NL2031463B1 - Compressed Air-Gas Reheat Type Combined Cycle Power Generating System - Google Patents

Compressed Air-Gas Reheat Type Combined Cycle Power Generating System Download PDF

Info

Publication number
NL2031463B1
NL2031463B1 NL2031463A NL2031463A NL2031463B1 NL 2031463 B1 NL2031463 B1 NL 2031463B1 NL 2031463 A NL2031463 A NL 2031463A NL 2031463 A NL2031463 A NL 2031463A NL 2031463 B1 NL2031463 B1 NL 2031463B1
Authority
NL
Netherlands
Prior art keywords
gas
air
module
turbine
compressed air
Prior art date
Application number
NL2031463A
Other languages
Dutch (nl)
Other versions
NL2031463A (en
Inventor
Wang Guohua
Lin Yinghu
Yan Zhaoyang
Zhou Ting
Wang Zhitao
Chen Hui
Cao Qingwei
Xie Weihua
Lin Tong
Mei Shengwei
Ding Hui
Cheng Jinmin
Original Assignee
Chinasaltjintan Co Ltd
Huaneng Nanjing Jinling Power Generation Co Ltd
Chinasalthuaneng Energy Storage Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110558955.9A external-priority patent/CN113202582B/en
Priority claimed from CN202121102425.5U external-priority patent/CN214944467U/en
Application filed by Chinasaltjintan Co Ltd, Huaneng Nanjing Jinling Power Generation Co Ltd, Chinasalthuaneng Energy Storage Tech Co Ltd filed Critical Chinasaltjintan Co Ltd
Publication of NL2031463A publication Critical patent/NL2031463A/en
Application granted granted Critical
Publication of NL2031463B1 publication Critical patent/NL2031463B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Compressed Air-Gas Reheat Type Combined Cycle Power Generating System 5 The present invention provides a compressed air-gas reheat type combined cycle power generating system. The system of the present invention includes a compressed air energy storage module, a lithium bromide refrigeration module, a gas power generating module, a high-pressure air turbine power generating module, a low-pressure air turbine power generating module, an air reheater, and a gas-to-gas heat exchanger module. The compressed air energy storage module is 10 connected to an air storage device, the lithium bromide refrigeration module is connected to the compressed air energy storage module to cool compression heat, gas turbine exhausted air of the gas power generating module is connected to the gas-to-gas heat exchanger module to heat compressed air out of the air storage device, the high-pressure air turbine power generating module is connected to the gas-to-gas heat exchanger module so as to use the heated compressed air to do 15 work for power generation.

