NL2030763B1 - Method for planning origin-based pre-cooling system considering investment of multi-type facilities - Google Patents

Method for planning origin-based pre-cooling system considering investment of multi-type facilities Download PDF

Info

Publication number
NL2030763B1
NL2030763B1 NL2030763A NL2030763A NL2030763B1 NL 2030763 B1 NL2030763 B1 NL 2030763B1 NL 2030763 A NL2030763 A NL 2030763A NL 2030763 A NL2030763 A NL 2030763A NL 2030763 B1 NL2030763 B1 NL 2030763B1
Authority
NL
Netherlands
Prior art keywords
cooling
path
service
station
chromosome
Prior art date
Application number
NL2030763A
Other languages
Dutch (nl)
Other versions
NL2030763A (en
Inventor
Li Ya
Qiao Zhiwei
Wang Xuping
Lin Na
Feng Xiaochun
Ruan Junhu
Wang Hua
Hu Xiangpei
Original Assignee
Beijing Jingdong Shangke Information Technology Co Ltd
Univ Dalian Tech
Northwest A & F Univ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jingdong Shangke Information Technology Co Ltd, Univ Dalian Tech, Northwest A & F Univ filed Critical Beijing Jingdong Shangke Information Technology Co Ltd
Publication of NL2030763A publication Critical patent/NL2030763A/en
Application granted granted Critical
Publication of NL2030763B1 publication Critical patent/NL2030763B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0832Special goods or special handling procedures, e.g. handling of hazardous or fragile goods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0835Relationships between shipper or supplier and carriers
    • G06Q10/08355Routing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Primary Health Care (AREA)
  • Educational Administration (AREA)

Abstract

The present invention relates to a method for planning an origin— based pre—cooling system considering an investment of multi—type facilities, which is proposed in consideration of applying both fixed and Hwbile pre—cooling methods. In the present invention, firstly, a siting—path optimization model of multi—type pre— cooling facilities for agricultural products in villages and towns is created with an objective of minimizing a system cost; secondly, an improved genetic algorithm is designed for solving, and chromosomes and rules for crossover and mutation are redesigned to optimize both siting and paths. The present invention can effectively improve the current situations of unavailable pre—cooling and, poor‘ pre—cooling effects for small— scale farming, with an important practical significance for perfecting and building a cooling system for agricultural products, optimizing a "first kilometer" process in cold chains for agricultural products, and promoting a socialized service process for villages and towns in China.

Description

METHOD FOR PLANNING ORIGIN-BASED PRE-COOLING SYSTEM CONSIDERING
INVESTMENT OF MULTI-TYPE FACILITIES
TECHNICAL FIELD
The present invention belongs to the field of cold chain lo- gistics, and relates to a method for planning an origin-based pre- cooling system considering an investment of multi-type facilities.
BACKGROUND ART
Origin-based pre-cooling is the first link in a cold chain of agricultural products. Delayed pre-cooling will accelerate the ma- turity, aging and spoilage of agricultural products so as to ac- cordingly affect their quality and flavor, shorten their shelf life, and result in inconvenience in subsequent transportation and sales. However, at present, the "first kilometer" cold chain in- frastructure for agricultural products is not perfect enough in
China, and pre-cooling systems have not yet been formed at ori- gins, resulting in that a pre-cooling preservation rate of agri- cultural products at origins is only 30%, which is far lower than 80% in European and American developed countries. Thus it is immi- nent to optimize origin-based pre-cooling systems.
Current, pre-cooling facilities in China are mainly pre- cooling stations relying on fixed buildings. However, agricultural products have a certain time limitation for pre-cooling treatment, that is, the longer the pre-cooling delay after picking is, the shorter the freshing period and the shelf life of agricultural products are. Whereas fixed pre-cooling stations can easily cause pre-cooling delays for agricultural products in remote origins, and it is unable to achieve an ideal pre-cooling effect. On the other hand, the harvest time of agricultural products is relative- ly concentrated only in some specific months, so there is general- ly a lower utilization rate of the fixed pre-cooling stations.
Compared with the fixed pre-cooling stations, mobile pre-cooling devices are more flexible with a higher utilization rate and a shorter payback period, and they are more suitable for China's current situations, such as dispersed agricultural production, small-scale farming in domination, and rural e-commerce as a sales method. However, the application of the mobile pre-cooling devices in China is still at an exploratory stage, and its operation mode and its cooperation mode with the fixed pre-cooling stations, etc. are still unclear. Therefore, it is necessary to actively explore the application of the mobile pre-cooling devices in the "first kilometer" system of the cold chain in China, so that it can ef- fectively improve the current situations of unavailable pre- cooling and poor pre-cooling effects for small-scale farming, with an important practical significance for perfecting and building a cooling system for agricultural products, optimizing a "first kil- ometer" process in cold chains for agricultural products, and pro- moting a socialized service process for villages and towns in Chi- na.
The present invention provides a method for planning an origin-based pre-cooling system considering an investment of mul- ti-type facilities, that is, forming a network layout of fixed pre-cooling facilities (represented by pre-cooling stations) and mobile pre-cooling facilities (represented by pre-cooling vehi- cles), and optimizing paths for vehicles supporting two types of pre-cooling facilities, to maximize an overall profit of a pre- cooling facility system in villages and towns. Decision-making contents include: 1) a pre-cooling method for each farmer; 2) a quantity, siting and capacity of pre-cooling stations, as well as a quantity and path of supporting transport vehicles; 3) a quanti- ty, capacity and path of pre-cooling vehicles. In the present in- vention, firstly, a siting-path optimization model of multi-type pre-cooling facilities for agricultural products in villages and towns is established with an objective of minimizing a system cost; secondly, an improved genetic algorithm is designed for so- lution, and chromosomes and rules for crossover and mutation are redesigned to optimize both siting and the paths. By implementing the present invention, the current situations of unavailable pre- cooling and poor pre-cooling effects for China's small-scale farm- ing can be effectively improved, and the establishment of an origin-based pre-cooling system in China is promoted.
