NL2031560A - Highly flexible seven-degree-of-freedom wheel-legged robot leg structure - Google Patents

Highly flexible seven-degree-of-freedom wheel-legged robot leg structure Download PDF

Info

Publication number
NL2031560A
NL2031560A NL2031560A NL2031560A NL2031560A NL 2031560 A NL2031560 A NL 2031560A NL 2031560 A NL2031560 A NL 2031560A NL 2031560 A NL2031560 A NL 2031560A NL 2031560 A NL2031560 A NL 2031560A
Authority
NL
Netherlands
Prior art keywords
hip joint
drive unit
joint
hydraulic drive
wheel
Prior art date
Application number
NL2031560A
Other languages
Dutch (nl)
Inventor
Xu Mengkai
Kong Xiangdong
Zhu Qixin
Yu Bin
Li Xinjie
Ba Kaixian
Original Assignee
Univ Yanshan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yanshan filed Critical Univ Yanshan
Publication of NL2031560A publication Critical patent/NL2031560A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Disclosed is a highly flexible seven—degree—of—freedom of wheel— legged robot leg structure, which sequentially includes, from top to bottom, a hip joint module, a thigh, a knee joint, a shank, an ankle joint module and a wheeled motion module hybrid—driven by a hydraulic driven unit and a servo motor, the hip joint may realize yaw, roll and pitch motions, the knee joint may realize pitch motion, the ankle joint may realize pitch motion and roll motion of the wheel along an axis of the connecting bearing, and the wheeled motion module may realize rotation motion of the wheel along the axis. The wheel—legged robot leg structure involved in the present invention has seven degrees of freedom, has higher overall flexibility, higher motion speed, stronger adaptability to complex environments, more stable motion, greater power—to—weight ratio, smaller overall weight and volume of the robot, and stronger practicability.