Description

Compressed Air-Gas Reheat Type Combined Cycle Power Generating System
TECHNICAL FIELD
The present invention relates to a compressed air-gas reheat type combined cycle power generating system, and belongs to the field of compressed air energy storage.
BACKGROUND
At present, with the increasing installation proportion of new energy power and the continuous changes in the domestic economic and social structure, the operation modes of the power grid at the power generating end and the power consuming end are both undergoing profound changes, the power generating load and the power consuming load both have volatility, randomness and unpredictability, and especially in recent years, the peak-to-valley difference of the power consuming load of the power grid during the daytime and the nighttime becomes increasingly big.
The situation now gets more and more prominent where the night peak regulation of the power grid solely relies on thermal power units, which not only reduces the utilization rate of the thermal power units and increases coal consumption for power generation, causing a great waste of energy, but also does great harm to the service life of the peak regulation units.
For a long time, a certain proportion of gas power generating units are provided at the power generating side of the power grid for peak and frequency regulation because the gas power generating units having rapid start-up and shut-down characteristics can provide emergency power backup for the power grid during the daytime. In recent years, the power energy storage technology is another important technical direction for solving the problems above and plays an active role in power grid peak load shaving, stabilization of renewable energy fluctuation, providing emergency power support and the like. Compressed air energy storage power generating is an important direction of the field of large-scale clean physical energy storage, which is now under the process of fast development in China, and a plurality of non-afterburning compressed air energy storage power station is under construction.
However, there are certain limitations in both of the gas power generating unit and the compressed air energy storage power generating unit. The operation mode of starting up and shutting down the gas turbine every day can only provide power support during the daytime, and cannot provide help during the nighttime power consuming valleys of the power grid. Although the compressed air energy storage technology having rapidly developed in recent years can draw power from the power grid during the power consuming valleys of the power grid such as the nighttime, the generating capacity thereof is relatively low during the power consuming peaks of the power grid such as the daytime, generally not exceeding 100 MW, and the power support for the power grid is insufficient.
SUMMARY
The objective of the present invention is to provide a compressed air-gas reheat type combined cycle power generating system for the above problems. The use of natural gas after burning technology can not only provide a negative load support at the power consuming valleys of the power grid and provide a generating capacity of over 200 MW during the daytime which is far more than the power consumed at energy storage time, but also provide a higher peak power generating capacity during the power consuming peaks. Therefore, the problems can be solved that a gas turbine cannot provide the function of energy storage, and that a general energy storage power generating unit has a low capacity.
The above objective is achieved by means of the following technical solutions: a compressed air-gas reheat type combined cycle power generating system includes a compressed air energy storage module, a lithium bromide refrigeration module, a gas power generating module, a high-pressure air turbine power generating module, a low-pressure air turbine power generating module, an air reheater, and a gas-to-gas heat exchanger module, where the compressed air energy storage module is connected to an air storage device; the lithium bromide refrigeration module is connected to the compressed air energy storage module to cool compression heat; gas turbine exhausted air of the gas power generating module is connected to the gas-to-gas heat exchanger module and the reheater module to heat compressed air out of the air storage device and compressed air entering the reheater; the high-pressure air turbine power generating module is connected to the gas-to-gas heat exchanger module so as to use the heated compressed air to do work for power generation; an exhaust system of the high-pressure air turbine power generating module is connected to the low-pressure air turbine power generating module through the air reheater to do work for power generation; and an exhaust system of the low-pressure air turbine power generating module is connected to an exhaust stack.
According to the compressed air-gas reheat type combined cycle power generating system, the compressed air energy storage module includes 2 to 4 segments of series air energy storage compressors, and a cooler is arranged between the stages of the series air energy storage compressors to cool the compression heat, where inlet air of a low-pressure segment compressor comes from atmosphere.
According to the compressed air-gas reheat type combined cycle power generating system, the lithium bromide refrigeration module includes a lithium bromide refrigeration unit, a cold water tank, and a hot water tank; cold water in the cold water tank enters the interstage cooler for cooling after being applied pressure by means of a cold water delivery pump, and the water out of the interstage cooler enters the hot water tank to be used as a heat source for the lithium bromide refrigeration unit.
According to the compressed air-gas reheat type combined cycle power generating system, the gas power generating module includes a gas turbine, a gas turbine compressor, a gas power generator, and a burner, where the gas turbine, the gas turbine compressor, and the gas power generator are arranged in a coaxial way; air of the burner comes from atmosphere, and the exhausted air of the turbine enters the gas-to-gas heat exchanger to heat the compressed air out of the air storage device.
According to the compressed air-gas reheat type combined cycle power generating system, the high-pressure air turbine power generating module includes a high-pressure air turbine and an air power generator, and the low-pressure air turbine power generating module includes a low-pressure air turbine and a generator; the high-pressure air turbine and the low-pressure air turbine are arranged in a coaxial way or in a non-coaxial way; an outlet of the air storage device is connected to the high-pressure air turbine through the gas-to-gas heat exchanger module; an exhaust port of the high-pressure air turbine is connected to the low-pressure air turbine through the air reheater; and an exhaust port of the low-pressure air turbine is connected to the exhaust stack.
According to the compressed air-gas reheat type combined cycle power generating system, a heat transfer medium inlet of the air reheater is connected to an exhaust port of the gas-to-gas heat exchanger.
Beneficial effects:
