NL2031559B1 - Electrolysis cell for hydrogen production - Google Patents

Electrolysis cell for hydrogen production Download PDF

Info

Publication number
NL2031559B1
NL2031559B1 NL2031559A NL2031559A NL2031559B1 NL 2031559 B1 NL2031559 B1 NL 2031559B1 NL 2031559 A NL2031559 A NL 2031559A NL 2031559 A NL2031559 A NL 2031559A NL 2031559 B1 NL2031559 B1 NL 2031559B1
Authority
NL
Netherlands
Prior art keywords
main surface
electrolytic cell
gas
major surface
separator
Prior art date
Application number
NL2031559A
Other languages
Dutch (nl)
Inventor
Zwetsloot Sybren
Scholle Tim
Original Assignee
Prodrive Tech Innovation Services B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prodrive Tech Innovation Services B V filed Critical Prodrive Tech Innovation Services B V
Priority to NL2031559A priority Critical patent/NL2031559B1/en
Application granted granted Critical
Publication of NL2031559B1 publication Critical patent/NL2031559B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/21Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes

Abstract

An electrolysis cell comprising a first separator, a second separator, a porous cathode and a porous anode. The first separator comprises a first main surface and a second main surface arranged opposite the first main surface. The first separator is configured to allow exchange of a first reactant between the first and second main surfaces. The second separator comprises a third main surface and a fourth main surface arranged opposite the third main surface. The second separator is configured to allow exchange of a second reactant between the third and fourth main surfaces. The second main surface and the third main surface face one another and are spaced apart to define a channel between the first and second separator for transporting a liquid comprising the first and second reactant along the second and third main surface. The porous cathode defines a first gas-liquid interface and comprises a fifth main surface facing the first main surface. The fifth main surface is configured to generate a first electrochemical reaction comprising the first reactant. The porous anode defining a second gas-liquid interface and comprises a sixth main surface facing the fourth main surface. The sixth main surface is configured to generate a second electrochemical reaction of the second reactant.

