NL2032091A - Circuit and method for measuring ultrasonic wave propagation time - Google Patents

Circuit and method for measuring ultrasonic wave propagation time Download PDF

Info

Publication number
NL2032091A
NL2032091A NL2032091A NL2032091A NL2032091A NL 2032091 A NL2032091 A NL 2032091A NL 2032091 A NL2032091 A NL 2032091A NL 2032091 A NL2032091 A NL 2032091A NL 2032091 A NL2032091 A NL 2032091A
Authority
NL
Netherlands
Prior art keywords
circuit
signal
propagation time
ultrasonic wave
echo
Prior art date
Application number
NL2032091A
Other languages
Dutch (nl)
Other versions
NL2032091B1 (en
Inventor
Wang Zhongzhou
Tian Peng
Pan Zhenyu
Han Hao
Original Assignee
Mezolen Instrument Changzhou Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mezolen Instrument Changzhou Company Ltd filed Critical Mezolen Instrument Changzhou Company Ltd
Publication of NL2032091A publication Critical patent/NL2032091A/en
Application granted granted Critical
Publication of NL2032091B1 publication Critical patent/NL2032091B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The present invention discloses a circuit and method for measuring ultrasonic wave propagation. time. ZX high—speed, timer‘ module is used in cooperation with a filter circuit, a peak holding circuit, a threshold comparison circuit and a zero—crossing—point comparison circuit. Finally, echo signals of an ultrasonic wave are converted, into pulse signals of a zero crossing point. By counting a time interval of two pulse signals, interval time between two pulses is calculated to be propagation time of the ultrasonic wave. Influences of a sampling frequency of ADC and FIFO of a main controller on measurement are avoided; and accurate measurement of ultrasonic wave propagation time in upstream and downstream flows is realized.

