologic samples containing chlorite, acquiring the characteristics of rock samples, and recording the coordinate data of the rock samples; acquiring the characteristic element content value based on the characteristics of the lithologic sample, processing the characteristic value of the characteristic element content, drawing a scatter plot of the characteristic element content value, and judging the deposit types corresponding to different sampling places according to the spatial distribution of the scatter plot.
Optionally, the rock sample characteristics include lithology, alteration and mineralization.
Optionally, the content values of the characteristic elements include: One or more of Ni element content, Mg element content, Cr element content and comprehensive element content in the chlorite; the comprehensive element content includes the total content of Mn element, Pb element and Zn element; the comprehensive elements include Mn element, Pb element and Zn element.
Optionally, obtaining the characteristic element content value comprises: Performing petrographic observation on that characteristics of the rock sample to obtain alteration type and chemical composition data of the rock sample, performing laser ablation inductively coupled plasma mass spectrometry in-situ micro-area element analysis test on a part in the rock sample where chlorite can be observed as a detection micro-area to obtain the content value of the characteristic element.
Optionally, the alteration types of chlorite include hydrothermal vein alteration and disseminated alteration.
Optionally, obtaining chemical composition data comprises analysing the chemical composition by an electron probe.
Optionally, the data processing comprises:
Obtaining a corresponding micro-area element integral curve according to micro-area element analysis data of the chlorite in the lithology sample, and obtaining an abnormal peak based on the element integral curve; and according to the abnormal peak in the element integral curve, removing invalid data of the micro-area element analysis data to obtain micro-area element data of the chlorite after processing.
Optionally, the abnormal peak includes: One or both of abnormal peaks containing Ti, Pb and Zr elements and abnormal peaks containing K and Sr elements; according to the laser ablation inductively coupled plasma mass spectrometry analysis, the laser strikes the inclusion to obtain abnormal peaks of Ti, Pb and Zr elements; according to the laser ablation inductively coupled plasma mass spectrometry analysis, the laser penetrates through the chlorite mineral to obtain abnormal peaks of K and Sr elements.
Optionally, judging the type of the ore deposit corresponding to different sampling sites according to the spatial distribution of the scatter diagram comprises: According to the processed data, drawing the scatter diagram on the basis of the content of Ni, Mg and Cr in the chlorite characteristic elements of the same lithology and the same alteration type and the total content of the characteristic elements, identifying the prospecting type of Ni and Mg according to the projection range of Ni and Mg, Cr and comprehensive elements in scatter plot.
Optionally, the deposit types corresponding to different sampling sites include:
When the content of Ni element is 10-40 ppm, the content of Mg element is 9,000-12,000 ppm, the content of Cr element is 1-100ppm, and the total content of Mn, Pb and Zn elements is 3,000-10,000 ppm, it is determined that the deposit is a epithermal Ag-Au deposit;
when the content of Ni element is 1-20 ppm, the content of Mg element is 7,000-11,000 ppm, the content of Cr element is 1-100 ppm, and the total content of Mn, Pb and Zn elements is 9,000-14,000 ppm, it is determined that the deposit is a hydrothermal vein type Pb-Zn deposit; when the content of Ni element is 30-1,000 ppm, the content of Mg element is 10,000- 19,000 ppm, the content of Cr element is 4-2,000 ppm, and the total content of Mn, Pb and Zn elements is 1,000-7,000 ppm, it is determined that the deposit is a porphyry Cu deposit.
The application has the technical effects that: the application discloses a method for identifying deposit types based on chlorite characteristic elements. The application has the advantages of short testing time, low cost, convenience, quickness, environmental protection, and can effectively shorten the mineral exploration period without damaging the environment.
The method can greatly improve the accuracy of rapid discrimination of prospecting types and prediction of target areas in mining areas, reduce exploration risks and improve prospecting efficiency, and has important popularization and application values.
BRIEF DESCRIPTION OF THE FIGURES
The accompanying drawings, which form a part hereof, and in which is shown by way of illustration a further understanding of the application, and in which is shown by way of illustration the illustrative embodiments and the description thereof, serve to explain the application and are not to be construed as unduly limiting the same. In figures:
FIG. 1 is a flowchart of a method for identifying deposit types based on chlorite characteristic elements in the embodiments of the present application;
FIG. 2 is a graph showing the relationship between the content of different chlorite characteristic elements and the type of prospecting in the embodiments of the present application;
FIG. 3 is a diagram of a favourable ore-forming area delineated based on hyperspectral remote sensing of a certain ore concentration area in the embodiments of the present application;
FIG. 4 is a schematic diagram of chlorite laser in-situ target analysis and testing according to an embodiment of the present application.