Description

HIGHLY FLEXIBLE SEVEN-DEGREE-OF-FREEDOM WHEEL-LEGGED ROBOT LEG
STRUCTURE
TECHNICAL FIELD
The present invention relates to the robot field, and in par- ticular relates to a highly flexible seven-degree-of-freedom wheel-legged robot leg structure.
BACKGROUND ART
A robot is a machine device that executes tasks automatical- ly. It may assist or even replace humans in completing dangerous, heavy and complex tasks, improve work efficiency and quality, serve human life, expand or extend the scope of human activities and capabilities, with wide applications in fields such as indus- try, medicine, agriculture, service industry, construction indus- try, and even military. With the rapid development of computer network technology and the improvement of the level of machinery manufacturing, automation and intelligence has become the theme of the new generation of industrial revolution. “Made in China 20257, “The 13%" Five-Year Plan’, U.S. Manufacturing Recovery Plan, Ja- pan’s Robot Strategy, German Industry 4.0 and other national de- velopment strategies have attached great importance to robotics.
Therefore, robotics has developed rapidly in recent years.
Mobile robots are classified according to the form of motion and may be divided into wheeled robots, legged robots, crawler ro- bots and composite robots. Wheel-legged robots are the most common composite robots. This type of robot may realize wheeled motion, legged motion, and wheel-legged composite motion, and therefore features both advantages of low energy consumption and fast motion speed of a wheeled robot and strong environment adaptability of a legged robot.
However, the existing wheel-legged robots still have the fol- lowing limitations: (1) the existing wheel-legged robots are mostly driven by mo- tors, and thus has low power to weight ratio and low practicabil-
ity; (2) the existing wheel-legged robots have limited degrees of freedom and insufficient flexibility, thereby limiting the appli- cation of the wheel-legged robots in more complex environments; and (3) various complex environments have posed higher require- ments for the speed of motion and the stability of high-speed working conditions of the existing wheel-legged robots. On this basis, an urgent problem to be resolved in this field is to design a leg structure of a wheel-legged robot with higher leg flexibil- ity, stronger adaptability to complex environments, greater power- to-weight ratio, higher motion speed, and stronger working stabil- ity.
SUMMARY
In order to solve the above-mentioned shortcomings of the prior art, the present invention provides a highly flexible seven- degree-of-freedom wheel-legged robot leg structure hybrid-driven by a hydraulic and a servo motor, which may solve the above prob- lem and enable the leg structure of the wheel-legged robot to have greater whole machine power-to-weight ratio, better flexibility, stronger obstacle avoidance ability, higher motion speed, and more stable motion state.
Specifically, the present invention provides a highly flexi- ble seven-degree-of-freedom wheel-legged robot leg structure, the leg structure is fixedly connected on a frame of a robot as a leg of the wheel-legged robot, and the leg structure includes a legged motion system and a wheeled motion system; the legged motion system includes a hydraulic system and a motion component, the motion component sequentially includes, from top to bottom, a frame connection platform, a hip joint, a hip
Joint mounting component, a thigh, a knee joint, a shank, an ankle joint, a foot end and a connecting bearing, wherein the hip joint has three degrees of freedom, and the hip joint may realize yaw motion of the entire leg structure, roll motion of the entire leg structure and pitch motion of the hip joint; the knee joint has one degree of freedom, and the knee joint may realize pitch motion of the knee joint; the ankle joint has two degrees of freedom, and the ankle joint may realize pitch motion of the ankle joint and roll motion of a wheel along an axis of the connecting bearing;
the hydraulic system includes a hip joint hydraulic system, a knee
Joint hydraulic system and an ankle joint hydraulic system; the hip joint mounting component includes a hip joint inter- mediate pivot shaft, a hip joint base, a hip joint hydraulic drive unit fixing plate and a connecting shaft, with a top end of the hip joint intermediate pivot shaft being hinged on the frame con- nection platform, the hip joint hydraulic drive unit fixing plate being fixedly connected on a top end of the hip joint intermediate pivot shaft, the hip joint base being connected with a bottom end of the hip joint intermediate pivot shaft by means of the connect- ing bearing, and a bottom of the hip joint base and an upper por- tion of the thigh being hinged together; the hip joint hydraulic system includes a hip joint yaw hy- draulic drive unit, a hip joint roll hydraulic drive unit and a hip joint pitch hydraulic drive unit, with one end of the hip joint yaw hydraulic drive unit being connected on the frame con- nection platform, the other end of the hip joint yaw hydraulic drive unit being hinged on the hip joint hydraulic drive unit fix- ing plate; and the hip joint hydraulic drive unit fixing plate and the hip joint intermediate pivot shaft realize up and down connec- tion linkage by means of a shaft key; the hip joint yaw hydraulic drive unit may drive the hip joint intermediate pivot shaft to ro- tate, thereby driving the entire leg structure to realize overall yaw motion to realize turning motion of the wheel-legged robot; one end of the hip joint roll hydraulic drive unit is hinged on the hip joint hydraulic drive unit fixing plate, the other end of the hip joint roll hydraulic drive unit is hinged on the hip joint base, and a structure consisting of the hip joint base, the hip
Joint hydraulic drive unit fixing plate and the hip joint roll hy- draulic drive unit may convert linear reciprocating motion of the hip joint roll hydraulic drive unit to roll motion of the entire leg structure relative to the frame connection platform; one end of the hip joint pitch hydraulic drive unit is hinged on the hip
Joint base, the other end of the hip joint pitch hydraulic drive unit is hinged on a lower end of the thigh, and a structure con- sisting of the hip joint pitch hydraulic drive unit, the thigh and the hip joint base may convert linear reciprocating motion of the hip joint pitch hydraulic drive unit to pitch motion of the hip
Joint relative to the frame connection platform; the knee joint hydraulic system is a knee joint pitch hydrau- lic drive unit; the lower end of the thigh and an upper end of the shank are hinged to form a center of the pitch motion of the knee
Joint, with one end of the knee joint pitch hydraulic drive unit being hinged at an upper end of the thigh, the other end of the knee joint pitch hydraulic drive unit being hinged at the upper end of the shank, and a structure consisting of the thigh, the shank and the knee joint pitch hydraulic drive unit may convert linear reciprocating motion of the knee joint pitch hydraulic drive unit to pitch motion of the knee joint relative to the frame connection platform; the ankle joint hydraulic system includes an ankle joint pitch hydraulic drive unit and a wheel roll hydraulic drive unit, and a lower portion of the shank and an upper portion of the foot end are hinged to form a center of pitch motion of the ankle
Joint, with one end of the ankle joint pitch hydraulic drive unit being hinged on the upper portion of the shank, and the other end of the ankle joint pitch hydraulic drive unit being hinged on the upper portion of the foot end, and a structure consisting of the shank, the foot end and the knee joint pitch hydraulic drive unit may convert linear reciprocating motion of the ankle joint pitch hydraulic drive unit to pitch motion of the ankle joint relative to the frame connection platform, thereby ensuring that the foot end is always in the vertical direction during the motion of the robot; an outer side of the foot end and the connecting bearing are fixedly connected together, the connecting bearing is hinged on an outer ring of a hub bearing of the wheeled motion system, and ro- tation of the outer side of the foot end along the axis of the connecting bearing may be realized, with one end of the wheel roll hydraulic drive unit being hinged on a side surface of the foot end, and the other end of the wheel roll hydraulic drive unit be- ing hinged on the outer ring of the hub bearing, and a structure consisting of the foot end, the hub bearing and the wheel roll hy- draulic drive unit may convert linear reciprocating motion of the wheel roll hydraulic drive unit to roll motion of a wheel along the axis of the connecting bearing; the wheeled motion system includes a servo motor and a power transmission mechanism, and the wheeled motion system has one de- 5 gree of freedom, thereby realizing rotation of the wheel along the axis.