SUMMARY
In order to solve the problem of unavailable pre-cooling or poor pre-cooling effects for China's small-scale farming, the pre- sent invention proposes a method for planning an origin-based pre- cooling system considering an investment of multi-type facilities in consideration of using a fixed pre-cooling station and mobile pre-cooling vehicles simultaneously, with an objective of minimiz- ing an overall cost of pre-cooling facilities in villages and towns, so as to give full play to the advantages of various types of pre-cooling facilities and consummate the establishment of origin-based pre-cooling systems in China.
To achieve the above-mentioned objective, the present inven- tion provides the following technical solutions: a method for planning an origin-based pre-cooling system con- sidering an investment of multi-type facilities includes the fol- lowing steps:
Step I, designing an organizational form for a pre-cooling system considering an investment of multi-type facilities
The present invention considers an investment in two types of pre-cooling facilities, that is, a pre-cooling station and pre- cooling vehicles, which cover all the pre-cooling needs in rural areas. An organization form of fixed pre-cooling served by a pre- cooling station is designed as follows (see FIG. 1): after being picked by farmers, fruits and vegetables are transported to the pre-cooling station for uniform pre-cooling, and then transported back to the farmers by the transport vehicles after pre-cooling, and the farmers arrange subsequent delivery by themselves accord- ing to the selling situation. This method may lead to a pre- cooling delay. In order to ensure a good effect of the pre-cooling service and avoid the occurrence of the pre-cooling delay, a maxi- mum pre-cooling delay time is used as a constraint for a path transport time of each transport vehicle. The organizational form of mobile pre-cooling by a pre-cooling vehicle is designed as fol- lows (see FIG. 2): a pre-cooling vehicle equipped with mobile pre- cooling devices departs from a parking lot and goes to various service stations for pre-cooling services, and the pre-cooled products are returned to farmers upon completion of pre-cooling.
Compared with the fixed pre-cooling, this method enables lower goods damage in the process of loading and unloading without any pre-cooling delay. The two methods influence each other: the more farmers choose to send the harvested agricultural products to the pre-cooling station for pre-cooling, the larger pre-cooling sta- tion is required, and thus the construction cost, the natural goods damage, and the goods damage caused by pre-cooling delay will be increased; if farmers choose to rent a mobile pre-cooling vehicle for pre-cooling, refrigerating houses can be reduced, but more mobile pre-cooling vehicles will be purchased.
Step II, modeling
The problem is described as follows: in a rural area, there are m pre-cooling service stations, n optional pre-cooling sta- tions (parking lots), ¢ transport vehicles shuttling between the pre-cooling stations and the service stations, and © mobile pre- cooling vehicles; M={1, 2,.., m} is a set of service stations,
N=l{m+1, mt2,.., mtn} is a set of pre-cooling stations (parking lots), 8={1, 2,.., plis a set of transport vehicles, ={1, 2; oo} is a set of pre-cooling vehicles, V=MUN is a set of all points,
E={ (1,7) |m jeV}N{(i,j) | 4, JEN} is a set of sides, each side corre- sponds to a distance of d;;, and g, is a pre-cooling demand of the service station m(meM).
The modeling has an objective of minimizing the total cost of a pre-cooling system, and decision-making contents include: 1) a pre-cooling method for each farmer; 2) a siting and capacity of pre-cooling stations, as well as a quantity, type and path of sup- porting transport vehicles; 3) a quantity, type and path of pre- cooling vehicles. Variables and meanings thereof in the model are as follows:
Cp: a unit construction cost of a pre-cooling station; cs: a monthly unit operating cost of a pre-cooling station; cS: a purchase cost of a s-type transport vehicle; cPe a monthly operating cost of a s-type transport vehicle; cl": a unit driving cost of a s-type transport vehicle; ds: a maximum travel distance of a s-type transport vehicle;
vs: a traveling speed of a s-type transport vehicle; cf": a purchase cost of a u-type pre-cooling vehicle; cipe: a monthly operating cost of a u-type pre-cooling vehi- cle; 5 cire: a unit driving cost of a u-type pre-cooling vehicle; d,: a maximum travel distance of a u-type pre-cooling vehi- cle; oy: a single pre-cooling service time of a u-type pre-cooling vehicle;
Vu: a traveling speed of a u-type pre-cooling vehicle;
Hs: a number of transport nodes on the ©" path for transport vehicles; for example, the 1°%* path for transport vehicles is "121512", then H=4; ni(2SkSH,-1): a serial number of a service station located at the £** node on the op“ path for transport vehicles; for example, the 1° path for transport vehicles is "1215512, then 9} =1, in- dicating that the 2° node by which a transport vehicle passes on the 1° path is a No. 1 service station;
G,: a number of transport nodes on the «™ path for pre- cooling vehicles;
AY: a serial number of a service station located at the I" node on the oo" path for pre-cooling vehicles; for example, the 2% ] BE =3 —_— path for pre-cooling vehicles is "12453512", then ‚ indicat- ing that the 3™ node by which a pre-cooling vehicle passes on the 2™ path is a No. 3 service station; 5: a type of a transport vehicle, which is represented by its carrying capacity, for example, s=500 kg, 1,000 kg, 1,500 kg..., and s€S, wherein, S is a set of the types of transport vehicles; u: a type of a pre-cooling vehicle, which is represented by its carrying capacity, for example, u=500 kg, 1,000 kg, 1,500 kg..., and u€U, where, U is a set of the types of pre-cooling ve- hicles; ty: a travel time of a transport vehicle ¢ from a service ; ; : 9 mnd station 1 to a service station j, then bp me = ej: a travel time of a pre-cooling vehicle w from a service daw 20 station i to a service station j, then Exo 10 = Ek; ti Vu of’: a dwell time of a pre-cooling vehicle w at a service sta- tion i; if a u-type pre-cooling vehicle i provides service for a service station i, then of = oy;