DESCRIPTION OF THE APPLICATION
It should be noted that the embodiments in this application and the features in the embodiments can be combined with each other without conflict. The application will be described in detail with reference to the drawings and embodiments.
It should be noted that the steps shown in the flowchart of the figure can be executed in a computer system such as a set of computer-executable instructions, and, although a logical sequence is shown in the flowchart, in some cases, the steps shown or described can be executed in a sequence different from that here.
As shown in FIG. 1-FIG. 4, the embodiment provides a method for identifying deposit types based on chlorite characteristic elements, which comprises:
Acquiring favourable metallogenic areas, according to the historical data of the mining area, collecting lithologic samples containing chlorite, acquiring the characteristics of rock samples, and recording the coordinate data of the rock samples; acquiring the characteristic element content value based on the characteristics of the lithologic sample, processing the characteristic value of the characteristic element content, drawing a scatter plot of the characteristic element content value, and judging the deposit types corresponding to different sampling places according to the spatial distribution of the scatter plot. (1) Regional data collection and comprehensive analysis
Collecting systematically the existing geological, geophysical, geochemical and remote sensing data in the study area, comprehensively analysing its metallogenic potential, and delineating the favourable ore-forming areas. (2) Collection of chlorite samples
Collecting the bedrock samples containing chlorite according to certain zoning in the above screened favourable ore-forming sections, so as to ensure that the density of sample points collected in the study area is > 1/Km?. Adopting positioning system such as GPS for position at each sample point, acquiring coordinate data X and Y according to a rectangular coordinate system, taking field photos, making detailed field records at each observation point to describe the lithology, alteration and mineralization characteristics of each sample, so as to provide a basis for classification analysis and screening according to the lithology, alteration and mineralization characteristics in the subsequent step (4), and which is more conducive to scientific discrimination of ore-prospecting types in step (5). (3) Analysis and testing of sample characteristic elements
Grinding the collected samples into probe chips and laser in-situ targets, observing the corresponding chlorite alteration characteristics under a microscope, recording in detail the chlorite alteration types (including hydrothermal vein or disseminated, etc.), conducting electron probe composition analysis according to the alteration type classification, and recording the chemical composition of chlorite under each alteration type, according to the analysis results, selecting the developed part of chlorite as the detection micro-area of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), and carrying out the in-situ micro-area element analysis test to obtain the recorded data of each test point. (4) Data processing and interpretation
Using data processing software such as LADRIib software to process the recorded data obtained in step (3), including: (1) Data importing: importing the elemental analysis record data obtained at each chlorite sample in-situ micro-area test point into LADRIib software in batch; (2)
Data interpretation: obtaining the micro-area element integral curve of the sample of each observation point, and adjusting the start time and end time of the integral curve of each observation point one by one according to the principle of ensuring the flattest and widest signal 5 range of the selected element integral curve; (3) Data screening: according to the abnormal peaks of the element integral curve, removing invalid data therein, such as data hitting inclusions (abnormal peaks of Ti, Pb and Zr elements) or penetrating chlorite minerals (abnormal peaks of K and Sr elements); (4) Data exporting: exporting each single-point micro- area data summary screened by interpretation into a csv format file in batch. (5) Discrimination of prospecting types
According to the processed data, drawing the scatter diagram on the basis of the content of chlorite characteristic elements Ni, Mg and Cr of the same lithology and the same alteration type (hydrothermal vein or disseminated) and the total content of characteristic elements Mn,
Pb and Zn, identifying the prospecting type according to the projection range of Ni and Mg, Cr and Mn, Pb and Zn in the scatter plot, as shown in FIG. 2.