Preferably, the power transmission mechanism includes a uni- versal joint, a transmission shaft, a hub bearing and a wheel, the servo motor is fixedly connected with the foot end, wherein one end of the universal joint is connected with an output shaft of the servo motor after passing through the foot end, the other end of the universal joint is connected with the transmission shaft, an inner side of the transmission shaft is fixedly connected with an inner ring of the hub bearing, and an outer side of the trans- mission shaft is fixedly connected with the wheel; power of the wheeled motion system is transmitted to the wheel by means of the servo motor, the universal joint, the transmission shaft and the hub bearing, thereby completing wheeled motion of the wheel-legged robot.
Preferably, each hydraulic drive unit uses a valve controlled hydraulic cylinder, and the valve controlled hydraulic cylinder includes a connector bearing, a servo cylinder rod, position sen- sor rod, a position sensor fixture, a servo valve, a servo cylin- der and a pipe joint.
Preferably, the entire leg structure of the wheel-legged ro- bot uses a high-strength steel material.
Preferably, a tire surface of the wheel of the wheel-legged robot uses a wear-resistant rubber material and meridian tread pattern.
The present invention produces following technical effects with respect to the prior art: the leg structure of the present invention employs hydraulic drive, and compared with the leg structure using motor drive, this leg structure has greater overall power-to-weight ratio and better robustness. the leg structure of the present invention includes the leg- ged motion system and the wheeled motion system, and the whole wheel-legged robot may realize two motion modes of the wheeled mo- tion and the legged motion, wherein the legged motion system in- cludes a hip joint, a knee joint and an ankle joint; wherein the hip joint has three degrees of freedom, and may realize yawing and rolling of the entire leg structure and pitching of the hip joint; the knee joint has one degree of freedom, and may realize pitch motion of the knee joint; the ankle joint has two degrees of free- dom, and may realize pitch motion of the ankle joint and roll mo- tion of the wheel; the wheeled motion system has one degree of freedom, and may realize rotation of the wheel along the axis; the entire leg structure has seven degrees of freedom, and may adjust the height or other postures of the robot during wheeled motion, may realize in-situ turning motion by means of the yaw degree of freedom of the hip joint, and may also realize rounding corner by means of differential action of different driving wheels, and the entire leg structure has six degrees of freedom during legged mo- tion, may realize more motion postures, and has larger motion space; in conclusion, compared with the conventional wheel-legged robot, this leg structure features more degrees of freedom and greater flexibility.
The leg structure of the present invention is mounted with the wheel roll hydraulic drive unit, which functions to ensure stability of the robot motion and increase motion speed of the ro- bot; the wheel roll hydraulic drive unit makes full contact be- tween the wheel and the ground by righting the wheel of the robot when the robot is cornering at a high speed, so as to obtain bet- ter attachment conditions, thereby improving stability of the high-speed motion of the robot and further increasing the motion speed of the robot.
Combining the above three advantages, the leg structure of the wheel-legged robot designed by the present invention features greater load capability and stronger adaptability to complex envi- ronments, therefore, it has stronger practicability and is more conductive to the application of the wheel-legged robot in daily life.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a distribution diagram of an overall degree of freedom of a highly flexible seven-degree-of-freedom wheel-legged robot leg structure;
FIG. 2 is an overall three-dimensional axis view of the high- ly flexible seven-degree-of-freedom wheel-legged robot leg struc- ture;
FIG. 3 is an overall three-dimensional left view of the high- ly flexible seven-degree-of-freedom wheel-legged robot leg struc- ture;
FIG. 4 is an overall three-dimensional front view of the highly flexible seven-degree-of-freedom wheel-legged robot leg structure;
FIG. 5 is a left view of a hydraulic drive unit of the highly flexible seven-degree-of-freedom wheel-legged robot leg structure; and
FIG. 6 is a schematic diagram of a wheel roll motion of the highly flexible seven-degree-of-freedom wheel-legged robot.
Wherein: 0l-hip joint; 02-knee joint; 03-ankle joint; O101-hip joint yaw degree-of-freedom; 0102-hip joint roll degree-of-freedom; 0103-hip joint pitch degree-of-freedom; 0201-knee joint pitch de- gree-of-freedom; 030l-ankle joint pitch degree-of-freedom; 0302- wheel roll degree-of-freedom; 0401-wheel rotation degree-of- freedom; 00l-legged motion system; 002-wheeled motion system; 1-hip
Joint hydraulic drive unit fixing plate; 2-hip joint yaw hydraulic drive unit; 3-frame connection platform; 4-hip joint intermediate pivot shaft; 5-hip joint base; 6-thigh; 7-knee joint yaw hydraulic drive unit; 8-shank; 9-foot end; 10-wheel roll hydraulic drive unit; 1ll-wheel; 12-transmission shaft; 13-hip joint pitch hydrau- lic drive unit; 14-ankle joint pitch hydraulic drive unit; 15-hip
Joint roll hydraulic drive unit; 16-hub bearing; 17-universal
Joint; 18- connecting bearing; 19-servo motor; 20-joint bearing; 21-servo cylinder rod; 22-position sensor rod; 23-position sensor fixture; 24-servo cylinder valve; 25-servo cylinder; 26-pipe
Joint; and A-connection point between the foot end and the con-
necting bearing.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Exemplary embodiments, features and aspects of the present invention will be described in detail below referring to the ac- companying drawings. Same reference signs in the drawings repre- sent elements with the same or similar functions. Although various aspects of the embodiments are illustrated in the drawings, unless otherwise indicated, the drawings are not necessarily drawn to scale.
The present invention provides a highly flexible seven- degree-of-freedom wheel-legged robot leg structure hybrid-driven by a hydraulic and a servo motor, so that the wheel-legged robot features greater flexibility, stronger obstacle avoidance capabil- ity, greater overall power-to-weight ratio, higher motion speed, higher stability of high-speed motion, and stronger practicabil- ity.
In order to make the above-mentioned purpose, features and advantages of the present invention more easily understood, the present invention will be further described in detail with refer- ence to the drawings and the embodiments.
Embodiment:
The present embodiment provides a highly flexible seven- degree-of-freedom wheel-legged robot leg structure hybrid-driven by a hydraulic and a servo motor. As shown in FIGs. 1 and 2, the leg structure includes a legged motion system 001 and a wheeled motion system 002; the legged motion system 001 may be divided, from top to bottom, into a hip joint 01, a knee joint 02 and an ankle joint 03, and employs hydraulic drive; as shown in FIG. 1, the hip joint 01 of the leg structure has three degrees of free- dom, may realize yaw motion of a leg system, i.e., the hip joint yaw degree-of-freedom 0101, roll motion of the entire leg system, i.e., the hip joint roll degree-of-freedom 0102, as well as pitch motion of the hip joint 01, i.e., the hip joint pitch degree-of- freedom 0103, of the entire legged motion system. The knee joint 02 has one degree of freedom, and may realize pitch motion of the knee joint 02, i.e., the knee joint pitch degree-of-freedom 0201.
The ankle joint 03 has two degrees of freedom, and may realize pitch motion of the ankle joint 03, i.e., the knee joint pitch de- gree-of-freedom 0301 and roll motion of the wheel 11 along the connecting bearing 18, i.e., the wheel roll degree-of-freedom 0302; and the wheeled motion system 002 has one degree of freedom, and may realize turn of the wheel 11 along the axis, i.e., the wheel turn degree-of-freedom 0401.
The hydraulic system includes a hip joint hydraulic system, a knee joint hydraulic system and an ankle joint hydraulic system, wherein the hip joint hydraulic system includes a hip joint yaw hydraulic drive unit, a hip joint roll hydraulic drive unit and a hip joint pitch hydraulic drive unit. The knee joint hydraulic system is a knee joint pitch hydraulic drive unit. The ankle joint hydraulic system includes an ankle joint pitch hydraulic drive unit and a wheel roll hydraulic drive unit.
In the present embodiment, the servo motor 19 that drives the wheeled motion is a standard part, and will not be repeated here.
As shown in FIG. 5, each hydraulic drive unit consists of the
Joint bearing 20, the servo cylinder rod 21, the position sensor rod 22, the position sensor fixture 23, the servo valve 24, the servo cylinder 25 and the pipe joint 26.