Ef: a moment when a pre-cooling vehicle © arrives at a ser- vice station i, then Eio = Eje, +070, +E gi 8: a unit price of an agricultural product; g: a loading and unloading loss rate of a fixed pre-cooling method; ò: a loading and unloading loss rate of a mobile pre-cooling method, and ò<g; tvorr! daily working hours of a pre-cooling vehicle; tasiay! @ maximum pre-cooling delay time; t: a number of working days for picking and harvesting in a year;
T: business accounting year;
Tu: a variable of 0-1; when an origin n is selected as a parking lot for all vehicles, 7,="1", otherwise 7,=0; if a pre- cooling station is to be built in the system, it is defaulted to select a pre-cooling station as a parking lot; p: a scale of a pre-cooling station; a,: a variable of 0-1; when a pre-cooling station is built at an origin n, o,=1, otherwise o,=0;
Xijg! a variable of 0-1, representing whether there is a di- rect path between the sides (i,j) and that a transport vehicle ¢ is used for service; if yes, then x;,,=1, otherwise x;;,=0;
Viso: a variable of 0-1, representing whether there is a di- rect path between sides (i,j) and that a pre-cooling vehicle o is used for service; if yes, then y:y,=1, otherwise y:4,=0;
Boo: a variable of 0-1; when a transport vehicle ¢ provides service for a service station m, Bm=l, otherwise Bng=0;
Omo: a variable of 0-1; when a pre-cooling vehicle © provides service for a service station m, Sm>1l; otherwise p,,=0;
Ys: a variable of 0-1; when a s-type transport vehicle is used, y.=1, otherwise vy, =0;
Yu: a variable of 0-1; when a u-type pre-ccoling vehicle is used, y,=1, otherwise vy, =0;
The model having an objective of minimizing a total cost Ci; of a rural pre-cooling system includes the costs of a fixed pre- cooling subsystem and a mobile pre-cooling subsystem, expressed as
Cire and Cup, respectively, and the objective of the model can be expressed as formula (1): min Ca117Cste+ Cron (1) a cost structure of the fixed pre-cooling system includes: 1) pre-cooling station related costs C,,, including a construction cost and an operating cost of a pre-cooling station; 2) supporting transport vehicle related costs C.., including the three parts: a purchase cost of a transport vehicle, an operating cost of a transport vehicle, and a transport cost of a transport vehicle; and 3) a loading and unloading loss cost Cas. Therefore, a cost model of the fixed pre-cooling system is constructed as follows:
Cop = Yen Cn Cp + PeoTt) (2)
Coru = Zeo ses Vs (C57 + csP°TE) + Dgeg Li jev Zses 60%, Vsdy j CST (3)
Cas = > > 3081p G GS TE
PED med ( 4 ) sto = Cap + Cig + as (5) a cost structure of the mobile pre-cooling system includes: 1) a fixed cost Cp, including a corresponding purchase cost and an operating cost of a pre-cooling vehicle; 2) a travel cost Cra of a pre-cooling vehicle; and 3) a loading and unloading loss cost
Cuwa- Therefore, a cost model of the mobile pre-cooling system is constructed as follows:
Coop = DD vale + FTE) wei well (6)
Coa =D > > 30wy Yad, CFT =r Fey = (7)
Lowe = NT NT SG GP TE wel mear (8)
Como = Coop + Cora + Cea (9)
By combining formulae (1 - 9), an optimized model of a rural multi-type pre-cooling facility structure can be cbtained as fol- lows: min 3 Con ey med {1 ) sl. > Bop + > Foes = 1. Fm EM
Sif j ved wel (10) + a <1
FEN (11 ) ) DEN 3 > Log 3 — = rads IE > Ky = 1 = (12) > >, 8 ARTE Hen = 2 eed med { 13 }
Kip = Xiio = OViE V‚Vp Ep, Vw EL (14)
Kijp = Xijo =O VLJEN, Vp €Q,Vw € {] (15) > Eigse == 3 Xie . Vi = ¥. Wen £ 3 = =
Ey ey (1 6)
Sy For = > Vries * Wi = ¥, Foo € £3 ed Di ed 3
EN TEY (17)
NN ay, Sz LYo es
FEY tend ( 18 ) >. >. Foe = 1, Voen
TEN EM (19)
Sy Tige SH, —1L,¥ped he (20)
> Vio = Gy — 1,Y0 € 2 {Fev (21)
NN Va = i 5 3 # = &
Ly” * zes (22) > Fone Gm = > ¥sS vg as) mes ses (23) > ted; Sd, Vp €8 ry (24) wv A i Fy YA
NT 3 Aspi —_— Lastayr Yio & & (ed EV (25)
Ny. =1, Ve E12
Wey (26)
Fed, Sd Vo En
Liev (27)
See (28)
Bmp €{0,1}, Pmo €{0,1}, VMEM, Vp EO, VwEn (29)
Xijp €{0,1}, Vije €{0,1}, VijEV, VEO, Voen (30) ys €{0,1}, y,€{0,1}, Vse€S§, vuelU (31)
In this model, an objective function represented by formula (1) is a minimum cost of a rural pre-cooling facility system, which is a sum of the costs of the fixed and the mobile pre- cooling subsystems; formula (10) represents that each service sta- tion has one and only one pre-cooling method, that is, each ser- vice station can be served by one and only one vehicle for once only; formulae (11) and (12) indicate that only one pre-cooling station can be built in an entire system at most, and if a pre- cooling station is built, it serves at least one service station; formula (13) indicates that the capacity of a pre-cooling station must meet a total output of the farmers covered; formula (14) ex- presses that there is no path for the same service station and pre-cooling station (parking lot); formula (15) indicates that there is no path between optional pre-cooling stations (parking lots); formulae (16) and (17) are constraints to a balance of ve- hicle entry and exit, ensuring that the numbers of the vehicles entering and leaving each service station are the same; formulae (18) and (19) ensure that there is at most one service path for each vehicle, and each vehicle departs from the same parking lot and returns to the original parking lot upon completion of service delivery; formulae (20) and (21) eliminate sub-loops; formula (22) means that each transport vehicle has one and only one type; for- mula (23) indicates that a total output of the farmers served by each transport vehicle does not exceed a maximum load capacity of a transport vehicle; formula (24) indicates that a mileage of each transport vehicle every time does not exceed its maximum mileage; formula (25) represents that the time for a transport vehicle to transport products from an origin to a refrigerating house does not exceed the maximum delay time; formula (26) indicates that each pre-cooling vehicle has one and only one type; formula (27) indicates that a mileage of each pre-cooling vehicle every time does not exceed its maximum mileage; formula (28) represents that a travel time of each pre-cooling vehicle every time does not ex- ceed the working hours for the current day; formulae (29) - (31) represent the attributes of decision variables.