Where , the criteria of prospecting types include:
The quantitative indexes of chlorite characteristic elements in the epithermal Ag-Au deposit are as follows:
When the content of Ni element is 10-40 ppm, the content of Mg element is 9,000-12,000 ppm, the content of Cr element is 1-100ppm, and the total content of Mn, Pb and Zn elements is 3,000-10,000 ppm in the chiorite, it is determined that the deposit is the epithermal Ag-Au deposit; when the content of Ni element is 1-20 ppm, the content of Mg element is 7,000-11,000 ppm, the content of Cr element is 1-100 ppm, and the total content of Mn, Pb and Zn elements is 9,000-14,000 ppm in the chivrite, it is determined that the deposit is a hydrothermal vein type
Pb-Zn deposit; when the content of Ni element is 30-1,000 ppm, the content of Mg element is 10,000- 19,000 ppm, the content of Cr element is 4-2,000 ppm, and the total content of Mn, Pb and Zn elements is 1,000-7,000 ppm in the chicrite, it is determined that the deposit is a porphyry Cu deposit.
Embodiment 1
Taking a mine concentration area in a certain place as an example, the process of implementing the application includes: a. Collecting systematically the existing geological, geophysical, geochemical and remote sensing data in the study area, comprehensively analysing its metallogenic potential, and delineating the favourable ore-forming areas named A, B, C, as shown in FIG. 2, where, the background layer is the contour map of Al-OH wavelength by hyperspectral remote sensing. The lower the wavelength, the higher the formed temperature, and the more favourable it is for mineralization. According to the low concentration center of AI-OH wavelength, three favourable areas for mineralization are delineated. b. Sample collection in the field:
Selecting A, B and C, which are favourable areas for mineralization, to collect samples of chlorite on the surface. During the sampling process, record the following information truthfully and in detail, as shown in Table 1:
Table 1 umber
SHIT] 338957 | Dacie porphyry Quartz-chlorite Pyritizatson 8 tl 12218 ) B
U c. Sample testing:
Grinding the collected samples into probe chips and laser in-situ targets, observing the corresponding chlorite alteration characteristics under a microscope, recording in detail the chlorite alteration types (including hydrothermal vein or disseminated, etc.}, conducting electron probe composition analysis according to the alteration type classification, and recording the chemical composition and types of chlorite, and marking with a marker, selecting representative chlorite minerals to carry out in-situ microanalysis of elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), as shown in FIG. 4. Among them, the delineated area is the part where chlorite develops, carrying out the laser La-ICP-Ms in-situ analysis test on it, and marking the number of each test point. The in-situ analysis data are shown in Table 2. d. Data processing: using the LADRIib software for data processing, including data import, data interpretation and data screening. e. Discrimination of prospecting types
Using Origin to process the final data, and drawing the comparative scatter diagrams of Ni and Mg, Cr and Mn, Pb and Zn, according to the range of projection and the change of characteristic elements, it can be distinguished that the favourable prospecting area in site C is porphyry Cu deposit prospecting type, site B is hydrothermal vein Pb-Zn deposit prospecting type and site A is epithermal Ag-Au prospecting type.
After verification by drilling, the above processes have achieved good prospecting results, as shown in Table 2.
Table 2 wasco [a foren [19 [sn | [sw [8 [8m 8-C10em [Aa lime [a Jews [ts [on [8 [700 wsscorose [a [sews [im Jons |oo Jes |s [avs reren |B se [5 [ow [io [swe [03 [ow rcr |B [uses [ro Jes [is [oom Jw [pen ecrtem |B loss [5 Jos Jo [ower [6 [om orersem |B [oss [io [006 [9 [ses |s [uss ecróm je [is [19 [woes Ju [ooo [eo [os eere |B [wees [076 [nn [am Jo [uses orca |B lwomos [2 17 Js [om Jo Juno cosa Je Js [Loss [un [aw [no [ose ercróem |B [wma [4 Lows [u [ss [7 [m0 covet |B |oo [7 [sem [un Jew [eo [om oreo |B [wesw [1 [799 [wo [swe [as [as wsrcoorm je [sen [or io |3 | Jow [os wsrcoroe [Be [sn [7 [0970 [4 [usr Jor [usm wrote [Be Joss [en | Ja [sw [wr [om wsrrcoor |B [suse [sc [1096 [6 [aoe [oer [ume wsrcooen |B [es [as [wos |6 [nw [ao Juss wsrcor3%m |B [woos [10 swe Jo [os 1 Joss ws [Be lon [as [mw [7 | Ja lms wsrcor7m |B [um [os Joos [7 | |2 [is wss |B [ms [26 [ssn Js Joo Ji Jom wsrcoroem |B [to [io sso [u [ume Ji jo» wsn-cosoent [Be oss |t [es [5 [wes |o [sm wsrcosooem [a Jao In |oo Js | Ja Jew wssocoroen |B [toom [os [900 [10 [ass Ja [ost wssocoroaen |e [oma no Jos Jo [sw Ji Lows wssccorom |B [usess [as Joost | [mo Jaz wm wsrecosoren |e [news [se [on [oer [ew ls Joon wssrcootem |e [us [82 [me [on [ms [sla
MirtPb-Z 80-C3-12-chi 131177
WS83-C03-05cht 126118
WS83-C03-06cht
WS83-C04-03ch 130552
WS83-C04-04chl
WS83-C05-02chl
WS83-C05-03chl 127592
WS83C07-01cht
WS83-C07-02chl
WS83-COT-03chi 130575
WS83-C07-04cht
WS83-C07-05chl 82-C1-3ch 82-C1-5ch
In some specific embodiments, the application can use LA-ICP-MS in-situ analysis technology to upgrade the description of chlorite altered minerals in magma-hydrothermal metallogenic system from macroscopic qualitative to microscopic quantitative interpretation, the change of its characteristic elements is closely combined with the scale prospecting type of ore concentration area, which overcomes the difficulties of low efficiency, long period and high cost of the traditional prospecting type discrimination method.