Description

CIRCUIT AND METHOD FOR MEASURING ULTRASONIC WAVE PROPAGATION TIME
TECHNICAL FIELD
The present invention belongs to the field of ultrasonic sen- sors, in particular to a circuit and method for measuring ultra- sonic wave propagation time.
BACKGROUND ART
At present, there are two common ultrasonic flowmeter tech- nologies in the market: a time transmission method and a Doppler method. Although the time transmission method started late, it is widely used and has high accuracy. The time transmission method determines a flow rate of a pipeline fluid by measuring time of downstream and upstream flows of an ultrasonic pulse traveling back and forth between two transducers. The flow rate of the fluid in the pipeline is V=C° xAT/2xL, where C is the velocity of ultra- sonic motion from a transmitter to a receiver in a static liquid;
AT is a time difference between downstream and upstream probes in a flowing liquid; and L is the distance between the two probes.
Therefore, to accurately measure the fluid flow rate in the pipe- line, it is necessary to accurately measure time values Tdu and
Tud of the upstream and downstream probes. Existing methods of measuring time differences are generally a cross-correlation algo- rithm and a software analysis algorithm, both of which need to convert an echo voltage signal into a digital signal by ADC for measurement. As a result, the measurement progress depends on the sampling frequency of ADC, which is limited by the sampling fre- quency of ADC and the FIFO size of a main controller. Therefore, measurement time performance often cannot meet requirements of ac- curate measurement.
SUMMARY
In order to solve above problems existing in the prior art for measuring ultrasonic wave propagation time, the present inven- tion provides a circuit for measuring ultrasonic wave propagation time, which comprises an MCU unit, a driving module, a timer mod- ule, a bias circuit, a filter circuit, a VGA gain adjustment cir- cuit, a peak holding and discharging circuit, a threshold compari- son circuit and a zero-crossing-point comparison circuit, wherein the driving module is connected with the timer module; the bias circuit, the filter circuit, the VGA gain adjustment circuit, the peak holding and discharging circuit, the threshold comparison circuit, the zero-crossing-point comparison circuit and the timer module are connected in sequence; and the MCU unit is used for configuring the driving module and triggering the timer module.
Preferably, the driving module comprises an ultrasonic driv- ing circuit, which comprises a dual-channel gate driver and a mul- ti-channel signal switching circuit composed of a plurality of an- alog switches; and upstream and downstream ultrasonic sensors can be controlled to be in driving and receiving modes by controlling switching logics of the analog switches.
Preferably, the VGA gain adjustment circuit comprises a vari- able gain amplifier with a gain range of 80dB, which amplifies a weak signal into an echo signal with an amplitude of 500-100mV based on VCC OFFSET bias, and can dynamically adjust an amplitude of an output waveform through a GAIN pin.
Preferably, the peak holding and discharging circuit is con- nected with a diode through output of an operational amplifier, and charges two capacitors in one direction; and a peak voltage signal of an echo signal is located at an ADC PEAK network label.
Preferably, when an EN START pin is enabled, the timer module will record a count value between a START signal and a STOP sig- nal; and the START signal will be triggered when a driving pulse is sent. When a sound wave is transmitted to a downstream probe after passing through a pipeline medium, an echo signal passes through the bias circuit, the filter circuit and the VGA gain am- plification adjustment circuit. Then, after threshold comparison and zero-crossing-point comparison, a zero-point pulse signal is generated and output to a STOP pin of the timer module. The timer module records a count value between the START signal and the STOP signal, and finally calculates propagation time between the START and the STOP.
In addition, the present invention further provides a method for measuring ultrasonic wave propagation time, which comprises the following steps:
Sl; performing pulse driving of an ultrasonic sensor arranged upstream/downstream;
S2, adjusting an analog signal of an echo at a down- stream/upstream ultrasonic sensor into a pulse signal with mani- festation of time characteristics; and 33, using a timer module to calculate a count value of the pulse signal from starting of driving to the echo, and converting into time, a calculation formula of which is TIME=1/FsxCNT, where