The present invention uses a compressed air-gas reheat type combined cycle power generating system, mainly including a compressed air energy storage module, a heat medium water module, a lithium bromide refrigeration module, a gas power generating module, an air turbine power generating module, a gas-to-gas heat exchanger module, an air reheater, and accessory parts such as a valve. During the nighttime power consuming valleys of the power grid, a compressor module is driven to store air in an air storage device by drawing power from the power grid, and cycled heat medium water is used to perform heat exchange and heat storage, and is used as a heat source for a lithium bromide refrigeration unit. During the power consuming peaks of the power grid such as the daytime, the gas turbine module is used to generate power, and exhaust air produced after the gas turbine does work is used to heat compressed air exhausted from the air storage device in the gas-to-gas heat exchanger module, so that the compressed air becomes gas with high temperature and high pressure which and has a capability of doing work through expansion, thereby entering the air turbine to generate power.
BRIEF DESCRIPTION OF DRAWINGS
FIG.1 is a schematic diagram of a system of the present invention.
In the drawing: 1. air storage device; 2. air energy storage compressor; 3. cooler; 4. lithium bromide refrigeration unit; 5. cold water tank; 6. hot water tank; 7. gas turbine; 8. gas turbine compressor; 9. gas power generator; 10. burner; 12. air power generator; 11-1. high-pressure air turbine; 11-2. low-pressure air turbine; 13. gas-to-gas heat exchanger; and 14. air reheater.
DETAILED DESCRIPTION
Example 1:
As shown in FIG.1: a compressed air-gas reheat type combined cycle power generating system of the present example includes a compressed air energy storage module, a lithium bromide refrigeration module, a gas power generating module, a high-pressure air turbine power generating module, a low-pressure air turbine power generating module, an air reheater 14, and a gas-to-gas heat exchanger module, where the compressed air energy storage module is connected to an air storage device 1; the lithium bromide refrigeration module is connected to the compressed air energy storage module to cool compression heat; gas turbine exhausted air of the gas power generating module is connected to the gas-to-gas heat exchanger module and the reheater module to heat compressed air out of the air storage device and compressed air entering the reheater; the high-pressure air turbine power generating module is connected to the gas-to-gas heat exchanger module so as to use the heated compressed air to do work for power generation; an exhaust system of the high-pressure air turbine power generating module is connected to the low-pressure air turbine power generating module through the air reheater to do work for power generation; and an exhaust system of the low-pressure air turbine power generating module is connected to an exhaust stack.
According to the compressed air-gas reheat type combined cycle compressed air energy storage power generating system, the compressed air energy storage module includes 2 to 4 segments of series air energy storage compressors 2, and a cooler 3 is arranged between the stages of the series compressors to cool the compression heat, where inlet air of a low-pressure segment compressor 5 comes from atmosphere.
According to the compressed air-gas reheat type combined cycle compressed air energy storage power generating system, the flow of the compressed air in the compression energy storage process is more than two hundred thousand m’/h, and the compression time lasts 6 to 8 hours; interstage refrigeration uses cycled heat medium water for cooling, and the compressed air at an outlet of a compressor at the tail end enters the air storage device for storage with a pressure of 6 to 10 MPa and a temperature of no higher than 50°C.
According to the compressed air-gas reheat type combined cycle compressed air energy storage power generating system, the lithium bromide refrigeration module includes a lithium bromide refrigeration unit 4, a cold water tank 5, and a hot water tank 6; cold water in the cold water tank, after being applied pressure by means of a cold water delivery pump, enters the interstage cooler for cooling the air at outlets of the compressors at different segments, and the cold water after being heated to hot water with a temperature of 75 to 95°C is stored in the hot water tank to be used as a heat source for the lithium bromide refrigeration unit; during refrigeration, the hot water is sent into the lithium bromide refrigeration unit by means of a hot water delivery pump; and after releasing heat from the lithium bromide refrigeration unit, the heat medium water enters the cold water tank to be stored for future use.
According to the compressed air-gas reheat type combined cycle compressed air energy storage power generating system, the gas power generating module includes a gas turbine 7, a gas turbine compressor 8, a gas power generator 9, and a burner 10, where the gas turbine, the compressor, and the gas power generator are arranged in a coaxial way; inlet air of the gas turbine compressor comes from atmosphere with a flow of 800 to 2000 t/h; outlet pressure of the gas turbine compressor is 1.0 to 3.0 MPa with a temperature of 300 to 400°C; the flow of afterburning natural gas in a combustion chamber is 10 to 30 t/h, and the gas temperature at the combustion chamber outlet is 1000 to 1500°C; the gas turbine outputs work of 50 to 300 MW; pressure of the exhausted air of the turbine is slightly higher than atmospheric pressure and the temperature of the exhausted air is 500 to 650°C; the exhausted air of the gas turbine enters the gas-to-gas heat exchanger module and the air reheater to heat the compressed air out of the air storage device and the high-pressure air turbine.
According to the compressed air-gas reheat type combined cycle power generating system, the high-pressure air turbine power generating module includes a high-pressure air turbine 11-1 and an air power generator 12, and the low-pressure air turbine power generating module includes a low-pressure air turbine 11-2 and a generator 12; the high-pressure air turbine and the low-pressure air turbine are arranged in a coaxial way or in a non-coaxial way; an outlet of the air storage device is connected to the high-pressure air turbine through the gas-to-gas heat exchanger module; an exhaust port of the high-pressure air turbine is connected to the low-pressure air turbine through the air reheater; and an exhaust port of the low-pressure air turbine is connected to the exhaust stack.
Air form the outlet of the air storage device to the air turbine has a flow of 600 to 1800 t/h, a pressure of 6 to 14 MPa, and a temperature of 30 to 50°C, and enters the high-pressure air turbine cylinder to do work when the temperature rises to 300 to 550°C through the 3 to 5 stages of gas-to-gas heat exchanger absorbing heat of the turbine exhausted air; the high-temperature and high-pressure air, after the pressure thereof decreases to 0.8 to 2.2 MPa, and the temperature thereof decreases to 100 to 200°C, enters the air reheater for heat absorption so that the temperature increases to 300 to 550°C, then enters the low-pressure air turbine cylinder to continue to do work through expansion, and is emitted into atmosphere when the pressure thereof decreases to slightly above the atmospheric pressure, and the temperature thereof decreases to below 100°C. Generating power of the air turbine may be 100 to 300 MW.
The technical means disclosed in the solutions of the present invention is not limited to the technical means disclosed in the above technical means, and further includes technical solutions composed of equivalent replacement of the above technical features. The unmentioned matters of the present invention are common general knowledge of those skilled in the art.