Step III, solving the model
The present invention proposes an improved genetic algorithm to solve the model. Firstly, a chromosome capable of simultaneous- ly expressing the decision of pre-cooling methods, a siting and construction scale of a pre-cooling station, a type, quantity and path of transport vehicles, a model, quantity and path of pre- cooling vehicles is designed to realize the optimization of siting and paths simultaneously, rather than a separated decision of sit- ing before path optimization; secondly, rules for generating a feasible solution that retains a randomness are designed, and a probability of being chosen for each optional site for siting is measured based on a logistic capacity-distance product, and a gene sequence of a service path segment is generated according to an idea of "random generation before adjustment"; thirdly, a crosso- ver operator and three mutation operators are redesigned according to the rules for chromosome coding. The specific steps for the so- lution are as follows:
Sl: chromosome coding
A chromosome is composed of three parts: 1 bit for an option- al site of a pre-cooling station (parking lot), m bits for a pre- cooling service station for agricultural products and m bits for separators; a gene in the 1°% bit is a selected site for a pre- cooling station (parking lot), and when a pre-cooling station is not required to be built, the gene in the 1°" bit only represents a starting point for a vehicle; other non-0 genes represent a ser- vice station; 0 genes represent a separator, consecutive genes be- tween two separators represent the stations that are served se- gquentially on a path, and a gene in the 2° bit is a fixed separa- tor. In order to distinguish a pre-cooling method used by each service station, when a position of a non-0 gene in the 1%: bit on a path is set as an odd number, the mobile pre-cooling method is selected for the corresponding service station and all the service stations on the same path; on the contrary, if a position of a non-0 gene in the 1** bit on the path is an even number, the fixed pre-cooling method is selected for the corresponding service sta- tion and all the service stations on the same path; FIG. 3 dis- plays 1 chromosome that may appear.
S2: initialization of a population
S2.1: setting the size of a population as np, and setting the population X as a zero matrix of np rows and 2mt+l lines;
S2.2: sequentially assigning values to the vectors X; of each row in the population X 82.2.1: siting part of a pre-cooling station
S2.2.1.1: determining a probability u, of each optional site for a pre-cooling station (parking lot) being chosen according to a logistic capacity-distance product, wherein the calculation for- d, mula is as follows: uy, = zein
S2.2.1.2: randomly selecting a site by means of a roulette to determine a value of a gene in the 1°" bit of X;, that is, py. values are accumulated in sequence to obtain a cumulative probability A, and a random number a; is generated in an interval [0,1]; when a;SA;, a No. 1 optional site is selected as a pre-cooling station (parking lot), and when 24, .,<a;£4,, a No. b optional site is se- lected.
S2.2.2: valuing a gene in the 2™ bit as 0, which is a fixed separator; 52.2.3: randomly arranging the m-1 0 genes and No. 1 - m ser- vice stations and filling them in the 3% - 2m+1"™ bits of Xi;
S2.2.4: check and adjustment of feasibility
This problem includes two types of constraints, namely vehi- cle capacity and time, where a total output of a service path for the fixed pre-cooling method does not exceed a carrying capacity of a maximum type of a transport vehicle, and a transport time does not exceed a maximum pre-cooling delay time; a total time of a service path for each pre-cooling vehicle does not exceed the maximum working hours of a single day. Each service path is checked in sequence to confirm whether it meets the above con- straints; if not, the path is adjusted or vehicles are added for a service station until all paths meet the constraints.
S2.2.4.1: identifying a chromosome, separating the paths ac- cording to the pre-cooling methods, and obtaining a path matrix and a demand matrix corresponding to the two pre-cooling methods, respectively.