Fs is a timing frequency of the timer module; and CNT is a count value of a timer between START and STOP signals.
Preferably, in the step S2, the step of adjusting the analog signal of the echo into the pulse signal with manifestation of time characteristics is realized by integrating piezoelectricity of the ultrasonic echo through bias, filtering, amplification, peak holding, threshold comparison and zero-crossing-point compar- ison.
Preferably, in step S2, the circuit for measuring ultrasonic wave propagation time is used to realize a processing flow of sig- nal returning.
According to the present invention, pulse driving is per- formed to the ultrasonic sensors of a ultrasonic flowmeter; the analog signal of the echo is adjusted into the pulse signal with manifestation of time characteristics by integrating piezoelec- tricity of the ultrasonic echo through bias, filtering, amplifica- tion, peak holding, the threshold comparison circuit and the zero- crossing-point comparison circuit; and the counter circuit is used to calculate the count value of the pulse signal from starting of driving to the echo, which is finally converted into time. In this way, a time difference manner of traditional software is replaced; and measured propagation time data is more accurate.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic diagram of an overall framework of a circuit according to the present invention.
Fig. 2 is a schematic diagram of an ultrasonic driving cir- cuit.
Fig. 3 is a schematic diagram of a bias circuit.
Fig. 4 is a schematic diagram of a VGA gain adjustment cir- cuit.
Fig. 5 is a schematic diagram of a peak holding and discharg- ing circuit.
Fig. 6 is a schematic diagram of a threshold comparison cir- cuit and a zero-crossing-point comparison circuit.
Fig. 7 is a schematic diagram of a timer circuit.
Fig. 8 is a waveform diagram of a driving wave.
Fig. 2 is a schematic diagram of echo signals.
Fig. 10 is a waveform diagram of peak sampling voltages.
Fig. 11 is a schematic diagram of STOP pulse signals.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Embodiment 1
An embodiment of a circuit for measuring ultrasonic wave propagation time of the present invention comprises: an MCU unit, a driving module, a timer module, a bias circuit, a filter cir- cuit, a VGA gain adjustment circuit, a peak holding and discharg- ing circuit, a threshold comparison circuit and a zero-crossing- point comparison circuit, wherein the driving module is connected with the timer module; the bias circuit, the filter circuit, the
VGA gain adjustment circuit, the peak holding and discharging cir- cuit, the threshold comparison circuit, the zero-crossing-point comparison circuit and the timer module are connected in sequence; and the MCU unit is used for configuring the driving module and triggering the timer module.
Fig. 2 is a schematic diagram of an ultrasonic driving cir- cuit, which comprises a multi-channel signal switching circuit composed of Ull as a dual-channel gate driver and analog switches
U9, Ul0, Ul2 and U13. Upstream and downstream ultrasonic sensors can be controlled to be in driving and receiving modes by control- ling switching logics of the analog switches.
Fig. 3 a schematic diagram of a bias circuit. Ul1B, U3A, R6 and R9 constitute a bias circuit with a bias voltage of
VCC OFFSET; and UlA realizes a differential amplification circuit to realize preliminary amplification of an ultrasonic echo signal.
Fig. 4 a schematic diagram of a VGA gain adjustment circuit.
The circuit comprises a variable gain amplifier with a gain range 5 of 80dB, which amplifies a weak signal output in Fig. 3 into an echo signal with an amplitude of 500-100mV based on VCC OFFSET bi- as, and can dynamically adjust an amplitude of an output waveform through a GAIN pin of U2.
Fig. 5 is a schematic diagram of a peak holding and discharg- ing circuit. The peak holding and discharging circuit is connected with a diode D3 through output of an operational amplifier U7A, and charges two capacitors C22 and C23 in one direction; and a peak voltage signal of an echo signal is located at an ADC PEAK network label. When peak sampling in this direction is completed, the peak voltage can be discharged by a 10Q resistor of R59 through the analog switch of U8.
Fig. 6 is a schematic diagram of a threshold comparison cir- cuit and a zero-crossing-point comparison circuit. U6 is a compar- ator. An RCl echo signal is compared with a threshold comparison voltage generated by DAC of MCU. Because of use of lower THRESHOLD comparison, when the voltage value of RCl is lower than THRESHOLD,