Claims (6)

CONCLUSIES lI. Een energieopwekkingssysteem van het type met perslucht/gasopwarming met gecombineerde cyclus, bestaande uit een opslagmodule van persluchtenergie, een koelmodule met lithiumbromide, een module voor het opwekken van elektriciteit uit gas, een module voor het opwekken van elektriciteit uit een hogedruk-luchtturbine, een module voor het opwekken van elektriciteit uit een lagedruk-luchtturbine, een luchtverwarmer en een gas-naar-gas-warmtewisselaarmodule, waarbij de opslagmodule van persluchtenergie is aangesloten op een luchtopslagsysteem; de koelmodule met lithiumbromide is aangesloten op de opslagmodule van perslucht om compressiewarmte af te koelen; uitgeblazen lucht van de gasturbine van de gasstroomopwekkingsmodule wordt toegevoerd aan de gas-naar-gas-warmtewisselaarmodule en de verwarmingsmodule is geconfigureerd om perslucht uit het luchtopslagsysteem en perslucht die de verwarmer binnenkomt, te verwarmen; de module voor het opwekken van elektriciteit uit een hogedruk-luchtturbine is aangesloten op de gas-naar-gas-warmtewisselaarmodule om de verwarmde perslucht te gebruiken voor het opwekken van elektriciteit, een uitlaatsysteem van de module voor het opwekken van elektriciteit uit een hogedruk-luchtturbine is via de luchtverwarmer aangesloten op de module voor het opwekken van elektriciteit uit een lagedruk-luchtturbine; en een uitlaatsysteem van de module voor het opwekken van elektriciteit uit een lagedruk-luchtturbine is aangesloten op een uitlaatpijp.CONCLUSIONS lI. A combined cycle compressed air/gas heating type power generation system consisting of a compressed air energy storage module, a lithium bromide cooling module, a gas electricity generation module, a high pressure air turbine electricity generation module, a module for generating electricity from a low-pressure air turbine, an air heater and a gas-to-gas heat exchanger module, wherein the compressed air energy storage module is connected to an air storage system; the lithium bromide cooling module is connected to the compressed air storage module to cool compression heat; exhaust air from the gas turbine of the gas power generation module is supplied to the gas-to-gas heat exchanger module, and the heating module is configured to heat compressed air from the air storage system and compressed air entering the heater; the module for generating electricity from a high-pressure air turbine is connected to the gas-to-gas heat exchanger module to use the heated compressed air for generating electricity, an exhaust system of the module for generating electricity from a high-pressure air turbine is connected via the air heater to the module for generating electricity from a low-pressure air turbine; and an exhaust system of the module for generating electricity from a low-pressure air turbine is connected to an exhaust pipe. 2. Het energieopwekkingssysteem van het type met perslucht/gasopwarming met gecombineerde cyclus volgens conclusie 1, waarbij de opslagmodule van persluchtenergie bestaat uit twee tot vier segmenten van reeksen compressoren voor de opslag van luchtenergie, en een koeler is geplaatst tussen de fasen van de reeksen compressoren voor de opslag van luchtenergie om de compressiewarmte af te koelen, waarbij de inlaatlucht van een lagedruksegment luchtopslagcompressor afkomstig is uit de atmosfeer.2. The combined cycle compressed air/gas reheating type power generation system according to claim 1, wherein the compressed air energy storage module consists of two to four segments of series of compressors for storing air energy, and a cooler is placed between the stages of the series of compressors for the storage of air energy to cool the heat of compression, where the inlet air of a low-pressure segment air storage compressor comes from the atmosphere. 