Firstly, the positions of all 0 genes are found in a chromo- some, and judgment is performed in sequence on whether there is a non-0 gene between every two 0 genes, if not, skip to the next 0 gene, and if yes, the non-0 gene is used as a service path; an odevity is judged for a position of a 1°% non-0 gene in the chromo- some; if it is in an even bit, a fixed pre-cooling station is cho- sen for pre-cooling on the path, the path is stored in a fixed pre-cooling path matrix L°; and meanwhile, the demand of each ser- vice station on the path also needs to be recorded and stored in the fixed demand matrix 9%, with the number of rows being n,; if it is in an odd bit, a mobile pre-cooling vehicle is chosen for pre- cooling on the path, and accordingly the path and the demand are stored in a mobile pre-cooling path matrix ZI" and a mobile demand matrix ©, with the number of rows being n4; this judgment will continue until the last separator. If there is still a non-0 gene after the last 0 gene, the non-0 gene is used as a service path, its pre-cooling method is judged according to the aforesaid steps, and the path and the demand are stored in the corresponding matri- ces; secondly, the gene in the 1°" bit of the chromosome is a starting point of all the recorded service paths, and added to the beginning and the end of each row of LF and Lv.
S2.2.4.2: sequentially checking whether the existing chromo- some meets the constraint conditions.
If L° is not null, judgment on the capacity constraint of the fixed pre-cooling method is performed, that is, the elements of
Us each row in O° are sequentially accumulated to obtain a matrix ees of €, d 3 ; for the first n.-1 rows, when exceeds a maximum vehicle carrying capacity Sux, the serial numbers of the service stations corresponding to the element and all the subsequent elements in the row are added into [° from the positions of L°(c¢c+1,2) sequen- tially, whereas the original elements in L° are moved backwards, and correspondingly the matrices Q° and Of are updated at the same time; for the last row n,, if the total path demand exceeds the capacity limit, the number of transport vehicles is increased mentele] 4 by mas ‚ that is, [Peen] rows of element 0 are added into the matrices I°, 9° and Q&c: respectively, the gene in the 1°" bit of the chromosome is added at the beginning and the end of each new row of I°; at this moment, the number of rows in the aforesaid matrix is n,’; then the judgment on capacity constraint and the path adjustment are continued; when Q5..(c’,d) exceeds the maximum vehicle carrying capacity Sm; the serial numbers of the service stations corresponding to the element and all the subse- quent elements in the row are inserted from L°(c’+1,2), the origi- nal elements in T° are moved backwards, and correspondingly the matrices Q° and QF. are updated at the same time.
Then, judgment on the time constraint of the fixed pre- cooling method is performed, that is, according to the service paths in Lf, the time required to reach the pre-cooling station from each service station in each path is calculated sequentially to obtain a matrix T°. For the first n,’-1 rows, whether each ele- ment in the matrix exceeds tg... is judged in sequence; if yes, the serial numbers of the service stations corresponding to the ele- ment and the subsequent elements are added into the last row of L° from the positions of L°(n.’,2) sequentially, whereas the original elements in L° are moved backwards, and correspondingly the matri- ces T°, ¢° and QZ are updated at the same time; for the last row ng’, if tues, is exceeded, the number of transport vehicles needs to be increased by [reed] rows of element 0, that is, [pel] rows of element O are added into the matrices L°, T°, 0° and Qj.., respectively, and the gene in the 1°" bit of the chro- mosome is added at the beginning and the end of each new row of LY, and at the moment, the number of rows in the aforesaid matrix is ny”; then the judgment on capacity constraint and the path adjust- ment are continued; when T° (c”+d”) exceeds tae1ay, the serial num- bers of the service stations corresponding to the element and all the subsequent elements in the row are inserted from L°(c”+1,2), the original elements in Z° are moved backwards, and corresponding- ly the matrices T°, 9° and Qj. are updated at the same time. By this time, except for the last row of L°, all other paths have met the capacity and time constraints at the same time, and thus the capacity constraint is checked again for the last line using the same steps above.
Finally, judgment on the time constraint of the mobile pre- cooling method is performed according to the aforesaid idea, that is, according to the service paths in LY, the accumulated service hours 7’ in each path is calculated sequentially; when the service hours for the path exceed the maximum working hours tworr; the seri- al numbers of the overtime service station and the subsequent ser- vice stations are moved to the next path, and correspondingly the matrices T° and OQO" are updated at the same time, for the last path, if the service hours for the path exceed tr; the number of pre- cooling vehicles needs to be increased by [meteen] 1, that is,
[reed] ows of element 0 are added into the matrices LY, T° and OQ’, respectively, and the gene in the 1°" bit of the chromosome is added at the beginning and the end of each new row of LY; and at this moment, the number of rows in the aforesaid matrix is n.’, and then the judgment on capacity constraint and the path adjustment are continued; when T'(c¢,d) exceeds tr; the serial numbers of the service stations corresponding to the element and all the subse- quent elements in the row are inserted from LY(c+l,2), the original elements in ZI" are moved backwards, and correspondingly the matri- ces T and OQ" are updated at the same time.
S2.2.5: restoring the chromosome based on the latest L° and LV to obtain a feasible solution X;;
S2.3: repeating the steps in S2.2 for np times to get an ini- tial population X.
S3: fitness calculation 53.1: assigning values to the parameters required for calcu- lation based on the actual situation;
S3.2: calculating a fitness value of each chromosome in X 83.2.1: identifying a chromosomes X;, and obtaining a total cost of the system according to the pre-cooling method
S3.2.1.1: according to S2.2.4.1, identifying a chromosomes, separating the paths according to the pre-cooling methods, and ob- taining the path matrix and the demand matrix corresponding to the two pre-cooling methods, respectively.