Description

ELECTROLYSIS CELL FOR HYDROGEN PRODUCTION
Technical field
[0001] The present invention relates to an electrolysis cell, an electrolysis stack and an electrolyser for hydrogen production. The invention further relates to a use of the same.
Background art
[0002] Electrolysis cells for generating hydrogen that are generally known in the art have the disadvantage that the efficiency is quite low. This low efficiency is in part caused by conduction losses generated by conductive loops provided by the recirculation means recirculating the aqueous electrolyte solution. Furthermore, generic electrolysis cells for generating hydrogen typically comprise separators that have a high ionic resistivity to prevent gas transfer, which lowers the efficiency.
[0003] A scientific publication in Nature Communications (2022) 13:1304 by Hodges et al. describes a new configuration of an electrolysis cell that according to the authors has a high efficiency equating 98% energy efficiency at a current density of 0.5 ampere per square centimeter. This is achieved by introducing a gas liquid interface at both the anode and the cathode, which results in an interruption of the conductive loops impacting the performance of generally known electrolysis cells. Furthermore, it obsoletes the use of separators that have a high ionic resistivity to prevent gas transfer. The disadvantage of the described configuration is that the electrolysis efficiency degenerates very rapidly.
Summary of the invention
[0004] It is an object of the invention to solve at least one, preferably all of the disadvantages related to the prior art.
[0005] According to a first aspect of the invention the object is achieved by providing an electrolysis cell for hydrogen production according to the appended claims. Such an electrolysis cell preferably comprises a first separator, a second separator, a porous cathode and a porous anode jointly defining an electrolysis part. The first separator may comprise a first main surface and a second main surface arranged opposite the first main surface. Beneficially, the first separator (e.g. a first membrane) is configured to allow exchange of a first reactant, for instance the first separator is configured to allow exchange of an aqueous electrolyte solution, between the first and second main surfaces. For instance, the first reactant may be transported from the second to the first surface. The second separator may comprise a third main surface and a fourth main surface arranged opposite the third main surface. Beneficially, the second separator (e.g. a second membrane) is configured to allow exchange of a second reactant, for instance the second separator is configured to allow exchange of the aqueous electrolyte solution, between the third and fourth main surfaces. For instance, the second reactant may be transported from the third to the fourth main surface. Preferably, the second main surface and the third main surface face one another and are spaced apart to define a channel between the first and second separator for transporting a liquid comprising the first and second reactant along the second and third main surface, for instance by guiding a flow of the liquid along the third and fourth main surfaces. The liquid may comprise or may essentially consists of the aqueous electrolyte solution. The porous cathode may comprise a fifth main surface facing the first main surface and configured to generate a first electrochemical reaction of the first reactant. The first electrochemical reaction may generate a first gas, such as hydrogen. Preferably, the fifth main surface is arranged against the first main surface. The porous anode may comprise a sixth main surface facing the fourth main surface and configured to generate a second electrochemical reaction of the second reactant.
The second electrochemical reaction may generate a second gas, such as oxygen. Preferably, the sixth main surface is arranged against the fourth main surface.
[0006] The object is achieved by the present invention because the transport of the liquid provides a means for preventing a formation of deposition for instance comprising impurities of the liquid.
[0007] For an alkaline based electrolysis cell, the first reactant may comprise water.
The second reactant may comprise an aqueous hydroxide-ion, for instance provided by the liquid essentially made of an aqueous electrolyte solution comprising hydroxide such as potassium hydroxide or sodium hydroxide. For an acid-based electrolysis cell, the first reactant may comprise an aqueous hydrogen-ion. The second reactant may comprise an aqueous hydroxide- ion.
[0008] The porous cathode may comprise a ninth main surface opposite the fifth main surface, wherein the first gas-liquid interface is arranged between the fifth and the ninth main surface. The porous anode may comprise a tenth main surface opposite the sixth main surface, wherein the second gas-liquid interface is arranged between the sixth and the tenth main surface. Preferably, the ninth and/or the tenth main surface form substantially dry surfaces.
Beneficially, the electrolysis cell is configured to sustain a pressure for transporting the liquid in the channel along the second and third main surface such that the first gas-liquid interface is maintained between the fifth and the ninth main surface and such that the second gas-liquid interface is maintained between the sixth and the tenth main surface.
[0009] Beneficially, the electrolysis cell comprises a fluid guiding part configured to provide the liquid. The fluid guiding part may comprise a liquid inlet fluidly connected to the channel. The fluid guiding part may further comprise a liquid outlet fluidly connected to the channel. Preferably, the liquid inlet is arranged at a first side of the channel. The first side may be defined by a first edge of the second main surface and a second edge of the third main surface, wherein the first edge and the second edge are arranged opposite to one another.
Advantageously, the first side forms a top side of the channel. Preferably, the liquid outlet is arranged at a second side of the channel. The second side may be defined by a third edge of the second main surface and a fourth edge of the third main surface, wherein the third edge and the fourth edge are arranged opposite to one another. Advantageously, the second side forms a bottom side of the channel. In a beneficial embodiment, the first and second side form opposing sides of the channel. In an exemplary embodiment of the invention, a pump is provided suitable for recirculating the liquid. Preferably, the pump is configured to generate a flow from the liquid outlet to the liquid inlet.