In the present embodiment, the entire leg structure of the wheel-legged robot uses a high-strength steel material to ensure overall strength of the machine body; and a tire surface of the wheel of the wheel-legged robot uses a wear-resistant rubber mate- rial and meridian tread pattern with reference to a car wheel to improve wear resistance, cushioning ability and heat dissipation of the wheel during high-speed motion of the wheel-legged robot.
In the present embodiment, as shown in FIGs. 2 to 4, a motion process of the highly flexible seven-degree-of-freedom wheel- legged robot leg structure hybrid-driven by the hydraulic and the servo motor is illustrated:
Hip joint yaw motion:
A top portion of the hip joint intermediate pivot shaft 4 is hinged on the frame connection platform 3, and realizes up and down connection linkage with a hydraulic drive unit fixing plate 1 by means of a shaft key; one end of the hip joint yaw hydraulic drive unit 2 is hinged on the frame connection platform 3, the other end of the hip joint hydraulic drive unit fixing plate 1, and the hip joint yaw hydraulic drive unit 2 pushes the hip joint hydraulic drive unit fixing plate 1, and drives the hip joint in- termediate pivot shaft 4 to yaw relative to the frame connection platform 3, thereby enabling the overall yaw motion of the entire leg structure.
Hip joint roll motion:
A top portion of the hip joint intermediate pivot shaft 4 is connected with the hip joint hydraulic drive unit fixing plate 1, and a lower portion of the hip joint intermediate pivot shaft 4 is connected on the hip joint base 5 by means of a connecting shaft; one end of the hip joint roll hydraulic drive unit 15 is hinged on the hip joint hydraulic drive unit fixing plate 1, and the other end of the hip joint roll hydraulic drive unit 15 is hinged on the hip joint base 5. A structure consisting of the hip joint base 5, the hip joint hydraulic drive unit fixing plate 1 and the hip
Joint roll hydraulic drive unit 15 may convert linear reciprocat- ing motion of the hip joint roll hydraulic drive unit 15 to roll motion of the entire leg structure relative to frame connection platform 3.
Hip Joint pitch motion:
The hip joint base 5 is connected at a bottom of the hip joint intermediate pivot shaft 4 by means of the connecting shaft, one end of the hip joint pitch hydraulic drive unit 13 is hinged on the hip joint base 5, and the other end of the hip joint pitch hydraulic drive unit 13 is hinged on a lower end of the thigh &6; and a structure consisting of the hip joint hydraulic drive unit 13, the thigh 6 and the hip joint base 5 may convert linear recip- rocating motion of the hip joint pitch hydraulic drive unit 13 to pitch motion of the hip joint relative to frame connection plat- form 3.
Knee joint pitch motion of leg:
A lower portion of the thigh 6 and the upper portion of the shank 8 are hinged to form a knee joint rotation center that may rotate relatively; one end of the knee joint pitch hydraulic drive unit 7 is hinged at the upper end of the thigh 6, and the other end of the knee joint pitch hydraulic drive unit 7 is hinged at the upper end of the shank 8; and a structure consisting of the thigh 6, the shank 8 and the knee joint pitch hydraulic drive unit 7 may convert linear reciprocating motion of the knee joint pitch hydraulic drive unit 7 to pitch motion of the knee joint relative to frame connection platform 3.
The ankle joint 03 includes the foot end 9, the connecting bearing 18 and the wheel roll hydraulic drive unit 10, and an up- per portion of the foot end 9 and a lower portion of the shank 8 are hinged to form ankle joint pitch motion center; an outer side of the foot end 9 and the connecting bearing 18 are fixedly con- nected together at the point A.
Ankle joint pitch motion:
One end of the ankle joint pitch hydraulic drive unit 14 is hinged on the upper portion of the shank 8, and the other end of the ankle joint pitch hydraulic drive unit 14 is hinged on the up- per portion of the foot end 9; and a structure consisting of the shank 8, the foot end 9 and the ankle joint pitch hydraulic drive unit 14 may convert linear reciprocating motion of the ankle joint pitch hydraulic drive unit 14 to pitch motion of the ankle joint relative to the frame connection platform 3, thereby ensuring that the foot end 9 is always in the vertical direction during the mo- tion of the robot;
Wheel rotation motion:
The servo motor 19 is fixedly connected with the foot end 9, one end of the universal joint 17 passes through the foot end 9 to be connected with an output shaft of servo motor 19, the other end of the universal joint 17 is connected with the transmission shaft 12, an inner side of the transmission shaft 12 is fixedly connect- ed with an inner ring of the hub bearing 16, and an outer side of the transmission shaft 12 is fixedly connected with the wheel 11; and power of the wheeled motion is transmitted to the wheel 11 by means of the servo motor 19, the universal joint 17, the transmis- sion shaft 12 and the hub bearing 16, thereby completing wheeled motion of the wheel-legged robot.
FIG. 6 illustrates a working principle and advantages of the wheel roll hydraulic drive unit of the highly flexible seven-
degree-of-freedom wheel-legged robot leg structure. A left diagram of FIG. 6 is a contact situation between a wheel and the ground when a conventional wheel-legged robot moves fast and corners, at this moment, only a small portion of an inner side of the wheel may be in contact with the ground, and an attachment condition of the wheel is very poor, this restricts the increase in a speed of the wheel-legged robot, and at the same time, the stability of high-speed motion is relatively low; and a right diagram of FIG. 6 is a wheel-legged posture of the wheel-legged robot of the present invention when cornering at a high speed, the wheel produces a roll motion along the axis of the connecting bearing by means of the action of the wheel roll hydraulic drive unit to right the wheel, so that the wheel is in full contact with the ground, this improves the motion speed of the wheeled motion and the stability of the high-speed motion of the wheel-legged robot.
As shown in FIGs. 2 to 4 and FIG. 6, the power is transmitted to the wheel 11 by means of the output shaft of the servo motor 19, the universal joint 17 and the transmission shaft 12, thereby driving the wheel 11 to rotate; when the posture of the robot is in the state shown in the right diagram of FIG. 6, the power of the wheeled motion is transmitted by means of the universal joint to achieve variable angle transmission, this ensures the stability of the multi-posture motion of the wheel-legged robot.
In the present embodiment, the connection and coordination of connection shafts, threaded shafts, connection shafts, bolts, nuts, etc. are not repeated; and in addition, the structures and pipelines of the hydraulic drive units are existing techniques, and are not repeated here again.
The leg structure includes a legged motion system and a wheeled motion system, the whole wheel-legged robot may realize two motion modes of the wheeled motion and the legged motion, and the legged motion system includes a hip joint, a knee joint and an ankle joint. wherein the hip joint has three degrees of freedom, and may realize yawing and rolling of the entire leg structure and pitching of the hip joint; the knee joint has one degree of free- dom, and may realize pitch motion of the knee joint; the ankle
Joint has two degrees of freedom, and may realize pitch motion of the ankle joint and roll motion of the wheel; the wheeled motion system has one degree of freedom, and may realize rotation of the wheel along the axis; the entire leg structure has seven degrees of freedom, and may adjust the height or other postures of the ro- bot during wheeled motion, may realize turning motion in-situ or in a small space by means of the yawing degree of freedom of the hip joint, and may also realize cornering motion by means of dif- ferential action of different driving wheels, and the entire leg structure has six degrees of freedom during legged motion, may re- alize more motion postures, and has larger motion space; in con- clusion, compared with the conventional wheel-legged robot, this leg structure features more degrees of freedom and greater flexi- bility.
Finally, it should be noted that the above respective embodi- ments are merely used to illustrate without limiting the technical solutions of the present invention. Although the present invention is illustrated in detail with reference to the above embodiments, those ordinarily skilled in the art should understand that the technical solutions recited by the embodiments described-above may be further modified, or equivalent replacement may be made to a part or all of the technical features thereof; while these modifi- cations or replacements do not depart the essence of the corre- sponding technical solution from the scope of the technical solu- tions of the respective embodiments of the present invention.