According to the application, chlorite is used as the distinguishing characteristic mineral, which has good penetration, wide physical and chemical conditions, is sensitive to the change of physical and chemical conditions, can be formed at high temperature, medium temperature and low temperature, has uniform spatial distribution, develops in different alteration zones, and is more conducive to the difference of different mineralization types.
In a further specific embodiment, the application Creatively puts forward that the characteristic elements of Ni, Mg, Cr, Mn + Pb + Zn in chlorite are used to judge the prospecting type, and creatively puts forward the optimal judging range, the elements are sensitive to the changes of temperature, pH and redox conditions, and different types of ore deposits can be accurately distinguished within the optimal judging range.
The foregoing is only a preferred embodiment of the present application, but the scope of protection of the present application is not limited thereto. Any change or alternative that can be easily contemplated by one skilled in the art within the scope of the present application is intended to be covered by the present application. Therefore, the scope of protection of this application should be subject to the scope of protection of the claims.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Een werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen, welke werkwijze de volgende stappen omvat: — het verwerven van gunstige metallogene gebieden, in overeenstemming met de historische gegevens van het mijnbouwgebied, — het verzamelen van lithologische monsters die chloriet bevatten, — het verwerven van de kenmerken van gesteentemonsters, en het vastleggen van de coördinaatgegevens van de gesteentemonsters; — het verwerven van de karakteristieke waarde van het elementgehalte op basis van de kenmerken van het lithologische monster, — het verwerken van de karakteristieke waarde van het karakteristieke elementgehalte, — het tekenen van een spreidingsdiagram van de karakteristieke elementgehaltewaarde, en — het beoordelen van de afzettingstypen die overeenkomen met verschillende bemonsteringsplaatsen aan de hand van de ruimtelijke verdeling van het spreidingsdiagram.1. A method for identifying deposit types based on chlorite characteristic elements, comprising the following steps: — acquiring favorable metallogenic areas, in accordance with the historical data of the mining area, — collecting lithological samples containing chlorite, — acquiring the characteristics of rock samples, and recording the coordinate data of the rock samples; — acquiring the characteristic value of the element content based on the characteristics of the lithological sample, — processing the characteristic value of the characteristic element content, — drawing a scatter diagram of the characteristic element content value, and — assessing the deposit types corresponding to different sampling sites according to the spatial distribution of the scatter plot. 2. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 1, waarbij de kenmerken van het gesteentemonster lithologie, alteratie en mineralisatie omvatten.The method for identifying deposit types based on chlorite characteristic elements according to claim 1, wherein the characteristics of the rock sample include lithology, alteration and mineralization. 3. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 1, waarbij — de gehaltes van de karakteristieke elementen een of meer van de gehaltes van de elementen Ni, Mg, Cr en uitgebreide elementen in het chloriet omvatten; — het uitgebreide elementengehalte het totale gehalte aan de elementen Mn, Pb en Zn omvat; en — de uitgebreide elementen de elementen Mn, Pb en Zn omvatten.The method for identifying deposit types based on chlorite characteristic elements according to claim 1, wherein - the contents of the characteristic elements include one or more of the contents of the elements Ni, Mg, Cr and extended elements in the chlorite; — the expanded element content includes the total content of the elements Mn, Pb and Zn, and — the extended elements include the elements Mn, Pb and Zn. 4. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 1, waarbij het verkrijgen van de karakteristieke elementgehaltewaarde omvat: — het uitvoeren van petrografische observatie op die kenmerken van het gesteentemonster om alteratietype en chemische samenstellingsgegevens van het gesteentemonster te verkrijgen,The method for identifying deposit types based on chlorite characteristic elements according to claim 1, wherein obtaining the characteristic element content value includes: - carrying out petrographic observation on those characteristics of the rock sample to obtain alteration type and chemical composition data of the rock sample, — het uitvoeren van laser ablatie inductief gekoppeld plasma massaspectrometrie in-situ microgebied element analyse test op een deel in het gesteente monster waar chloriet kan worden waargenomen als een detectie micro-gebied om de karakteristieke elementgehaltewaarde verkrijgen.— Performing laser ablation inductively coupled plasma mass spectrometry in-situ micro-area element analysis test on a part in the rock sample where chlorite can be observed as a detection micro-area to obtain the characteristic element content value. 5. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 4, waarbij de chlorietveranderingssoorten hydrothermale aderverandering en verspreidingsverandering omvatten.The method for identifying deposit types based on chlorite characteristic elements according to claim 4, wherein the chlorite alteration types include hydrothermal vein alteration and spreading alteration. 6. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 4, waarbij het verkrijgen van chemische samenstellingsgegevens het analyseren van de chemische samenstelling met een elektronenprobe omvat.The method for identifying deposit types based on chlorite characteristic elements according to claim 4, wherein obtaining chemical composition data includes analyzing the chemical composition with an electron probe. 7. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 6, waarbij de gegevensverwerking omvat: — het verkrijgen van een overeenkomstige micro-areaal-elementenintegraalcurve op basis van micro-areaal-elementanalysegegevens van het chloriet in het lithologiemonster, — het verkrijgen van een abnormale piek op basis van de elementintegraalkromme; en — op basis van de abnormale piek in de elementintegraalkromme het verwijderen van ongeldige gegevens uit de analysegegevens van de micro-oppervlakte-elementen om na verwerking micro-oppervlakte-elementgegevens van het chloriet te verkrijgen.The method for identifying deposit types based on chlorite characteristic elements according to claim 6, wherein the data processing includes: - obtaining a corresponding micro-area element integral curve based on micro-area element analysis data of the chlorite in the lithology sample, - obtaining an abnormal peak based on the element integral curve; and — based on the abnormal peak in the element integral curve, removing invalid data from the micro-surface element analysis data to obtain micro-surface element data of the chlorite after processing. 8. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 7, waarbij — de abnormale piek bestaat uit: een of beide van abnormale pieken die Ti, Pb en Zr elementen bevatten en abnormale pieken die K en Sr elementen bevatten; — het treffen van de laser op de inclusie in overeenstemming met de laserablatie-inductief gekoppelde plasmamassaspectrometrie-analyse om abnormale pieken van de elementen Ti, Pb en Zr te verkrijgen; — het door het chlorietmineraal dringen van de laser in overeenstemming met de laserablatie-inductief gekoppeld plasmamassaspectrometrie-analyse om abnormale pieken te verkrijgen voor de elementen K en Sr.The method for identifying deposit types based on chlorite characteristic elements according to claim 7, wherein - the anomalous peak consists of: one or both of anomalous peaks containing Ti, Pb and Zr elements and anomalous peaks containing K and Sr elements; — striking the laser on the inclusion in accordance with the laser ablation-inductively coupled plasma mass spectrometry analysis to obtain abnormal peaks of the elements Ti, Pb and Zr; — penetrating the laser through the chlorite mineral in accordance with the laser ablation-inductively coupled plasma mass spectrometry analysis to obtain anomalous peaks for the elements K and Sr. 9. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 1, waarbij het beoordelen van het type ertsafzetting dat overeenkomt met verschillende bemonsteringsplaatsen op basis van de ruimtelijke verdeling van het spreidingsdiagram omvat:The method for identifying deposit types based on chlorite characteristic elements according to claim 1, wherein assessing the type of ore deposit corresponding to different sampling sites based on the spatial distribution of the scatter diagram includes: — het in overeenstemming met de verwerkte gegevens tekenen van het spreidingsdiagram op basis van het gehalte aan Ni, Mg en Cr in de chlorietkarakteristieke elementen van dezelfde lithologie en hetzelfde alteratietype en het totale gehalte aan de karakteristieke elementen, — het bepalen van het prospectietype van Ni en Mg aan de hand van het projectiebereik van Ni en Mg, Cr en uitgebreide elementen in het spreidingsdiagram.— in accordance with the processed data, drawing the scatter diagram based on the content of Ni, Mg and Cr in the chlorite characteristic elements of the same lithology and the same alteration type and the total content of the characteristic elements, — determining the prospecting type of Ni and Mg using the projection range of Ni and Mg, Cr and extended elements in the scatter diagram. 10. De werkwijze voor het identificeren van afzettingstypen op basis van chlorietkarakteristieke elementen volgens conclusie 9, waarbij de afzettingstypen die overeenkomen met verschillende bemonsteringsplaatsen omvatten: — wanneer het gehalte aan Ni-element 10 - 40 ppm bedraagt, het gehalte aan Mg-elementThe method for identifying deposit types based on chlorite characteristic elements according to claim 9, wherein the deposit types corresponding to different sampling sites include: — when the Ni element content is 10 - 40 ppm, the Mg element content 9.000 - 12.000 ppm bedraagt, het gehalte aan Cr-element 1 - 100ppm bedraagt, en het totale gehalte aan Mn-, Pb- en Zn-elementen 3.000 - 10.000 ppm bedraagt, wordt bepaald dat de afzetting een epithermische Ag-Au-afzetting is; — wanneer het gehalte aan het element Ni 1-20 ppm bedraagt, het gehalte aan het element Mg 7 000-11 000 ppm bedraagt, het gehalte aan het element Cr 1-100 ppm bedraagt en het totale gehalte aan de elementen Mn, Pb en Zn 9 000-14 000 ppm bedraagt, wordt bepaald dat de afzetting een hydrothermale ader-type Pb-Zn-afzetting is; — wanneer het gehalte aan het element Ni 30 - 1.000 ppm bedraagt, het gehalte aan het element Mg 10.000 - 19.000 ppm bedraagt, het gehalte aan het element Cr 4 - 2.000 ppm bedraagt, en het totale gehalte aan de elementen Mn, Pb en Zn 1.000 - 7.000 ppm bedraagt, wordt bepaald dat de afzetting een porfiere Cu-afzetting is.9,000 - 12,000 ppm, the content of Cr element is 1 - 100 ppm, and the total content of Mn, Pb and Zn elements is 3,000 - 10,000 ppm, the deposit is determined to be an epithermal Ag-Au deposit ; — when the content of the element Ni is 1-20 ppm, the content of the element Mg is 7 000-11 000 ppm, the content of the element Cr is 1-100 ppm and the total content of the elements Mn, Pb and Zn is 9 000-14 000 ppm, the deposit is determined to be a hydrothermal vein-type Pb-Zn deposit; — when the content of the element Ni is 30 - 1,000 ppm, the content of the element Mg is 10,000 - 19,000 ppm, the content of the element Cr is 4 - 2,000 ppm, and the total content of the elements Mn, Pb and Zn 1,000 - 7,000 ppm, the deposit is determined to be a porphyritic Cu deposit.