3. Het energieopwekkingssysteem van het type met perslucht/gasopwarming met gecombineerde cyclus volgens conclusie 1, waarbij de koelmodule met lithiumbromide bestaat uit een koelaggregaat met lithiumbromide, een koudwatertank en een warmwatertank; koud water in de koudwatertank komt de tussenkoeler binnen om te worden gekoeld nadat het onder druk is gezet door middel van een koudwatertoevoerpomp en het water uit de tussenkoeler komt in de warmwatertank om te worden gebruikt als warmtebron voor de koeleenheid met lithiumbromide.The combined cycle compressed air/gas heating type power generation system according to claim 1, wherein the lithium bromide refrigeration module consists of a lithium bromide refrigeration unit, a cold water tank and a hot water tank; Cold water in the cold water tank enters the intercooler to be cooled after being pressurized by a cold water supply pump, and the water from the intercooler enters the hot water tank to be used as a heat source for the lithium bromide refrigeration unit. 4. Het energieopwekkingssysteem van het type met perslucht/gasopwarming met gecombineerde cyclus volgens conclusie 1, waarbij de module voor het opwekken van gas bestaat uit een gasturbine, een gasturbinecompressor, een gasstroomgenerator en een brander, waarbij de gasturbine, de gasturbinecompressor en de gasstroomgenerator op coaxiale wijze zijn opgesteld; lucht van de brander komt uit de atmosfeer, en de uitgeblazen lucht van de turbine gaat de gas-naar-gas-warmtewisselaar binnen om de perslucht uit het luchtopslagsysteem te verwarmen.The combined cycle compressed air/gas heating type power generation system according to claim 1, wherein the gas generating module consists of a gas turbine, a gas turbine compressor, a gas flow generator and a burner, the gas turbine, the gas turbine compressor and the gas flow generator being arranged on are arranged in a coaxial manner; air from the burner comes from the atmosphere, and the exhaust air from the turbine enters the gas-to-gas heat exchanger to heat the compressed air from the air storage system. 5. Het energieopwekkingssysteem van het type met perslucht/gasopwarming met gecombineerde cyclus volgens conclusie 1, waarbij de module voor het opwekken van elektriciteit uit een hogedruk-luchtturbine bestaat uit een hogedruk-luchtturbine en een luchtstroomgenerator, en de module voor het opwekken van elektriciteit uit een lagedruk-luchtturbine bestaat uit een lagedruk-luchtturbine en een generator; de hogedruk-luchtturbine en de lagedruk-luchtturbine zijn op coaxiale of niet-coaxiale wijze opgesteld; een uitlaat van het luchtopslagsysteem is aangesloten op de hogedruk-luchtturbine via de gas-naar-gas-warmtewisselaarmodule; een uitlaatpoort van de hogedruk-luchtturbine is aangesloten op de lagedruk-luchtturbine via de luchtverwarmer; en een uitlaatpoort van de lagedruk-luchtturbine is aangesloten op de uitlaatpijp.The combined cycle compressed air/gas heating type power generation system according to claim 1, wherein the high-pressure air turbine electricity generating module consists of a high-pressure air turbine and an air flow generator, and the high-pressure air turbine electricity generating module a low-pressure air turbine consists of a low-pressure air turbine and a generator; the high-pressure air turbine and the low-pressure air turbine are arranged in a coaxial or non-coaxial manner; an exhaust from the air storage system is connected to the high-pressure air turbine through the gas-to-gas heat exchanger module; an exhaust port of the high-pressure air turbine is connected to the low-pressure air turbine through the air heater; and an exhaust port of the low-pressure air turbine is connected to the exhaust pipe. 6. Het energieopwekkingssysteem van het type met perslucht/gasopwarming met gecombineerde cyclus volgens conclusie 1, waarbij een inlaat van een medium voor warmteoverdracht van de luchtverwarmer is aangesloten op de uitlaatpoort van de gasturbine.The combined cycle compressed air/gas heating type power generation system according to claim 1, wherein an inlet of a heat transfer medium of the air heater is connected to the exhaust port of the gas turbine.
NL2031463A 2021-05-21 2022-03-31 Compressed Air-Gas Reheat Type Combined Cycle Power Generating System NL2031463B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110558955.9A CN113202582B (en) 2021-05-21 2021-05-21 Compressed air-fuel gas reheating type combined cycle power generation system and method
CN202121102425.5U CN214944467U (en) 2021-05-21 2021-05-21 Compressed air-gas reheating type combined cycle power generation system