Claims (5)

CONCLUSIESCONCLUSIONS 1. Beenconstructie voor een wielbenige robot met hoge flexibili- teit en zeven-graden-van-vrijheid, die wordt gekenmerkt doordat: de beenconstructie is vast verbonden met een frame van een robot als een been van de wielbenige robot, en de beenconstructie omvat een bewegingssysteem van het been en een bewegingssysteem van het wiel; waarbij het bewegingssysteem van het been een hydraulisch systeem en een bewegingscomponent omvat, waarbij de bewegingscomponent achtereenvolgens omvat, van boven naar beneden, een frameverbin- dingsplatform, een heupgewricht, een heupgewrichtmontagecomponent, een dijbeen, een kniegewricht, een scheenbeen, een enkelgewricht, een voeteneinde en een verbindingslager, waarbij het heupgewricht drie vrijheidsgraden heeft en het heupgewricht een gierbeweging van de hele beenconstructie, een rolbeweging van de hele beencon- structie en een hellende beweging van het heupgewricht kan reali- seren; waarbij het kniegewricht éen vrijheidsgraad heeft, en het kniegewricht een spoedbeweging van het kniegewricht kan realise- ren; waarbij het enkelgewricht twee vrijheidsgraden heeft en het enkelgewricht een hellende beweging van het enkelgewricht en een rolbeweging van een wiel langs een as van het verbindingslager kan realiseren; waarbij het hydraulisch systeem bestaat uit een hy- draulisch systeem voor het heupgewricht, een hydraulisch systeem voor het kniegewricht en een hydraulisch systeem voor het enkelge- wricht; waarbij het bevestigingsonderdeel van het heupgewricht een tussen- liggende scharnieras van het heupgewricht, een basis van het heup- gewricht, een bevestigingsplaat voor de hydraulische aandrijfeen- heid van het heupgewricht en een verbindingsas omvat, waarbij een boveneinde van de tussenliggende scharnieras van het heupgewricht scharnierend op het frameverbindingsplatform is aangebracht, de bevestigingsplaat van de hydraulische aandrijfeenheid van het heupgewricht is vast verbonden aan het bovenste uiteinde van de tussenliggende scharnieras van het heupgewricht, de basis van het heupgewricht is verbonden met een onderkant van de tussenliggende scharnieras van het heupgewricht door middel van het verbindings- lager, en een onderkant van de basis van het heupgewricht en een bovenste gedeelte van het dijbeen scharnierend aan elkaar zijn voorzien;A leg assembly for a wheel-legged robot with high flexibility and seven-degrees-of-freedom, which is characterized by : the leg assembly is rigidly connected to a frame of a robot as a leg of the wheel-legged robot, and the leg assembly includes a leg movement system and a wheel movement system; wherein the leg motion system includes a hydraulic system and a motion component, wherein the motion component sequentially includes, from top to bottom, a frame connecting platform, a hip joint, a hip joint mounting component, a femur, a knee joint, a tibia, an ankle joint, a foot end and a connecting bearing, wherein the hip joint has three degrees of freedom and the hip joint can realize a yaw movement of the whole leg structure, a roll movement of the whole leg structure, and an inclined movement of the hip joint; wherein the knee joint has one degree of freedom, and the knee joint can realize pitch movement of the knee joint; wherein the ankle joint has two degrees of freedom and the ankle joint can realize an inclined movement of the ankle joint and a rolling movement of a wheel along an axis of the connecting bearing; wherein the hydraulic system consists of a hip joint hydraulic system, a knee joint hydraulic system and an ankle joint hydraulic system; wherein the hip joint attachment member includes an intermediate hip joint pivot shaft, a hip joint base, a hip joint hydraulic drive unit mounting plate and a connecting shaft, wherein an upper end of the intermediate hip joint pivot shaft is hinged is mounted on the frame connecting platform, the attachment plate of the hydraulic drive unit of the hip joint is fixedly connected to the upper end of the intermediate hip joint pivot shaft, the base of the hip joint is connected to a bottom of the intermediate hip joint pivot shaft by means of the connecting bearing, and a bottom of the base of the hip joint and an upper portion of the femur are provided hinged to each other; waarbij het hydraulisch systeem van het heupgewricht een hydrauli- sche aandrijfeenheid voor een gierbeweging van het heupgewricht, een hydraulische aandrijfeenheid voor een rolbeweging van het heupgewricht, en een hydraulische aandrijfeenheid voor een spoed van het heupgewricht omvat, waarbij het ene uiteinde van de hy-wherein the hip joint hydraulic system comprises a hip joint yaw hydraulic drive unit, a hip joint roll hydraulic drive unit, and a hip joint pitch hydraulic drive unit, wherein one end of the hip joint draulische aandrijfeenheid voor een gierbeweging van het heupge- wricht is verbonden met een frameverbindingsplatform, het andere uiteinde van de hydraulische aandrijfeenheid voor een gierbeweging van het heupgewricht scharnierend op een bevestigingsplaat van de hydraulische aandrijfeenheid van het heupgewricht is aangebracht,hydraulic drive unit for hip joint yaw motion is connected to a frame connecting platform, the other end of the hydraulic drive unit for hip joint yaw motion is hinged on a mounting plate of the hydraulic drive unit of the hip joint, en de bevestigingsplaat van de hydraulische aandrijfeenheid van het heupgewricht en de tussenliggende scharnieras van het heupge- wricht een op en neer verbindingsverbinding door middel van een assleutel realiseren; waarbij de hydraulische aandrijfeenheid voor de gierbeweging van het heupgewricht de tussenliggende scharnieras van het heupgewricht kan aandrijven om te roteren, waardoor de ge- hele beenconstructie wordt aangedreven om een algehele gierbewe- ging te realiseren om een draaibeweging van de robot met wielpoten te realiseren; waarbij het ene uiteinde van de hydraulische aan- drijfeenheid voor de rolbeweging van het heupgewricht scharnierend op de bevestigingsplaat van de hydraulische aandrijfeenheid van het heupgewricht is aangebracht, het andere uiteinde van de hy- draulische aandrijfeenheid voor de rolbeweging van het heupge- wricht scharnierend op de basis van het heupgewricht is aange- bracht, en een constructie bestaande uit de basis van het heupge-and the attachment plate of the hydraulic drive unit of the hip joint and the intermediate joint shaft of the hip joint realize