NL2032643A 2022-07-07 2022-07-30 Method for identifying deposit types based on chlorite characteristic elements NL2032643B9 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210802601.9A CN115128247B (en) 2022-07-07 2022-07-07 Novel method for distinguishing type of prospecting based on change of chlorite indication element

Publications (2)

Publication Number Publication Date
NL2032643B1 NL2032643B1 (en) 2023-12-12
NL2032643B9 true NL2032643B9 (en) 2024-02-19

Family

ID=83381357

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032643A NL2032643B9 (en) 2022-07-07 2022-07-30 Method for identifying deposit types based on chlorite characteristic elements

Country Status (2)

Country Link
CN (1) CN115128247B (en)
NL (1) NL2032643B9 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114646682B (en) * 2022-03-18 2023-09-08 西藏巨龙铜业有限公司 Mineral prospecting method based on trace elements of green-curtain stone
CN115759815B (en) * 2022-11-03 2023-11-03 中国科学院广州地球化学研究所 Investigation method for judging zebra copper ore type by using crust maturity index
CN116773774B (en) * 2023-06-20 2023-12-29 西藏巨龙铜业有限公司 Method and system for rapidly distinguishing ore forming background of porphyry ore deposit based on tourmaline component
CN116593407B (en) * 2023-07-17 2023-09-29 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Rare earth metal mineral rapid investigation device and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028000A1 (en) * 2007-07-26 2009-01-29 O'brien Thomas B Method and process for the systematic exploration of uranium in the athabasca basin
CN110333200B (en) * 2019-05-30 2022-04-01 西藏华钰矿业股份有限公司 Method for delineating mineralization center based on short-wave infrared spectrum
CN114184591B (en) * 2021-11-22 2022-08-05 成都理工大学 Method for identifying porphyry ore deposit hydrothermal center based on chlorite Raman parameter and element composition
CN114720547A (en) * 2022-03-03 2022-07-08 西藏鑫湖矿业有限公司 Method for rapidly delineating low-temperature hydrothermal type Ag-Au deposit hydrothermal mineralization center
CN114646682B (en) * 2022-03-18 2023-09-08 西藏巨龙铜业有限公司 Mineral prospecting method based on trace elements of green-curtain stone
CN114813903B (en) * 2022-03-30 2023-11-14 西藏鑫湖矿业有限公司 Method for discriminating ore species based on garnet micro-region chemical composition

Also Published As

Publication number Publication date
CN115128247B (en) 2024-01-05
NL2032643B1 (en) 2023-12-12
CN115128247A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
NL2032643B9 (en) Method for identifying deposit types based on chlorite characteristic elements
Zuo et al. Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions
Tyrrell et al. The Pb isotopic composition of detrital K-feldspar: A tool for constraining provenance, sedimentary processes and paleodrainage
Ross et al. Improving lithological discrimination in exploration drill-cores using portable X-ray fluorescence measurements:(2) applications to the Zn-Cu Matagami mining camp, Canada
CN114646682B (en) Mineral prospecting method based on trace elements of green-curtain stone
Parbhakar-Fox et al. Cost-effective means for identifying acid rock drainage risks—integration of the geochemistry-mineralogy-texture approach and geometallurgical techniques
Nykänen et al. Spatial analysis techniques as successful mineral-potential mapping tools for orogenic gold deposits in the northern Fennoscandian Shield, Finland
CN114813903B (en) Method for discriminating ore species based on garnet micro-region chemical composition
CN201522431U (en) Rock debris substance image analyzer
Siqueira et al. Magnetic susceptibility for characterizing areas with different potentials for sugarcane production
Wang et al. Lithology identification technology using BP neural network based on XRF
CN114720547A (en) Method for rapidly delineating low-temperature hydrothermal type Ag-Au deposit hydrothermal mineralization center
Esmaeiloghli et al. Spatially-weighted factor analysis for extraction of source-oriented mineralization feature in 3D coordinates of surface geochemical signal
Hafez et al. Geochemical survey of soil samples from the archaeological site Dromolaxia-Vyzakia (Cyprus), by means of micro-XRF and statistical approaches
Nwaila et al. Constraints on the geometry and gold distribution in the Black Reef Formation of South Africa using 3D reflection seismic data and Micro-X-ray computed tomography
Zhao et al. Controls on and prospectivity mapping of volcanic-type uranium mineralization in the Pucheng district, NW Fujian, China
CN115684550A (en) Method for rapidly delineating porphyry ore deposit ore body by using chlorite trace element content
Leväniemi et al. Petrophysical target characterization with lithogeochemical clustering: the Metsämonttu Zn–Pb–Cu deposit, southern Finland
CN117456118B (en) Ore finding method based on k-meas method and three-dimensional modeling
Low Examination of well cuttings
Chen et al. Using geochemical imaging data to map nickel sulfide deposits in Daxinganling, China
Morgenstern et al. New Zealand’s clean technology mineral potential
LU502406B1 (en) A Method for Judging Resource Potential Based on Metal Stable Isotope Fractionation Model
Scott GIS: modern mineral potential modelling and quantitative resource assessment: implications for the Geological Survey of Queensland
CN116223608A (en) Mineral potential evaluation method based on magnetite element components in skarn deposit

Legal Events

Date Code Title Description
TK Erratum

Effective date: 20240221