AN output signal of OUT CLK is set to 1; and OUT CLK will enable a rising edge trigger of U5 with clearing and preset functions. At this time, EN CMP outputs a high level.
U4 is a single-supply comparator, which will be enabled by
EM CMP. Here, a zero point is a reference voltage of VCC OFFSET.
When RC1 is less than VCC OFFSET, the output Q of U4 will be at a high level; and then Q will output a zero-crossing-point pulse voltage under the lower threshold.
Fig. 7 shows a timer module. When an EN START pin is enabled, the timer Ul4 will record a count value between a START signal and a STOP signal; and the START signal will be triggered when a driv- ing pulse is sent. When a sound wave is transmitted to a down- stream probe after passing through a pipeline medium, an echo sig- nal passes through the bias circuit, the filter circuit and gain amplification. Then, after threshold comparison and zero-crossing- point comparison, a zero-point pulse signal is generated and out-
put to a STOP pin of the timer module. The timer module records a count value between the START signal and the STOP signal, and fi- nally calculates propagation time between the START and the STOP.
The ultrasonic pulse sending can be configured according to man-machine interactions of MCU; and the number of driving waves and driving frequency can be set according to a pipe diameter and field working conditions of the medium. Before sending of a driv- ing wave, the MCU will enable the START EN pin of the timer mod- ule. After a TTL signal is sent to the driving circuit, the driv- ing voltage will be adjusted to +15V; and the TTL signal will be connected with a START pin of the timer module to trigger the start signal. A waveform diagram of the driving wave is shown in
Fig. 8.
An ultrasonic signal of a probe A excited by the driving wave is received by a probe B after passing through the pipeline fluid medium. A voltage reference of the signal received by the probe B is VCC OFFSET after passing through the bias circuit. After fil- tering and gain amplification, the echo signal is shown in Channel 2 of Fig. 9.
To obtain a peak voltage of the echo signal, it is composed of a peak sampling and discharging circuit. A waveform of a peak sampling voltage is shown in Channel 1 in Fig. 10.
After the echo signal is compared with the threshold and af- ter zero-crossing-point comparison, a zero-crossing-point STOP pulse signal is output, as shown in Fig. 11.
Timing frequency of the timer module is FS; and the count value between the START signal and the STOP signal is CNT, so time between ultrasonic wave transmission and echo reception can be calculated by the following algorithm: TIME=1/FsxCNT.
Embodiment 2
An embodiment of a method for measuring ultrasonic wave prop- agation time of the present invention comprises the following steps: 81, performing pulse driving of an ultrasonic sensor arranged upstream;
S2, adjusting an analog signal of an echo at a downstream ul- trasonic sensor into a pulse signal with manifestation of time characteristics; and
S3, using a timer module to calculate a count value of the pulse signal from starting of driving to the echo, and converting into time, a calculation formula of which is TIME=1/FsxCNT, where
Fs is a timing frequency of the timer module; and CNT is a count value of a timer between START and STOP signals.
More specifically, in the step S2, the step of adjusting the analog signal of the echo into the pulse signal with manifestation of time characteristics is realized by integrating piezoelectrici- ty of the ultrasonic echo through bias, filtering, amplification, peak holding, threshold comparison and zero-crossing-point compar- ison.
More specifically, in step S2, the circuit for measuring ul- trasonic wave propagation time is used to realize a processing flow of signal returning.
According to the present invention, the high-speed timer mod- ule is used in cooperation with the filter circuit, the peak hold- ing circuit, the threshold comparison circuit and the zero- crossing-point comparison circuit. Finally, the echo signals of the ultrasonic wave are converted into the pulse signals of a zero crossing point. By counting a time interval of the two pulse sig- nals, interval time between two pulses is calculated to be propa- gation time of the ultrasonic wave.
Although the embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that many changes, modifications, substitutions and variations can be made to these embodiments without departing from the prin- ciple and spirit of the present invention, and the scope of the present invention is defined by the appended claims and their equivalents.