an up and down connection connection by means of an axle wrench; wherein the hydraulic drive unit for the hip joint yaw movement can drive the intermediate hip joint pivot shaft to rotate, thereby driving the entire leg structure to realize an overall yaw movement to realize a rotational movement of the wheel-legged robot; one end of the hydraulic drive unit for the hip joint roll movement being pivotally mounted on the mounting plate of the hydraulic drive unit of the hip joint, the other end of the hydraulic drive unit for the hip joint roll movement being pivoted on the base of the hip joint is fitted, and a construction consisting of the base of the hip joint wricht , de bevestigingsplaat van de hydraulische aandrijfeenheid van het heupgewricht en de hydraulische aandrijfeenheid voor de rolbeweging van het heupgewricht zetten lineaire heen en weer gaande beweging van de hydraulische aandrijfeenheid voor de rolbe- weging van het heupgewricht om in rolbeweging van de gehele been-joint, the attachment plate of the hip joint hydraulic drive unit and the hip joint roll hydraulic drive unit convert linear reciprocating motion of the hip joint hydraulic drive unit into roll motion of the entire leg. constructie ten opzichte van het frameverbindingsplatform; waarbij het ene uiteinde van de hydraulische aandrijfeenheid voor een hel- lende beweging van het heupgewricht scharnierend op de basis van het heupgewricht is aangebracht, het andere uiteinde van de hy- draulische aandrijfeenheid voor een hellende beweging van het heupgewricht scharnierend op een onderste uiteinde van de dijbeen is aangebracht, en waarbij een constructie bestaande uit de hy-construction relative to the frame connection platform; one end of the hydraulic drive unit for inclining the hip joint being pivoted to the base of the hip joint, the other end of the hydraulic drive unit for inclining the hip joint being pivoted to a lower end of the hip joint femur is fitted, and in which a construction consisting of the hy- draulische aandrijfeenheid voor een hellende beweging van het heupgewricht, het dijbeen en de basis van het heupgewricht lineai- re heen en weer gaande beweging van de hydraulische aandrijfeen- heid voor een hellende beweging van het heupgewricht omzet in hel- lende beweging van het heupgewricht ten opzichte van het framever-hydraulic drive unit for inclining movement of the hip joint, femur and base of the hip joint converts linear reciprocating motion of the hydraulic drive unit for inclining motion of the hip joint into inclining motion of the hip joint relative to of the frame bindingsplatform; waarbij het hydraulische systeem van het kniegewricht een hydrau- lische aandrijfeenheid voor een hellende beweging van het kniege- wricht is; waarbij een onderste uiteinde van het dijbeen en een bovenste uiteinde van het scheenbeen scharnierend zijn om een centrum van de hellende beweging van het kniegewricht te vormen, waarbij het ene uiteinde van de hydraulische aandrijfeenheid voor een hellende beweging van het kniegewricht scharnierend is aan een bovenste uiteinde van het dijbeen, het andere uiteinde van de hy- draulische aandrijfeenheid voor een hellende beweging van het kniegewricht scharnierend is aan een bovenste uiteinde van de scheen, en een constructie bestaande uit het dijbeen, de scheen en de hydraulische aandrijfeenheid voor een hellende beweging van het kniegewricht de lineaire heen en weer gaande beweging van de hy- draulische aandrijfeenheid voor een hellende beweging van het kniegewricht omzet in hellende beweging van het kniegewricht ten opzichte van het frameverbindingsplat form; waarbij het hydraulische systeem van het enkelgewricht bestaat uit een hydraulische aandrijfeenheid voor een hellende beweging van het enkelgewricht en een hydraulische aandrijfeenheid voor wiel-binding platform; wherein the hydraulic system of the knee joint is a hydraulic drive unit for inclining movement of the knee joint; wherein a lower end of the femur and an upper end of the tibia are articulated to form a center of inclined movement of the knee joint, one end of the hydraulic drive unit for inclined movement of the knee joint being articulated to an upper end of the femur, the other end of the hydraulic drive unit for inclined movement of the knee joint is pivoted to an upper end of the shin, and a structure consisting of the femur, the shin and the hydraulic drive unit for inclined movement of the shin knee joint converts the linear reciprocating motion of the hydraulic drive unit for inclined motion of the knee joint into inclined motion of the knee joint relative to the frame connecting platform; wherein the hydraulic system of the ankle joint consists of a hydraulic drive unit for inclining movement of the ankle joint and a hydraulic drive unit for wheel rol, en een onderste deel van de scheen en een bovenste deel van het voeteneinde zijn scharnierend om een midden van de hellende beweging van het enkelgewricht te vormen; waarbij het ene uiteinde van de hydraulische aandrijfeenheid voor de hellende beweging van het enkelgewricht scharnierend is op het bovenste gedeelte van de scheen, en het andere uiteinde van de hydraulische aandrijfeenheid voor de hellende beweging van het enkelgewricht is scharnierend op het bovenste gedeelte van het voeteneinde; waarbij een constructie bestaande uit de scheen, het voeteneinde en de hydraulische aan- drijfeenheid voor de hellende beweging van het kniegewricht de li- neaire heen en weer gaande beweging van de hydraulische aandrijf- eenheid voor de hellende beweging van het enkelgewricht omzet in een hellende beweging van het enkelgewricht ten opzichte van het frameverbindingsplatform, waardoor wordt gewaarborgd dat het voe- teneinde altijd in verticale richting is tijdens de beweging van de robot; waarbij een buitenzijde van het voeteneinde en het verbindingsla- ger vast met elkaar zijn verbonden, waarbij het verbindingslager scharnierend is op een buitenring van een naaflager van het van een wiel voorziene bewegingssysteem, en waarbij rotatie van de buitenzijde van het voeteneinde langs de as van het verbindingsla- ger kan worden gerealiseerd; waarbij het ene uiteinde van de hy- draulische aandrijfeenheid voor de rollende beweging van het wiel scharnierend is op een zijoppervlak van het voeteneinde, en het andere uiteinde van de hydraulische aandrijfeenheid voor de rol- lende beweging van het wiel scharnierend is op de buitenring van het