[0010] Preferably, the liquid inlet comprises a first container configured to form a first reservoir for the liquid, which may comprise an overflow configured to expel an excess of liquid to limit a pressure difference generated across the porous electrode (anode or cathode) and/or corresponding separator to avoid fluid being transported through the corresponding porous electrode and exposing the ninth and/or tenth main surface to the corresponding reactant. In a beneficial embodiment, a liquid outlet is provided, which may comprise a second container configured to form a second reservoir for the liquid. The overflow may be fluidly connected to the liquid outlet. Preferably, the overflow is fluidly connected to the second reservoir.
[0011] Preferably, the electrolysis cell is configured such that the ninth main surface is substantially exposed to the first gas and the tenth main surface is substantially exposed to the second gas. In a beneficial embodiment the electrolysis cell further comprises a first gas outlet connected to the porous cathode for collecting gas generated at the cathode (e.g. hydrogen).
Preferably, the electrolysis cell additionally comprises a second gas outlet connected to the porous anode for collecting gas generated at the anode (e.g. oxygen). The electrolysis cell may comprise further means configured to prevent gas exchange between the first and second gas outlet. For instance, the electrolysis cell may comprise a baffle provided between the first and second gas outlet, such baffle may be configured to extend into a first container of a liquid inlet.
[0012] The channel preferably comprises a first spacer suitable for spacing the first separator from the second separator. The first spacer may comprise a porous substrate to regulate transport of the fluid in the channel, for instance to limit the flow. The porous substrate may be configured to have a first permeability being larger than a second permeability of the first separator and/or a third permeability of the second separator. The porous substrate is preferably configured to be macroporous for instance comprising pores ranging between 200 to 1000 micrometer. Beneficially, the porous substrate is configured to be electrically insulating. The porous substrate may essentially be made from a first electrically insulating material. The porous substrate may comprise a foam, for instance at least one of a ceramic foam, such as aluminium oxide, a polymer foam, such as polypropylene or polystyrene and a metallic foam, such as nickel.
[0013] The porous substrate may be configured to form a porous member having a seventh main surface and an eighth main surface opposite the seventh main surface. The seventh main surface may be arranged against the second main surface and the eighth main surface may be arranged against the third main surface, such that the porous member substantially fills the channel.
[0014] The first spacer preferably extends from the from the first side into a liquid inlet to facilitate the influx of liquid into the channel. Additionally or alternatively, the first spacer may extend from the second side into a liquid outlet to facilitate the efflux of liquid from the channel. Such spacer may provide a continuous and gentle transport of the fluid.
[0015] The electrolysis cell may further comprise a first and a second bipolar plate connected to the cathode and the anode, respectively, and be configured to press the cathode and the anode towards one another. The porous cathode may comprise a ninth main surface opposite the fifth main surface, wherein the first bipolar plate is (electrically conductive) connected to (e.g. arranged against) the ninth main surface. The porous anode may comprise a tenth main surface opposite the sixth main surface, wherein the second bipolar plate is (electrically conductive) connected (e.g. arranged against) the tenth main surface.
[0016] The electrolysis cell may further comprise a second spacer provided between the ninth surface and the first bipolar plate. Additionally or alternatively, the electrolysis cell may further comprise a third spacer may be provided between the tenth surface and the second bipolar plate. The second and/or third spacer are preferably configured to be electrically conducting and may form a gas diffusion layer.
[0017] A housing may also be provided. The housing may be configured for providing the fluid guiding part for transporting the fluid to the channel. The housing may further be configured for providing a first and second gas outlet. Preferably, the housing is configured to provide a first and second bipolar plate.
[0018] The first separator may be configured to provide a first capillary action for exchanging the first reactant between the first and the second main surface. For instance, during use a net transport from the second to the first main surface will be generated. Additionally or alternatively, the second separator may be configured to provide a second capillary action for exchanging the second reactant between the third to the fourth main surface. For instance, during use a net transport from the third to the fourth main surface will be generated.
[0019] The first and/or second separator are preferably configured to be hydrophilic, which is defined by a wettability angle less than 90 degrees. Beneficially, the first and/or second separator are configured to be electrically insulating, such that the anode and cathode are electrically isolated from one another. The first and/or second separator may essentially be made from a second electrically insulating material. Preferably, the first and/or second separator comprises one of a sulfonated tetrafluoroethylene based fluoropolymer-copolymer, a polyethersulfone and a composite comprising a polysulfone matrix and ZrO2. 5 [0020] Advantageously, the first and/or second separator is configured to be macroporous, preferably comprising pores ranging between 0,1 and 100 micrometer, preferably between 5 and 10 micrometer. Porosity of the first and/or second separator beneficially range between 25 and 20 percent, preferably between 50 and 80 percent. Thicknesses of the first and/or second separator beneficially range between 50 and 1000 micrometer, preferably between 100 and 500 micrometer.
[0021] The porous cathode is preferably configured to transport the first gas (e.g. hydrogen) generated by the first electrochemical reaction through the porous cathode away from the fifth main surface. The porous anode is preferably configured to transport the second gas (e.g. oxygen) generated by the second electrochemical reaction through the porous anode away from the sixth main surface. Preferably, the porous cathode and/or porous anode has a porosity between 50 and 99%, for instance between 60 and 90%. Beneficially, the porous cathode and/or anode comprises a foam or a condensed fibrous material (e.g. a felt), because this aids in guiding the corresponding gas towards a gas side of the gas-liquid interface. The ninth and/or tenth main surface may be coated with a hydrophobic coating (e.g. PTFE) to further prevent wetting of the respective surface.
[0022] The porous cathode for an alkaline-based electrolysis cell preferably comprises or is essentially made of one of a nickel-aluminium alloy (e.g. Raney nickel), steel, a noble metal and nickel. The cathode may comprise a catalyst (e.g. coating) such as iron oxide, cobalt. The porous cathode for an acid-based electrolysis cell preferably comprises or is essentially made of iridium.