Claims (8)

CONCLUSIESCONCLUSIONS 1. Circuit voor het meten van de voortplantingstijd van ultrasone golven, met het kenmerk, dat deze omvat een MCU-eenheid, een stu- urmodule, een timermodule, een biascircuit, een filtercircuit, een VGA-versterkingsaanpassingscircuit, een piekvasthoud- en ontlaadcircuit, een drempelvergelijkingscircuit en een nuldoor- gangvergelijkingsschakeling, waarbij de stuurmodule is verbonden met de timermodule; het biascircuit, het filtercircuit, het VGA- versterkingsaanpassingscircuit, het piekvasthoud- en ontlaadcir- cuit, het drempelvergelijkingscircuit, de nuldoor- gangvergelijkingsschakeling en de timermodule achtereenvolgens zijn verbonden; en de MCU-eenheid wordt gebruikt voor het config- ureren van de stuurmodule en het activeren van de timermodule.An ultrasonic wave propagation time measurement circuit, characterized in that it comprises an MCU unit, a control module, a timer module, a bias circuit, a filter circuit, a VGA gain adjustment circuit, a peak hold and discharge circuit, a threshold comparison circuit and a zero crossing comparison circuit, the control module being connected to the timer module; the bias circuit, the filter circuit, the VGA gain adjustment circuit, the peak hold and discharge circuit, the threshold comparator circuit, the zero crossing comparator circuit and the timer module are connected sequentially; and the MCU unit is used to configure the control module and activate the timer module. 2. Circuit voor het meten van de voortplantingstijd van ultrasone golven volgens conclusie 1, met het kenmerk, dat de stuurmodule een ultrasone stuurschakeling omvat; het ultrasone stuurcircuit omvat een tweekanaals poortstuurinrichting en een meerkanaals signaalschakelcircuit samengesteld uit een aantal analoge schake- laars; en stroomopwaartse en stroomafwaartse ultrasone sensoren kunnen worden bestuurd om in de stuur- en ontvangstmodus te staan door de schakellogica van de analoge schakelaars te regelen.An ultrasonic wave propagation time measurement circuit according to claim 1, characterized in that the control module comprises an ultrasonic control circuit; the ultrasonic driver circuit includes a two-channel gate driver and a multi-channel signal switching circuit composed of a plurality of analog switches; and upstream and downstream ultrasonic sensors can be controlled to be in control and receive mode by controlling the switching logic of the analog switches. 3. Circuit voor het meten van de voortplantingstijd van ultrasone golven volgens conclusie 2, met het kenmerk, dat het VGA- versterkingsaanpassingscircuit een versterker met variabele ver- sterking met een versterkingsbereik van 80dB omvat, die een zwak signaal versterkt tot een echosignaal met een amplitude van 500 tot 100 mV op basis van VCC OFFSET-bias, en een amplitude van een uitgangsgolfvorm dynamisch kan aanpassen via een GAIN-pin.An ultrasonic wave propagation time measurement circuit according to claim 2, characterized in that the VGA gain adjustment circuit comprises a variable gain amplifier having a gain range of 80dB, which amplifies a weak signal into an echo signal having an amplitude from 500 to 100 mV based on VCC OFFSET bias, and can dynamically adjust an amplitude of an output waveform via a GAIN pin. 4. Circuit voor het meten van de voortplantingstijd van ultrasone golven volgens conclusie 3, met het kenmerk, dat het circuit voor het vasthouden en ontladen van pieken is verbonden met een diode via de uitgang van een operationele versterker, en twee condensa-4. An ultrasonic wave propagation time measurement circuit according to claim 3, wherein said surge holding and discharging circuit is connected to a diode through the output of an operational amplifier, and two capacitors toren in één richting oplaadt; en een piekspanningssignaal van een echosignaal is gelokaliseerd op een ADC PEAK-netwerklabel.tower charges in one direction; and a peak voltage signal of an echo signal is located on an ADC PEAK network tag. 5. Circuit voor het meten van de voortplantingstijd van ultrasone golven volgens een van de conclusies 1 tot 4, met het kenmerk, dat wanneer een EN START-pin is geactiveerd, de timermodule een telwaarde zal registreren tussen een START-signaal en een STOP- signaal, en het START-signaal wordt geactiveerd wanneer een stu- urpuls wordt verzonden; wanneer een geluidsgolf