naaflager; waarbij een constructie bestaande uit het voeten- einde, het naaflager en de hydraulische aandrijfeenheid voor de rollende beweging van het wiel lineaire heen en weer gaande bewe- ging van de hydraulische aandrijfeenheid voor de rollende beweging van het wiel omzet in rollende beweging van een wiel langs de as van het verbindingslager; en waarbij het van een wiel voorziene bewegingssysteem een servomotor en een krachtoverbrengingsmechanisme omvat, en het van een wiel voorziene bewegingssysteem één graad van vrijheid heeft, waardoor rotatie van het wiel langs de as wordt gerealiseerd.roller, and a lower part of the shin and an upper part of the foot end are hinged to form a center of the inclined motion of the ankle joint; one end of the hydraulic drive unit for ankle joint inclination movement being pivoted on the upper portion of the shin, and the other end of the hydraulic drive unit for ankle joint inclination movement being pivoted on the upper portion of the foot end; wherein a structure consisting of the shin, the foot end and the hydraulic drive unit for inclining the knee joint converts the linear reciprocating motion of the hydraulic drive unit for inclining the ankle joint into inclining motion of the ankle joint with respect to the frame connecting platform, ensuring that the foot is always in a vertical direction during the movement of the robot; wherein an outer side of the foot end and the connecting bearing are fixedly connected together, wherein the connecting bearing is pivoted on an outer ring of a hub bearing of the wheeled motion system, and wherein rotation of the outer side of the foot end along the axis of the connecting bearing can be realized; one end of the hydraulic drive unit for the rolling movement of the wheel being pivoted on a side surface of the foot end, and the other end of the hydraulic drive unit for the rolling movement of the wheel being pivoted on the outer ring of the wheel hub bearing; wherein a structure consisting of the foot end, the hub bearing and the hydraulic drive unit for wheel rolling motion converts linear reciprocating motion of the hydraulic drive unit for rolling motion of the wheel into rolling motion of a wheel along the axis of the connecting bearing; and wherein the wheeled motion system comprises a servo motor and a power transmission mechanism, and the wheeled motion system has one degree of freedom, thereby effecting rotation of the wheel along the axis. 2. Beenconstructie voor een wielbenige robot met hoge flexibili- teit en zeven-graden-van-vrijheid volgens conclusie 1, die wordt gekenmerkt doordat: het krachtoverbrengingsmechanisme een kruis- koppeling, een transmissieas, een naaflager en een wiel omvat, waarbij de servomotor vast is verbonden met het voeteneinde, waar- bij het ene uiteinde van de kruiskoppeling is verbonden met een uitgaande as van de servomotor na het passeren van het voetenein- de, het andere uiteinde van de kruiskoppeling is verbonden met de transmissieas, waarbij een binnenkant van de transmissieas vast is verbonden met een binnenring van het naaflager, en een buitenzijde van de transmissie-as vast is verbonden met het wiel; waarbij kracht van het van een wiel voorziene bewegingssysteem wordt over- gebracht op het wiel door middel van een servomotor, een kruiskop- peling, een transmissieas en een naaflager, waardoor de wielbewe- ging van de wielbenige robot wordt voltooid.The leg structure for a wheel-legged robot with high flexibility and seven degrees of freedom according to claim 1, characterized in that : the power transmission mechanism comprises a universal joint, a transmission shaft, a hub bearing and a wheel, wherein the servo motor is fixed is connected to the foot end, with one end of the universal joint connected to an output shaft of the servo motor after passing the foot end, the other end of the universal joint connected to the transmission shaft, with an inside of the transmission shaft is fixedly connected to an inner ring of the hub bearing, and an outer side of the transmission shaft is fixedly connected to the wheel; wherein force is transmitted from the wheeled motion system to the wheel by means of a servo motor, a universal joint, a transmission shaft and a hub bearing, thereby completing the wheel movement of the wheel-legged robot. 3. Beenconstructie voor een wielbenige robot met hoge flexibili- teit en zeven-graden-van-vrijheid volgens conclusie 1, die wordt gekenmerkt doordat: elke hydraulische aandrijfeenheid gebruik maakt van een klepgestuurde hydraulische cilinder, en de klepge- stuurde hydraulische cilinder een verbindingslager, een servoci- linderstang, positiesensorstang, een positiesensorbevestiging, een servoklep, een servocilinder en een pijpverbinding omvat.The leg structure for a wheel-legged robot with high flexibility and seven degrees of freedom according to claim 1, characterized in that : each hydraulic drive unit uses a valve-controlled hydraulic cylinder, and the valve-controlled hydraulic cylinder uses a connecting bearing, a servo cylinder rod, position sensor rod, a position sensor mount, a servo valve, a servo cylinder and a pipe joint. 4. Beenconstructie voor een wielbenige robot met hoge flexibili- teit en zeven-graden-van-vrijheid volgens conclusie 1, die wordt gekenmerkt doordat: de gehele pootconstructie van de wielbenige robot gebruik maakt van een hogesterkte staalmateriaal.The leg structure for a wheel-legged robot with high flexibility and seven degrees of freedom according to claim 1, characterized in that : the entire leg structure of the wheel-legged robot uses a high-strength steel material. 5. Beenconstructie voor een wielbenige robot met hoge flexibili- teit en zeven-graden-van-vrijheid volgens conclusie 1, die wordt gekenmerkt doordat: een bandoppervlak van het wiel van de wielbe- nige robot een slijtvast rubber materiaal en een meridiaan loop- vlakpatroon gebruikt.The leg structure for a wheel-legged robot with high flexibility and seven degrees of freedom according to claim 1, characterized by : a tire surface of the wheel of the wheel-legged robot, an abrasion-resistant rubber material, and a meridian tread pattern used.
NL2031560A 2021-12-24 2022-04-12 Highly flexible seven-degree-of-freedom wheel-legged robot leg structure NL2031560A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111601303.5A CN114454980B (en) 2021-12-24 2021-12-24 High-flexibility seven-degree-of-freedom wheel-foot robot leg structure