S3.2.1.2: calculating the cost Co of the fixed pre-cooling system
Firstly, the scale p of the pre-cooling station, the type s and the quantity n, of transport vehicles are determined, p is a sum Q; of all the elements of the demand matrix corresponding to the fixed pre-cooling method; s needs to be determined according to the demand matrix and the carrying capacity of each type of the transport vehicles, wherein each row of the demand matrix of the pre-cooling method is summed first to take the maximum value, then this maximum value is compared with the carrying capacity of each type of the transport vehicles, and the type corresponding to the capacity that is greater than and the closest to this maximum val-
ue is the required type; n, is the number of rows in the demand matrix of the pre-cooling method; secondly, a total transport dis- tance D. of the transport vehicles needs to be calculated, that is, the distances of all paths are summed according to the path matrix and the distance between the points. Therefore, the construction cost of the pre-cooling station with a scale p is p-¢, and the operating cost is p-¢, tT; the purchase cost of the transport ve- hicles is n,'c{%, the operating cost is ng°c;°°-t:T, and the transport cost is 2:D;:c{T%:30:t:T; and the loading and unloading cost is g-Qs-8; and finally, the cost of the fixed pre-cooling system is a sum of the above-mentioned items, i.e., Cgg =P Cp +p cy: t-T+ng ST ng tT +2 Dg cP 30 T+g 00.
S3.2.1.3: calculating the cost Cms of the mobile pre-cooling system
Firstly, the type u and the quantity n, of the pre-cooling vehicles are determined, u needs to be determined according to the maximum element value in the demand matrix corresponding to the mobile method and the carrying capacity of each type of the pre- cooling vehicles, and the type corresponding to the carrying ca- pacity that is greater than and the closest to the maximum element value in the demand matrix is the required type; m, is the number of rows in the demand matrix of the pre-cooling method; secondly, a total transport distance D, of the transport vehicles needs to be calculated, that is, the distances of all paths are summed accord- ing to the path matrix and the distance between the points. Then, a total demand D, of the service stations that adopt the mobile pre-cooling method is calculated, that is, the elements of the de- mand matrix are summed. Therefore, the purchase cost of pre- cooling vehicles is ny, -cS%, the operating cost is nyc” :t:T, and the transport cost is 2:D,:ct7%-30:t:T; and the loss cost is 6:0,: 8; finally, the cost of the mobile pre-cooling system is a sum of the above-mentioned items, i.e.,
Cmop = Tu CE + ny rcpt T +2 Dy ca 30 tT +6: 040.
S3.2.1.4: adding Cs, and Cup to obtain the total cost Cu; of the chromosome system, and assigning a value to f(X);
S3.2.2: recording an optimal solution
S3.2.2.1: repeating the steps in 83.2.1, sequentially calcu- lating the total cost of each chromosome system in the matrix X to obtain a matrix f(X) of objective function values, and recording the minimum value as fu, and recording the chromosome correspond- ing to the minimum value as Xmiaj
S3.2.2.2: comparing the optimal objective function value of this generation with the currently obtained optimal minf; when fa <minf, minf=rf,;,; and updating the optimal chromosome minX into Xin at the same time; $53.3: calculating a fitness value of each chromosome accord- ing to the following formula to obtain a matrix F of population fitness values: mt
FX) = fun +1
S4: selection operation
Selecting a population by means of a roulette, namely:
S4.1: calculating a probability of each chromosome X; being chosen according to the following formula:
Fy
PTET
$4.2: accumulating p; values to obtain a cumulative probabil- ity Pr, and generating a random number a; in an interval [0,1]; when a,<P;, Xi is inherited into a new population X’; when Pii < a:<P;, X; 1s inherited into the new population X’ until the number of chromosomes in the new population X’ reaches np;
S5: crossover operation 35.1: randomly pairing chromosomes in the population X/’;
S5.2: judging in sequence whether each pair of chromosomes are subject to the crossover operation, that is, a random number is firstly generated in an interval [0,1], when the random number is less than or egual to a crossover probability p., go to $5.3; otherwise, keep the pair of original genes and go to S5.5; 35.3: performing the crossover operation by using a strategy of crossing a separator part and a non-separator part, respective- ly, that is, firstly inheriting the position and number of the separators of Parent 1 to Offspring 1, and then filling the non-
separator elements of Parent 2 sequentially in the Offspring 1 chromosome, as shown in FIG. 4; similarly, for Offspring 2, first- ly inheriting the position and number of the separator of Parent 2 to Offspring 2, and then filling the non-separator elements of
Parent 1 in Offspring 2. That is, the offspring inherits the par- ent’s pre-cooling method and the quantities of the two types of vehicles, as well as the siting of the pre-cooling station (park- ing lot) of the other parent and a certain degree of service path orders.
S5.4: checking and adjusting the feasibility for the crossed chromosomes according to 52.2.4; 35.5: performing the operations in S5.2-S5.4 for all chromo- somes to obtain a new population X7;
S6: mutation operation
The present invention uses a total of 3 mutation operators: a first mutation is a mutation of a gene in the 1°" bit for siting; a second mutation is a mutation of a service path segment gene part; a third mutation is a mutation of the pre-cooling service method.
Therefore, judgment is performed on whether the mutation operation is applied to each chromosome for 3 times. If mutation is re- quired, perform the mutation, and otherwise, skip it and go to 56.5.
S6.1: generating a random number on [0,1]. When the random number is less than or equal to the mutation probability Da; ran- domly selecting another point in the set N as a new optional site for the pre-cooling station (parking lot); when the random number is greater than p,, directly going to S6.2;
S6.2: generating a random number in an interval [0,1]. When the random number is less than or equal to p,, randomly selecting two genes (not 0 at the same time) at the 3% - 2m+1° gene segments of the chromosome for crossover, as shown in FIG. 5; when the ran- dom number is greater than Dn, going to 6.3;
S6.3: generating a random number in an interval [0,1]. When the random number is less than or equal to Ds; randomly selecting a path in the chromosome to change its pre-cooling method by means of increasing or reducing separators, as shown in FIG. 6; when the random number is greater than Dm, going to 6.4;
S6.4: checking and adjusting the feasibility for the mutated chromosomes according to 82.2.4; 86.5: performing the operations in S6.1-S6.4 for all chromo- somes to obtain a new population X77.