[0023] The porous anode for an alkaline-based electrolysis cell preferably comprises or is essentially made of one of a nickel-aluminium alloy (e.g. Raney nickel), steel, a noble metal and nickel. The cathode may comprise a catalyst (e.g. coating) such as iron oxide, cobalt. The porous anode for an acid-based electrolysis cell preferably comprises or is essentially made of one of titanium and ruthenium.
[0024] According to a second aspect of the invention the object is achieved by providing an electrolysis stack according to the appended claims, wherein beneficial features of the electrolysis cell according to the first aspect equally apply to the electrolysis stack. Such electrolysis stack preferably comprises a plurality of electrolysis cells according to the first aspect.
[0025] According to a third aspect of the invention the object is achieved by providing an electrolyser according to the appended claims, wherein beneficial features of the electrolysis cell according to the first aspect or electrolysis stack according to the second aspect equally apply to the electrolyser. Such electrolyser preferably comprises a plurality of electrolysis cells according to the first aspect or electrolyser stack according to the second aspect. The electrolyser preferably comprises a pump suitable for recirculating the liquid. The pump may be configured for generating a flow from the liquid outlet to the liquid inlet. The electrolyser may further comprise a power supply connected to the cathode and the anode, for instance via the first and second bipolar plate, respectively.
[0026] According to a fourth aspect of the invention the object is achieved by the use of an electrolysis cell, electrolysis stack or electrolyser according to the appended claims, wherein beneficial features of the electrolysis cell according to the first aspect, the electrolysis stack according to the second aspect of the electrolyser according to the third aspect equally apply. During use a pressure for transporting the liquid in the channel is preferably maintained such that the cathode defines the first gas-liquid interface and such that the anode defines the second gas-liquid interface. Preferably, the pressure is maintained such that the first gas liquid interface is maintained between the fifth and the ninth main surface. Additionally or alternatively, the pressure is maintained such that the second gas liquid interface is maintained between the sixth and the tenth main surface. Preferably, the liquid is preferably configured to flow through the channel in a direction having a directional component parallel to gravity, for instance in the sense of gravity. Advantageously, the first, second, third and fourth main surfaces are arranged vertically such that the liquid is configured to flow through the channel in a direction of gravity. Beneficially, the liquid inlet is elevated with respect to the liquid outlet.
[0027] In the present disclosure, exchange between one main surface and another main surface should be interpreted broadly. Such exchange comprises passage from the one main surface to the other main surface and passage from the other main surface to the one main surface.
Brief description of the figures
[0028] Aspects of the invention will now be described in more detail with reference to the appended drawings, wherein same reference numerals illustrate same features and wherein:
[0029] Fig. 1 represents a cross section of an electrolysis cell according to the present invention.
Detailed description of embodiments
[0030] Referring to Fig. 1, an embodiment of an electrolyser 100 according to the present invention comprises a channel 101 provided between a first separator 102 and a second separator 103. A second main surface 104 of the first separator 102 and a third main 105 surface of the second separator 103 define the channel 101. The first separator 102 further comprises a first main surface 106 arranged against a fifth main surface 107 of a cathode 108. The second separator 103 further comprises a fourth main surface 109 arranged against a sixth main surface 110 of an anode 111.
[0031] The channel 101 is configured to provide a flow of an aqueous electrolyte solution along the second 104 and third 105 main surface. The first 102 and second 103 separator are configured to allow transport of the aqueous electrolyte solution towards the first 106 and fourth 109 main surface, respectively. This way a continuous supply of a corresponding reactant towards the cathode 108 and anode 111 can be achieved.
[0032] The cathode 108 and anode 111 comprise pores through which the hydrogen and oxygen, respectively, can be transported. The hydrogen generated at the cathode 108 can be transported towards a first gas outlet and the oxygen generated at the anode 111 be transported to a second gas outlet 113.
[0033] The electrolysis cell comprises a liquid inlet 114 that may be fluidly connected to a port 115 through which the aqueous electrolyte solution enters the liquid inlet 114. The inlet comprises a first reservoir 116 for collecting the aqueous electrolyte solution provided through the port 115. The first reservoir 116 comprises an overflow 117 such that a build up of pressure is prevented. A bottom-side of the first reservoir 116 is fluidly connected to a topside of the channel 101 such that gravity drives the transport of the aqueous electrolyte solution through the channel 101. The channel 101 may comprise a porous substrate to regulate the transport. The porous substrate may form a porous member extending from the topside of the channel 101 into the first reservoir 116. A baffle 121 is provided between the first gas outlet 112 and the second gas outlet 113, which baffle 121 extends into the first reservoir 116 to prevent mixing of hydrogen and oxygen.
[0034] A liquid outlet 118 is provided at a bottom side of the channel 101. The outlet comprises a port 119 through which the aqueous electrolyte solution leaves the liquid outlet 119.
The liquid outlet is preferably fluidly connected to the liquid inlet 114 via a recirculation pump (not shown). The outlet may comprise a second reservoir 120 configured for collecting the aqueous solution transported by the channel 101. The second reservoir 120 may further be configured for collecting the aqueous solution flowing over the overflow 117. The porous member extends from the bottom side of the channel 101 into the second reservoir 120.
[0035] A first bipolar plate 122 is provided against a ninth main surface 123 of the cathode 108, which ninth main surface is arranged opposite to the fifth main surface 107. A second bipolar plate 124 is provided against a tenth main surface 125 of the anode 111, which tenth main surface is arranged opposite to the sixth main surface 110. The first and second bipolar plate are preferably arranged to compress the layers (e.g. the cathode, the first separator, the channel, the second separator and the anode) onto one another.