wordt verzonden naar een stroomafwaartse sonde nadat deze door een pijpleidingme- dium is gegaan, gaat een echosignaal door het biascircuit, het filtercircuit en het VGA-versterkingsaanpassingscircuit; dan wordt, na drempelvergelijking en nuldoorgangspuntvergelijking, een nulpuntpulssignaal gegenereerd en afgegeven aan een STOP-pen van de timermodule; en de timermodule registreert een telwaarde tussen het START-signaal en het STOP-signaal en berekent ten slotte de voortplantingstijd tussen de START en de STOP.An ultrasonic wave propagation time measurement circuit according to any one of claims 1 to 4, characterized in that when an AND START pin is activated, the timer module will register a count value between a START signal and a STOP signal. signal, and the START signal is activated when a control pulse is sent; when a sound wave is sent to a downstream probe after passing through a pipeline medium, an echo signal passes through the bias circuit, the filter circuit and the VGA gain adjustment circuit; then, after threshold comparison and zero crossing point comparison, a zero point pulse signal is generated and output to a STOP pin of the timer module; and the timer module registers a count value between the START signal and the STOP signal and finally calculates the propagation time between the START and the STOP. 6. Werkwijze voor het meten van de voortplantingstijd van ultra- sone golven, met het kenmerk, dat deze de volgende stappen omvat: Sl, het uitvoeren van pulsaansturing van een ultrasone sensor die stroomopwaarts/stroomafwaarts is opgesteld; S2, het aanpassen van een analoog signaal van een echo bij een stroomafwaartse/stroomopwaartse ultrasone sensor in een pulssignaal met tijdkarakteristieken; en S3, het met behulp van een timermodule berekenen van een telwaarde van het pulssignaal vanaf het begin van het aansturen tot de echo, en het omzetten in een tijd, waarvan een berekeningsformule TIME=1/FsxCNT is, waarbij Fs een timingfrequentie is van de timer- module; en CNT een telwaarde is van een timer tussen START- en STOP-signalen.A method of measuring the propagation time of ultrasonic waves, characterized in that it comprises the steps of: S1, performing pulse driving of an ultrasonic sensor arranged upstream/downstream; S2, adapting an analog signal of an echo at a downstream/upstream ultrasonic sensor into a pulse signal with time characteristics; and S3, calculating a count value of the pulse signal from the start of driving to the echo using a timer module, and converting it into a time, a calculation formula of which is TIME=1/FsxCNT, where Fs is a timing frequency of the timer module; and CNT is a count value of a timer between START and STOP signals. 7. Werkwijze voor het meten van de voortplantingstijd van ultra- sone golven volgens conclusie 6, met het kenmerk, dat in stap S2 de stap van het aanpassen van het analoge signaal van de echo in het pulssignaal met manifestatie van tijdkenmerken wordt gereal- iseerd door het integreren van piëzo-elektriciteit van de ultra-A method of measuring the propagation time of ultrasonic waves according to claim 6, characterized in that in step S2, the step of adjusting the analog signal of the echo into the pulse signal with manifestation of time characteristics is realized by integrating piezo electricity from the ultra- sone echo door bias, filtering, amplificatie, peakholding, drempelvergelijking en nuldoorgangvergelijking.sone echo through bias, filtering, amplification, peak holding, threshold comparison and zero crossing comparison. 8. Werkwijze voor het meten van de voortplantingstijd van ultra- sone golven volgens conclusie 7, met het kenmerk, dat in stap S2 het circuit voor het meten van de voortplantingstijd van ultrasone golven volgens conclusie 1 wordt gebruikt om een verwerkingsstroom van terugkerende signalen te realiseren.An ultrasonic wave propagation time measurement method according to claim 7, characterized in that in step S2, the ultrasonic wave propagation time measurement circuit according to claim 1 is used to realize a return signal processing flow .
NL2032091A 2021-07-27 2022-06-07 Circuit and method for measuring ultrasonic wave propagation time NL2032091B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110847861.3A CN113504389A (en) 2021-07-27 2021-07-27 Circuit and method for measuring ultrasonic wave propagation time