S57: iteration
S3-S6 are repeated until a maximum number of iterations is reached. Besides, when the optimal value does not change for mul- tiple consecutive generations any more, or the chromosomes of the population are completely consistent, the iteration will directly end. After iteration, an optimal chromosome minX can be finally obtained, it is interpreted according to the coding method in S1, and then the final planning solution can be obtained.
The present invention has the following advantages: the present invention proposes a method for planning an origin-based pre-cooling system considering an investment of mul- ti-type facilities, in consideration of applying both fixed and mobile pre-cooling methods, to solve a problem of unavailable pre- cooling or poor pre-cooling effects for China's small-scale farm- ing. In the present invention, firstly, a siting-path optimization model of multi-type pre-cooling facilities for agricultural prod- ucts in villages and towns is established with an objective of minimizing a system cost; secondly, an improved genetic algorithm is designed for solution, and chromosomes and rules for crossover and mutation are redesigned to optimize both siting and paths. The present invention can effectively improve the current situations of unavailable pre-cooling and poor pre-cooling effects for small- scale farming, with an important practical significance for per- fecting and building a cooling system for agricultural products, optimizing a "first kilometer" process in cold chains for agricul- tural products, and promoting a socialized service process for villages and towns in China.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an organizational form of fixed pre-cooling;
FIG. 2 shows an organizational form of mobile pre-cooling;
FIG. 3 is a schematic diagram of chromosome coding;
FIG. 4 is an example of a crossover operator;
FIG. 5 is an example of the second mutation operator;
FIG. 6 is an example of the third mutation operator.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The present invention will be further explained below in com- bination with the accompanying drawings of specification.
A population size is set as 50, a crossover probability is 0.5, a mutation probability is 0.1, and a maximum number of itera- tion times is 2,000; when an optimal value does not change for 200 consecutive generations any more, or chromosomes of the population are completely consistent, the iteration will directly end.
Sl: chromosome coding
A chromosome is composed of three parts: 1 bit of an optional site of a pre-cooling station (parking lot), m bits of a pre- cooling service station for agricultural products and m bits of separators; a gene in the 1°" bit is a selected site for a pre- cooling station (parking lot}; and when a pre-cooling station is not required to be built, a gene in the 1°° bit only represents a starting point for a vehicle; other non-0 genes represent a ser- vice station; 0 genes represent a separator, consecutive genes be- tween two separators represent the stations that are served se- quentially on a path, and a gene in the 2" bit is a fixed separa- tor. In order to distinguish a pre-cooling method used by each service station, when a position of a non-0 gene in the 1°*' bit on a path is set as an odd number, the mobile pre-cooling method is selected for the corresponding service station and all the service stations on the same path; on the contrary, if a position of a non-0 gene in the 1°" bit on the path is an even number, the fixed pre-cooling method is selected for the corresponding service sta- tion and all the service stations on the same path.
S52: initialization of a population 82.1: setting the size of a population as np, and setting the population X as a zero matrix of np rows and 2m+l lines; 82.2: sequentially assigning values to the vectors X; of each row in the population X 82.2.1: siting part of a pre-cooling station
S2.2.1.1: determining a probability up, of each optional site for a pre-cooling station (parking lot) being chosen according to a logistic capacity-distance product, wherein the calculation for- . d mula 1s as follows: py = pmetintn
S2.2.1.2: randomly selecting a site by means of a roulette to determine a value of a gene in the 1°% bit of X;, that is, u, values are accumulated in sequence to obtain a cumulative probability A, and a random number a; is generated in an interval [0,1]; when a;<A;, a No. 1 optional site is selected as a pre-cooling station (parking lot}, and when 4, ;<a;f3,, a No. b optional site is se- lected. $2.2.2: valuing a gene in the 2™ bit as 0, which is a fixed separator; 82.2.3: randomly arranging the m-1 0 genes and No. 1 - m ser- vice stations, and filling them in the 3™-2m+1™ bits of Xi; 52.2.4: check and adjustment of feasibility
Each service path is checked in sequence whether it meets the above constraints; if not, the path is adjusted or vehicles are added for the service station until all paths meet the con- straints.
S2.2.4.1: identifying a chromosome, separating the paths ac- cording to the pre-cooling methods, and obtaining a path matrix and a demand matrix corresponding to the two pre-cooling methods, respectively.
Firstly, the positions of all 0 genes are found in a chromo- some, and judgment is performed in sequence on whether there is a non-0 gene between every two 0 genes, if not, skip to the next 0 gene, and if yes, the non-0 gene is used as a service path; an odevity is judged for a position of a 1°% non-0 gene in the chromo- some; if it is in an even bit, a fixed pre-cooling station is cho- sen for pre-cooling on the path, and the path is stored in a fixed pre-cooling path matrix L°; and meanwhile, the demand of each ser- vice station on the path also needs to be recorded and stored in the fixed demand matrix 9%, with the number of rows being ng; if it is in an odd bit, a mobile pre-cooling vehicle is chosen for pre- cooling on the path, and accordingly the path and the demand are stored in a mobile pre-cooling path matrix LY and the mobile demand matrix OQ", with the number of rows being n,; this judgment will continue until the last separator. If there is still a non-0 gere after the last 0 gene, the non-0 gene is used as a service path, its pre-cooling method is judged according to the aforesaid steps, and the path and the demand are stored in the corresponding matri- ces; secondly, the gene in the 1°" bit of the chromosome is a starting point of all the recorded service paths, and added to the beginning and the end of each row of I° and ZD".