Publications (1)

Publication Number Publication Date
NL2031560A true NL2031560A (en) 2023-06-30

Family

ID=81408370

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2031560A NL2031560A (en) 2021-12-24 2022-04-12 Highly flexible seven-degree-of-freedom wheel-legged robot leg structure

Country Status (2)

Country Link
CN (1) CN114454980B (en)
NL (1) NL2031560A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115320744B (en) * 2022-10-17 2023-01-10 成都理工大学 Four-joint hydraulic foot type robot leg

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435666B2 (en) * 1999-09-07 2003-08-11 ソニー株式会社 robot
JP4513320B2 (en) * 2003-12-17 2010-07-28 ソニー株式会社 Robot apparatus and motion control method of robot apparatus
US8544853B2 (en) * 2009-03-05 2013-10-01 Muscle Corporation Two-legged walking transportation device
JP5303723B2 (en) * 2009-11-09 2013-10-02 川田工業株式会社 Legs for humanoid walking robot
JP5436300B2 (en) * 2010-03-29 2014-03-05 本田技研工業株式会社 Legged mobile robot
CN102616296B (en) * 2012-03-31 2014-01-29 浙江工业大学 Six-wheel-leg type serial-parallel hybrid robot
CN102649450A (en) * 2012-04-09 2012-08-29 北京理工大学 Design of wheel leg type moving foot of multi-joint chain link type robot
CN204954852U (en) * 2015-06-26 2016-01-13 重庆三峡学院 All -round rotary machine hand wrist
CN209064225U (en) * 2018-10-17 2019-07-05 哈尔滨理工大学 A kind of sufficient integral type robot leg structure of wheel
CN109172281B (en) * 2018-10-17 2024-03-19 苏州帝维达生物科技有限公司 Seven-degree-of-freedom lower limb rehabilitation robot
CN111391934B (en) * 2020-04-07 2021-11-05 上海宇航系统工程研究所 Wheel-leg composite robot moving device and wheel-leg composite robot
CN111497965B (en) * 2020-04-24 2022-01-18 暗物智能科技(广州)有限公司 Wheel-foot switching robot system and control method thereof
CN111959633B (en) * 2020-08-27 2022-06-07 燕山大学 Hydraulic drive type foot type bionic humanoid robot

Also Published As

Publication number Publication date
CN114454980A (en) 2022-05-10
CN114454980B (en) 2022-10-28

Similar Documents

Publication Publication Date Title
Li et al. Design and experiments of a novel hydraulic wheel-legged robot (WLR)
Waldron et al. Configuration design of the adaptive suspension vehicle
CN110962957A (en) Double-leg double-wheel compound motion robot
CN110682976B (en) Multi-degree-of-freedom mechanical wheel leg structure of wheel leg combined type mobile robot
JP4724845B2 (en) Leg wheel separation type robot
CN103738136A (en) Independent suspension system and crane with same
CN206107391U (en) Four -footed robot of three degrees of freedom of electric drive single leg
CN107891918B (en) Wheel-track combined mobile robot
CN1644328A (en) Small crawler leg composite movable robot mechanism
CN110562346A (en) Novel structure four-footed hydraulic robot
NL2031560A (en) Highly flexible seven-degree-of-freedom wheel-legged robot leg structure
CN111301087B (en) Robot chassis
CN112519913B (en) All-terrain self-adaptive wheel-walking robot
Halme et al. Development of WorkPartner-robot–design of actuating and motion control system
CN113753152A (en) Three-degree-of-freedom full-decoupling parallel mechanical leg structure and four-foot robot
CN101224765A (en) Dual-purpose robot leg with wheel and foot
CN111942491A (en) UP and UPS based parallel connection mechanism wheel foot mobile robot
Nakajima Concept of a novel four-wheel-type mobile robot for rough terrain, RT-mover
Li et al. Design and analysis of steering and lifting mechanisms for forestry vehicle chassis
CN112550509B (en) Foot joint structure of wheeled walking vehicle steering drive axle
CN212220520U (en) Deep sea four-crawler hydraulic direct-drive self-adaptive all-terrain chassis
CN110588809B (en) Wheel-crawler type switching type all-terrain robot
CN113911229A (en) Hexapod robot suitable for different working environments can become cell
CN219904571U (en) Caterpillar foot combined type hexapod robot
CN105711676B (en) Four-degree-of-freedom serial-parallel mirror robot leg configuration and walking robot