Claims (26)

ELEKTROLYSECEL VOOR WATERSTOFPRODUCTIE CONCLUSIESELECTROLYSIS CELL FOR HYDROGEN PRODUCTION CONCLUSIONS 1. Elektrolysecel (100), voor waterstofproductie, omvattende: e cen eerste separator (102) die een eerste hoofdoppervlak (106) en een tweede hoofdoppervlak (104) tegenover het eerste hoofdoppervlak omvat, waarbij de eerste separator geconfigureerd is om uitwisseling van een eerste reactant tussen de eerste en tweede hoofdoppervlakken toe te laten, e een tweede separator (103) die een derde hoofdoppervlak (105) en een vierde hoofdoppervlak {109} tegenover het derde hoofdoppervlak omvat, waarbij de tweede separator geconfigureerd is om uitwisseling van een tweede reactant tussen de derde en vierde hoofdoppervlakken toe te laten, e waarbij het tweede hoofdoppervlak en het derde hoofdoppervlak tegenover elkaar liggen en op onderlinge afstand aangebracht zijn om een kanaal (101) tussen de eerste en tweede separator te definiëren voor het langs het tweede en derde hoofdoppervlak transporteren van een vloeistof omvattende de eerste en tweede reactant, e een poreuze kathode (108) die een eerste gas-vloeistofcontactvlak definieert en een tegenover het eerste hoofdoppervlak gelegen vijfde hoofdoppervlak (107) omvat en geconfigureerd om een eerste elektrochemische reactie, omvattende de eerste reactant, te genereren, e een poreuze anode (111) die een tweede gas-vloeistofcontactvlak definieert en een tegenover het vierde hoofdoppervlak gelegen zesde hoofdoppervlak (110) omvat en geconfigureerd om een tweede elektrochemische reactie, omvattende de tweede reactant, te genereren.An electrolysis cell (100), for hydrogen production, comprising: a first separator (102) comprising a first major surface (106) and a second major surface (104) opposite the first major surface, the first separator being configured to exchange a first reactant between the first and second major surfaces, e a second separator (103) comprising a third major surface (105) and a fourth major surface {109} opposite the third major surface, the second separator being configured to allow exchange of a second reactant between the third and fourth major surfaces, e wherein the second major surface and the third major surface are opposed and spaced to define a channel (101) between the first and second separators for passing along the second and third major surfaces transporting a liquid comprising the first and second reactants, e a porous cathode (108) defining a first gas-liquid contact surface and comprising a fifth main surface (107) opposite the first major surface and configured to conduct a first electrochemical reaction comprising the first reactant , e a porous anode (111) defining a second gas-liquid contact surface and comprising a sixth major surface (110) opposite the fourth major surface and configured to generate a second electrochemical reaction comprising the second reactant. 2. Elektrolysecel volgens conclusie 1, waarbij het kanaal een eerste afstandshouder omvat.2. Electrolytic cell according to claim 1, wherein the channel comprises a first spacer. 3. Elektrolysecel volgens conclusie 2, waarbij de eerste afstandshouder een poreuze onderlaag omvat, bij voorkeur de poreuze onderlaag geconfigureerd is om macroporeus te zijn, bij voorkeur omvattende poriën in het bereik tussen 200 tot 1000 micrometer, bij voorkeur de poreuze onderlaag geconfigureerd is om elektrisch isolerend te zijn, bij voorkeur waarbij de poreuze onderlaag wezenlijk gemaakt is uit een eerste elektrisch isolerend materiaal.An electrolytic cell according to claim 2, wherein the first spacer comprises a porous substrate, preferably the porous substrate is configured to be macroporous, preferably comprising pores in the range between 200 to 1000 micrometers, preferably the porous substrate is configured to be electrically to be insulating, preferably wherein the porous underlayer is essentially made of a first electrically insulating material. 4. Elektrolysecel volgens conclusie 3, waarbij de poreuze onderlaag een poreus lid vormt met een zevende hoofdoppervlak en een achtste hoofdoppervlak tegenover het zevende hoofdoppervlak, waarbij het zevende hoofdoppervlak tegen het tweede hoofdoppervlak is opgesteld en het achtste hoofdoppervlak tegen het derde hoofdoppervlak is opgesteld, zodanig dat het poreuze lid wezenlijk het kanaal vult.The electrolytic cell of claim 3, wherein the porous substrate forms a porous member having a seventh major surface and an eighth major surface opposite the seventh major surface, the seventh major surface being disposed against the second major surface and the eighth major surface being disposed against the third major surface, such that the porous member substantially fills the canal. 5. Elektrolysecel volgens conclusie 3 of 4, waarbij de poreuze onderlaag ten minste één uit een keramisch schuim, een metallisch schuim en een polymeerschuim omvat.5. Electrolytic cell according to claim 3 or 4, wherein the porous substrate comprises at least one of a ceramic foam, a metallic foam and a polymer foam. 6. Elektrolysecel volgens eender welke van de voorgaande conclusies, waarbij de poreuze kathode een negende hoofdoppervlak {123) tegenover het vijfde hoofdoppervlak omvat en waarbij het eerste gas-vloeistofcontactvlak tussen het vijfde en het negende hoofdoppervlak is opgesteld en waarbij de poreuze anode een tiende hoofdoppervlak (125) tegenover het zesde hoofdoppervlak omvat en waarbij het tweede gas-vloeistofcontactvlak tussen het zesde en het tiende hoofdoppervlak is opgesteld.An electrolytic cell according to any one of the preceding claims, wherein the porous cathode comprises a ninth major surface (123) opposite the fifth major surface and wherein the first gas-liquid contact surface is arranged between the fifth and ninth major surfaces and wherein the porous anode has a tenth major surface (125) opposite the sixth major surface and wherein the second gas-liquid contact surface is arranged between the sixth and the tenth major surfaces. 7. Elektrolysecel volgens conclusie 6, waarbij zowel het negende als het tiende hoofdoppervlak wezenlijk droge oppervlakken vormen.7. Electrolytic cell according to claim 6, wherein both the ninth and tenth major surfaces form substantially dry surfaces. 