Publications (2)

Publication Number Publication Date
NL2031463A NL2031463A (en) 2022-12-06
NL2031463B1 true NL2031463B1 (en) 2024-01-04

Family

ID=84327853

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2031463A NL2031463B1 (en) 2021-05-21 2022-03-31 Compressed Air-Gas Reheat Type Combined Cycle Power Generating System

Country Status (1)

Country Link
NL (1) NL2031463B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH696979A5 (en) * 2003-11-04 2008-02-29 Alstom Technology Ltd Power unit with gas turbine and compressed air store has stored fluid heat supply unit upstream from the pressure release device
CN203892021U (en) * 2014-04-02 2014-10-22 华北电力大学 Compressed air energy storage system for integrated absorption type refrigeration

Also Published As

Publication number Publication date
NL2031463A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
CN111140298B (en) Distributed cogeneration compressed air energy storage system
CN104675680A (en) Compressed air energy storing system for cold and heat power supply
CN206785443U (en) A kind of high-pressure natural gas cogeneration distributed energy resource system
CN109681279B (en) Supercritical carbon dioxide power generation system and method containing liquid air energy storage
CN113202584B (en) Gas-air-steam three-working-medium combined cycle power generation system and method
CN113202582B (en) Compressed air-fuel gas reheating type combined cycle power generation system and method
CN213807777U (en) Coupling system of thermal power generation system and compressed air energy storage system
CN214944465U (en) Gas-air-steam three-working-medium combined cycle power generation system
CN216518291U (en) Gas turbine inlet air cooling system based on photovoltaic, waste heat utilization and cold accumulation
CN113565590A (en) Compressed air energy storage and coal-fired unit coupled wide-load deep peak shaving power generation system
CN211598766U (en) Distributed combined heat and power supply compressed air energy storage system
CN214944467U (en) Compressed air-gas reheating type combined cycle power generation system
CN214944466U (en) Compressed air-gas double-working medium combined cycle power generation system
NL2031463B1 (en) Compressed Air-Gas Reheat Type Combined Cycle Power Generating System
CN109854318B (en) Biomass direct-fired cogeneration system and method
CN215520993U (en) High-capacity compressed air energy storage power generation system capable of doing work through segmented expansion
CN110905765B (en) Compressed air energy storage system for efficiently utilizing low-grade heat energy and coupling gas turbine
CN114458407A (en) System and method for coupling natural gas energy storage with gas turbine power generation
CN115370428A (en) Multi-energy coupling compressed air energy storage power generation system and operation method
JP3237661U (en) Compressed air-gas duplex combined cycle power generation system
CN113250775B (en) Large-capacity compressed air energy storage power generation system and method for segmented expansion work
CN113202583B (en) Compressed air-gas double-working-medium combined cycle power generation system and power generation method
CN213713607U (en) Combustion engine blowing compressed air heat utilization system
CN220018284U (en) Compressed air energy storage waste heat recovery heat storage utilization system
CN219733596U (en) Afterburning type compressed air energy storage system based on combination of multiple combustion modes