Publications (2)

Publication Number Publication Date
NL2032091A true NL2032091A (en) 2023-01-31
NL2032091B1 NL2032091B1 (en) 2023-12-14

Family

ID=78014097

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032091A NL2032091B1 (en) 2021-07-27 2022-06-07 Circuit and method for measuring ultrasonic wave propagation time

Country Status (2)

Country Link
CN (1) CN113504389A (en)
NL (1) NL2032091B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000569A1 (en) * 1991-06-25 1993-01-07 Commonwealth Scientific And Industrial Research Organisation An electronic fluid flow meter
US5277070A (en) * 1991-08-01 1994-01-11 Xecutek Corporation Ultrasonic gas flow measurement method and apparatus
CN1204397A (en) * 1995-10-19 1999-01-06 联邦科学及工业研究组织 Digital speed determination in ultrasonic flow measurements
WO2002040948A1 (en) * 2000-11-15 2002-05-23 Stroemberg Per Aake Flow velocity meter
US20050007720A1 (en) * 2003-04-10 2005-01-13 Yuan-Kun Hsiao Apparatus and method for generating wobble clock
CN110207771A (en) * 2019-06-14 2019-09-06 浙江启尔机电技术有限公司 A kind of unipath continuously more ultrasonic signal time synchronisation circuits and its clocking method
US20200064168A1 (en) * 2018-08-22 2020-02-27 Rohm Co., Ltd. Semiconductor integrated circuit device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000569A1 (en) * 1991-06-25 1993-01-07 Commonwealth Scientific And Industrial Research Organisation An electronic fluid flow meter
US5277070A (en) * 1991-08-01 1994-01-11 Xecutek Corporation Ultrasonic gas flow measurement method and apparatus
CN1204397A (en) * 1995-10-19 1999-01-06 联邦科学及工业研究组织 Digital speed determination in ultrasonic flow measurements
WO2002040948A1 (en) * 2000-11-15 2002-05-23 Stroemberg Per Aake Flow velocity meter
US20050007720A1 (en) * 2003-04-10 2005-01-13 Yuan-Kun Hsiao Apparatus and method for generating wobble clock
US20200064168A1 (en) * 2018-08-22 2020-02-27 Rohm Co., Ltd. Semiconductor integrated circuit device
CN110207771A (en) * 2019-06-14 2019-09-06 浙江启尔机电技术有限公司 A kind of unipath continuously more ultrasonic signal time synchronisation circuits and its clocking method

Also Published As

Publication number Publication date
NL2032091B1 (en) 2023-12-14
CN113504389A (en) 2021-10-15

Similar Documents

Publication Publication Date Title
CN203385854U (en) A semiconductor device and a sound distance measurement system
CN105890685B (en) A kind of device for measuring ultrasonic wave flow based on accumulated phase difference
WO1997014936A1 (en) Digital speed determination in ultrasonic flow measurements
NO20161275A1 (en) Ultrasonic signal transmitting and receiving circuit assembly and ultrasonic system and method using the same
JPS5952367B2 (en) flow measuring device
WO2019113141A1 (en) Ultrasonic transducers using adaptive multi-frequency hopping and coding
CN105300508A (en) Double-threshold detection circuit of ultrasonic wave signal propagation time, and detection method
CN110987102A (en) High-interference-resistance high-precision gas ultrasonic flowmeter and measuring method thereof
NL2032091B1 (en) Circuit and method for measuring ultrasonic wave propagation time
CN101922954A (en) Method for processing envelope line of ultrasonic measuring signal
Han et al. Studies on the transducers of clamp-on transit-time ultrasonic flow meter
AU2922000A (en) Method and device for measuring propagation time of a signal, in particular a ultrasonic signal
CN112903043B (en) Multichannel ultrasonic flowmeter system
CN100451573C (en) Measuring circuit for measuring supersonic wave level meter transit time
CN102589626B (en) High-resolution time measurement and processing device and measurement method thereof
CN111337092B (en) Method for selecting reference signal, calculating method and phase difference type ultrasonic flowmeter
CN207717164U (en) The detection of gas flow rate circuit of ultrasonic probe poll is realized based on analog switch
CN116338240B (en) Ultrasonic liquid flow velocity measurement method and device based on parabolic fitting
EP1798529A1 (en) Ultrasonic gas flow meter
JP3883093B2 (en) Ultrasonic flow meter
JPH0933308A (en) Ultrasonic flow meter
CN202885878U (en) System utilizing processing of signal envelope lines for measuring fluid flow
JP3659745B2 (en) Ultrasonic flow meter
RU43363U1 (en) ULTRASONIC DEVICE FOR DETERMINING THE PROFILE OF FLOW SPEED AND FLOW FLOW
SU183462A1 (en)