8. Elektrolysecel volgens eender welke van conclusies 6 of 7, waarbij de elektrolysecel geconfigureerd is om een druk voor het transporteren van de vloeistof langs het tweede en derde hoofdoppervlak te doorstaan, zodanig dat het eerste gas-vloeistofcontactvlak gehandhaafd is tussen het vijfde en het negende hoofdoppervlak en zodanig dat het tweede gas-vloeistofcontactvlak gehandhaafd is tussen het zesde en het tiende hoofdoppervlak.An electrolytic cell according to any one of claims 6 or 7, wherein the electrolytic cell is configured to withstand a pressure for transporting the liquid along the second and third major surfaces, such that the first gas-liquid contact surface is maintained between the fifth and the ninth main surface and such that the second gas-liquid contact surface is maintained between the sixth and the tenth main surfaces. 9. Elektrolysecel volgens eender welke van conclusies 6 tot en met 8, waarbij de elektrolysecel verder een eerste bipolaire plaat (122) en een tweede bipolaire plaat (124) omvat, respectievelijk verbonden met het negende en het tiende hoofdoppervlak, bij voorkeur waarbij de eerste en de tweede bipolaire plaat geconfigureerd zijn om de kathode en de anode naar elkaar toe te drukken.An electrolytic cell according to any one of claims 6 to 8, wherein the electrolytic cell further comprises a first bipolar plate (122) and a second bipolar plate (124), respectively connected to the ninth and tenth major surfaces, preferably wherein the first and the second bipolar plate are configured to push the cathode and the anode toward each other. 10. Elektrolysecel volgens conclusie 9, verder omvattende een tweede afstandshouder voorzien tussen het negende oppervlak en de eerste bipolaire plaat en een derde afstandshouder voorzien tussen het tiende oppervlak en de tweede bipolaire plaat, waarbij de tweede en derde afstandshouder elk geconfigureerd zijn om elektrisch geleidend te zijn en om een gasdiffusielaag te vormen.10. The electrolytic cell of claim 9, further comprising a second spacer provided between the ninth surface and the first bipolar plate and a third spacer provided between the tenth surface and the second bipolar plate, wherein the second and third spacers are each configured to be electrically conductive. and to form a gas diffusion layer. 11. Elektrolysecel volgens eender welke van de voorgaande conclusies, omvattende een fluïdum geleidend gedeelte, omvattende een vloeistofinlaat (114) fluïde verbonden met het kanaal en een vloeistofuitlaat (118) fluïde verbonden met het kanaal, bij voorkeur waarbij de vloeistofinlaat opgesteld is aan een eerste zijde van het kanaal, waarbij de eerste zijde gedefinieerd is middels een eerste rand van het tweede hoofdoppervlak en een tweede rand van het derde hoofdoppervlak, waarbij de eerste rand en de tweede rand tegenover elkaar zijn opgesteld en waarbij vloeistofuitlaat opgesteld is aan een tweede zijde van het kanaal, waarbij de tweede zijde gedefinieerd is middels een derde rand van het tweede hoofdoppervlak en een vierde rand van het derde hoofdoppervlak, waarbij de derde rand en de vierde rand tegenover elkaar zijn opgesteld, bij voorkeur waarbij eerste en tweede zijden tegenoverliggende zijden van het kanaal vormen.An electrolytic cell according to any one of the preceding claims, comprising a fluid conducting portion comprising a fluid inlet (114) fluidly connected to the channel and a fluid outlet (118) fluidly connected to the channel, preferably wherein the fluid inlet is arranged at a first side of the channel, wherein the first side is defined by a first edge of the second main surface and a second edge of the third main surface, wherein the first edge and the second edge are arranged opposite each other and wherein fluid outlet is arranged on a second side of the channel, wherein the second side is defined by a third edge of the second main surface and a fourth edge of the third main surface, wherein the third edge and the fourth edge are arranged opposite each other, preferably wherein first and second sides are opposite sides of the channel form a channel. 12. Elektrolysecel volgens conclusie 11, waarbij de vloeistofinlaat een eerste houder omvat, geconfigureerd om een eerste reservoir (116) voor de vloeistof te vormen.The electrolytic cell of claim 11, wherein the fluid inlet includes a first container configured to form a first reservoir (116) for the fluid. 13. Elektrolysecel volgens conclusie 11 of 12, waarbij de vloeistofuitlaat een tweede houder omvat, geconfigureerd om een tweede reservoir (120) voor de vloeistof te vormen.The electrolysis cell of claim 11 or 12, wherein the liquid outlet includes a second container configured to form a second reservoir (120) for the liquid. 14. Elektrolysecel volgens eender welke van de conclusies 11 tot en met 13, waarbij de eerste houder een overloop (117) omvat, fluïde verbonden met de vloeistofuitlaat, bij voorkeur de vloeistofuitlaat omvat een tweede houder geconfigureerd om een tweede reservoir voor de vloeistof te vormen en overloop is fluide verbonden met het tweede reservoir.An electrolytic cell according to any one of claims 11 to 13, wherein the first container comprises an overflow (117) fluidly connected to the liquid outlet, preferably the liquid outlet comprises a second container configured to form a second reservoir for the liquid and overflow is fluidly connected to the second reservoir. 15. Elektrolysecel volgens eender welke van de voorgaande conclusies, verder omvattende een eerste gasuitlaat (112) verbonden met de poreuze kathode en een tweede gasuitlaat (113) verbonden met de poreuze anode, bij voorkeur verder omvattende een tussenschot (121) voorzien tussen de eerste en de tweede gasuitlaat, waarbij het tussenschot geconfigureerd is om gasuitwisseling tussen de eerste en de tweede gasuitlaat te voorkomen.An electrolytic cell according to any one of the preceding claims, further comprising a first gas outlet (112) connected to the porous cathode and a second gas outlet (113) connected to the porous anode, preferably further comprising a partition (121) provided between the first and the second gas outlet, wherein the partition is configured to prevent gas exchange between the first and second gas outlets. 16. Elektrolysecel volgens eender welke van de voorgaande conclusies, omvattende een behuizing geconfigureerd voor het voorzien van een fluïdum geleidend gedeelte voor het transporteren van het fluïdum naar het kanaal, bij voorkeur de behuizing is verder geconfigureerd voor het voorzien van een eerste en een tweede gasuitlaat, bij voorkeur waarbij de behuizing geconfigureerd is om een eerste en een tweede bipolaire plaat te verschaffen.16. Electrolytic cell according to any of the preceding claims, comprising a housing configured to provide a fluid conducting portion for transporting the fluid to the channel, preferably the housing is further configured to provide a first and a second gas outlet , preferably wherein the housing is configured to provide a first and a second bipolar plate. 17. Elektrolysecel volgens eender welke van de voorgaande conclusies, waarbij de eerste en/of de tweede separator geconfigureerd is om hydrofiel te zijn.An electrolysis cell according to any one of the preceding claims, wherein the first and/or the second separator is configured to be hydrophilic. 18. Elektrolysecel volgens eender welke van de voorgaande conclusies, waarbij de eerste en/of de tweede separator geconfigureerd zijn om elektrisch isolerend te zijn, bij voorkeur waarbij de eerste en/of de tweede separator wezenlijk gemaakt is uit een tweede elektrisch isolerend materiaal.An electrolytic cell according to any one of the preceding claims, wherein the first and/or second separator are configured to be electrically insulating, preferably wherein the first and/or second separator is made essentially of a second electrically insulating material. 19. Elektrolysecel volgens eender welke van de voorgaande conclusies, waarbij de eerste en/of de tweede separator geconfigureerd is om macroporeus te zijn, bij voorkeur omvattende poriën in het bereik tussen 0,1 en 100 micrometer, bij voorkeur tussen 5 en 10 micrometer.An electrolytic cell according to any one of the preceding claims, wherein the first and/or second separator is configured to be macroporous, preferably comprising pores in the range between 0.1 and 100 micrometers, preferably between 5 and 10 micrometers. 20. Elektrolysecel volgens eender welke van de voorgaande conclusies, waarbij de eerste en/of de tweede separator één uit een copolymeer van gesulfoneerd, op tetrafluorethyleen gebaseerd fluorpolymeer, een polyethersulfon en een composiet omvattende een polysulfonmatrix en ZrO; omvat.An electrolytic cell according to any one of the preceding claims, wherein the first and/or the second separator is one of a copolymer of sulfonated, tetrafluoroethylene-based fluoropolymer, a polyether sulfone and a composite comprising a polysulfone matrix and ZrO; includes. 21. Elektrolysecel volgens eender welke van de voorgaande conclusies waarbij de poreuze kathode geconfigureerd is om een eerste gas, gegenereerd middels de eerste elektrochemische reactie, door de poreuze kathode heen weg van het vijfde hoofdoppervlak te transporteren, en/of waarbij de poreuze anode geconfigureerd is om een tweede gas, gegenereerd middels de tweede elektrochemische reactie, door de poreuze anode heen weg van het zesde hoofdoppervlak te transporteren.An electrolytic cell according to any one of the preceding claims wherein the porous cathode is configured to transport a first gas generated by the first electrochemical reaction through the porous cathode away from the fifth major surface, and/or wherein the porous anode is configured to transport a second gas, generated by the second electrochemical reaction, through the porous anode away from the sixth major surface. 22. Elektrolysestapeling voor waterstofproductie, omvattende een veelvoud aan elektrolysecellen volgens eender welke van de voorgaande conclusies.22. Electrolysis stack for hydrogen production, comprising a plurality of electrolysis cells according to any of the preceding claims. 23. Elektrolyser voor waterstofproductie, omvattende een veelvoud aan elektrolysecellen volgens eender welke van de conclusies 1 tot 21 of een elektrolysestapeling volgens conclusie 22.An electrolyser for hydrogen production, comprising a plurality of electrolysis cells according to any one of claims 1 to 21 or an electrolysis stack according to claim 22. 24. Toepassing van een elektrolysecel volgens eender welke van conclusies 1 tot en met 21, een elektrolysestapeling volgens conclusie 22 of een elektrolyser volgens conclusie 23, waarbij een druk voor het transporteren van de vloeistof in het kanaal gehandhaafd wordt, zodanig dat de kathode het eerste gas- vloeistofcontactvlak definieert en zodanig dat de anode het tweede gas- vloeistofcontactvlak definieert.24. Use of an electrolytic cell according to any one of claims 1 to 21, an electrolytic stack according to claim 22 or an electrolyser according to claim 23, wherein a pressure for transporting the liquid in the channel is maintained such that the cathode is the first gas-liquid contact surface and in such a way that the anode defines the second gas-liquid contact surface. 25. Toepassing volgens conclusie 24, waarbij de vloeistof geconfigureerd is om door het kanaal heen in een richting die een richtingscomponent parallel aan de zwaartekracht heeft en in een zin van de zwaartekracht te stromen, bij voorkeur waarbij de eerste, tweede, derde en vierde hoofdoppervlakken verticaal opgesteld zijn, zodanig dat de vloeistof geconfigureerd is om door het kanaal heen in een richting van de zwaartekracht te stromen.The use of claim 24, wherein the fluid is configured to flow through the channel in a direction having a directional component parallel to gravity and in a sense of gravity, preferably with the first, second, third and fourth major surfaces are arranged vertically such that the fluid is configured to flow through the channel in a direction of gravity. 26. Toepassing volgens conclusie 24 of 25, waarbij de vloeistofinlaat verheven is met betrekking tot de vloeistofuitlaat.Use according to claim 24 or 25, wherein the liquid inlet is elevated with respect to the liquid outlet.
NL2031559A 2022-04-12 2022-04-12 Electrolysis cell for hydrogen production NL2031559B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2031559A NL2031559B1 (en) 2022-04-12 2022-04-12 Electrolysis cell for hydrogen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2031559A NL2031559B1 (en) 2022-04-12 2022-04-12 Electrolysis cell for hydrogen production

Publications (1)

Publication Number Publication Date
NL2031559B1 true NL2031559B1 (en) 2023-11-03

Family

ID=82595038

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2031559A NL2031559B1 (en) 2022-04-12 2022-04-12 Electrolysis cell for hydrogen production

Country Status (1)

Country Link
NL (1) NL2031559B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130313126A1 (en) * 2010-12-08 2013-11-28 Astrium Gmbh Electrolysis method and electrolytic cells
US20130337368A1 (en) * 2011-02-28 2013-12-19 Vito Nv Novel separator, an electrochemical cell therewith and use thereof therein
US20140224668A1 (en) * 2013-02-12 2014-08-14 Astrium Gmbh Method for operating an electrolytic cell
US20190145012A1 (en) * 2017-11-15 2019-05-16 Kabushiki Kaisha Toshiba Electrolytic cell and hydrogen production apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130313126A1 (en) * 2010-12-08 2013-11-28 Astrium Gmbh Electrolysis method and electrolytic cells
US20130337368A1 (en) * 2011-02-28 2013-12-19 Vito Nv Novel separator, an electrochemical cell therewith and use thereof therein
US20140224668A1 (en) * 2013-02-12 2014-08-14 Astrium Gmbh Method for operating an electrolytic cell
US20190145012A1 (en) * 2017-11-15 2019-05-16 Kabushiki Kaisha Toshiba Electrolytic cell and hydrogen production apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HODGES AARON ET AL: "A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen", NATURE COMMUNICATIONS, vol. 13, no. 1, 15 March 2022 (2022-03-15), XP093015015, Retrieved from the Internet <URL:https://www.nature.com/articles/s41467-022-28953-x> DOI: 10.1038/s41467-022-28953-x *
HODGES, NATURE COMMUNICATIONS, vol. 13, 2022, pages 1304

Similar Documents

Publication Publication Date Title
Omrani et al. Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: a review
JP5339724B2 (en) Electrochemical power supply design and parts
JP4165655B2 (en) Electrolytic device, electrochemical reaction membrane device, and porous conductor
US8691060B2 (en) Water electrolysis apparatus
US20110039190A1 (en) Continuous porous flow distributors for a fuel cell
US8894829B2 (en) Water electrolysis apparatus
US20040062980A1 (en) Fluid management component for use in a fuel cell
CN104157895B (en) The light-duty pile of polymer dielectric film fuel cell and manufacture method thereof
JP2000164228A (en) Separator for solid high molecular electrolyte fuel cell and manufacture thereof
WO2005109556A1 (en) Fuel cell and separator thereof
CN102077402A (en) Fuel cell stack
KR20170012311A (en) Flow fields for use with an electrochemical cell
JP5395521B2 (en) Fuel cell stack
KR101181657B1 (en) Membrane-electrode-current distributor assembly and its preparation method
NL2031559B1 (en) Electrolysis cell for hydrogen production
CN111916809B (en) Self-suction paper-based microfluid fuel cell stack
JP2010053401A (en) Separator for electrolyzer and method for manufacturing the same
KR20240019164A (en) Components for electrochemical and redox flow cells, fuel cells and electrolysers
US20220243348A1 (en) COx ELECTROLYZER CELL FLOW FIELDS AND GAS DIFFUSION LAYERS
JP2010232083A (en) Fuel cell
JP4838879B2 (en) Water electrolysis equipment
JP2008186672A (en) Fuel cell
JP3242102U (en) Hydrogen production system using alkaline anion exchange membrane electrolyzer and electrolyzed water
CN219689886U (en) Electrochemical electrolytic tank
US20240003022A1 (en) Component for an electgrochemical cell and redox-flow cell, fuel cell and electrolyzer