S52.2.4.2: sequentially checking whether the existing chromo- some meets the constraint conditions
If Lf is not null, judgment on the capacity constraint of the fixed pre-cooling method is performed, that is, the elements of each row in Q° are sequentially accumulated to obtain a matrix es ; for the first n,-1 rows, when Q}.(c,d) exceeds a maximum vehicle carrying capacity Sp.., the serial numbers of the service stations corresponding to the element and all the subsequent elements in the row are added into ZI’ from the positions of L°(¢+l,2) sequen- tially, whereas the original elements in L° are moved backwards, and correspondingly the matrices ° and Qj. are updated at the same time; for the last row n,, if the total path demand exceeds the capacity limit, the number of transport vehicles is increased by Se that is, zee rows of element 0 are added into the matrices T°, @° and Qi: respectively, the gene in the 1°% bit of the chromosome is added at the beginning and the end of each new ow of 1°; at this moment, the number of rows in the aforesaid matrix is ng’, and then the judgment on capacity con- straint and the path adjustment are continued; when Q}..(c’,d) ex- ceeds the maximum vehicle carrying capacity Saxr the serial num- bers of the service stations corresponding to the element and all the subsequent elements in the row are inserted from L°(¢’+1,2), the original elements in L° are moved backwards, and corresponding- ly the matrices Q° and Qj. are updated at the same time.
Then, judgment on the time constraint of the fixed pre- cooling method is performed, that is, according to the service paths in 1°, the time required to reach the pre-cooling station from each service station in each path is calculated sequentially to obtain a matrix T°. For the first n,’-1 rows, whether each ele- ment in the matrix exceeds tg... is judged in sequence; if yes, the serial numbers of the service stations corresponding to the ele- ment and the subsequent elements are added into the last row of L° from the positions of L°(n.’,2) sequentially, whereas the original elements in L° are moved backwards, and correspondingly the matri- ces T°, ¢° and QZ are updated at the same time; for the last row ng’, if tues, is exceeded, the number of transport vehicles needs to be increased by [reed] rows of element 0, that is, [pel] rows of element O are added into the matrices L°, T°, 0° and Qj.., respectively, and the gene in the 1°" bit of the chro- mosome is added at the beginning and the end of each new row of LY; and at the moment, the number of rows in the aforesaid matrix is n,”, and then the judgment on capacity constraint and the path ad- justment are continued; when T° (c¢”,d”) exceeds tss; the serial numbers of the service stations corresponding to the element and all the subsequent elements in the row are inserted from
IF{¢”+1,2), the original elements in Z° are moved backwards, and correspondingly the matrices 7°, 9° and Qi are updated at the same time. By this time, except for the last row of L7, all other paths have met the capacity and time constraints at the same time, and thus the capacity constraint is checked again for the last line using the same steps above.
Finally, judgment on the time constraint of the mobile pre- cooling method is performed according to the aforesaid idea, that is, according to the service paths in LY, the accumulated service hours 7’ in each path is calculated sequentially; when the service hours for the path exceed the maximum working hours tworr; the seri- al numbers of the overtime service station and the subsequent ser- vice stations are moved to the next path, and correspondingly the matrices T° and OQO" are updated at the same time, for the last path, if the service hours for the path exceed tr; the number of pre- cooling vehicles needs to be increased by [mee], that is,
bs rows of element 0 are added into the matrices LY, TV and OQ’, respectively, and the gene in the 1°" bit of the chromosome is added at the beginning and the end of each new row of LY; at the moment, the number of rows in the aforesaid matrix is n.”, and then the judgment on capacity constraint and the path adjustment are continued; when T'(c¢,d) exceeds t,., the serial numbers of the service stations corresponding to the element and all the subse- quent elements in the row are inserted from LY(c+1,2), the original elements in ZI" are moved backwards, and correspondingly the matri- ces T and OQ" are updated at the same time.
S2.2.5: restoring the chromosome based on the latest L° and LV to obtain a feasible solution X;;
S2.3: repeating the steps in S2.2 for np times to get an ini- tial population X.
S3: fitness calculation 53.1: assigning values to the parameters required for calcu- lation based on the actual situation;
S3.2: calculating a fitness value of each chromosome in X 83.2.1: identifying a chromosomes X;, and obtaining a total cost of the system according to the pre-cooling method
S3.2.1.1: according to S2.2.4.1, identifying a chromosome, separating the paths according to the pre-cooling methods, and ob- taining the path matrix and the demand matrix corresponding to the two pre-cooling methods, respectively.
S3.2.1.2: calculating the cost Co of the fixed pre-cooling system
Firstly, the scale p of the pre-cooling station, the type s of the transport vehicles and the quantity n, of the transport ve- hicles are determined, p is a sum Q, of all the elements of the demand matrix corresponding to the fixed pre-cooling method; s needs to be determined according to the demand matrix and the car- rying capacity of each type of the transport vehicles, wherein each row of the demand matrix of the pre-cooling method is summed first to take the maximum value, then this maximum value is com- pared with the carrying capacity of each type of the transport ve- hicles, and the type corresponding to the capacity that is greater than and the closest to this maximum value is the required type; n, is the number of rows in the demand matrix of the pre-cooling method; secondly, a total transport distance D. of the transport vehicles needs to be calculated, that is, the distances of all paths are summed according to the path matrix and the distance be- tween the points. Therefore, the construction cost of the pre- cooling station with a scale p is p'C;,; and the operating cost is prc, tT; the purchase cost of the transport vehicles is ng-ci?, the operating cost is nge tT, and the transport cost is 2-Dg-cf-30-t-T; and the loading and unloading cost is g-Q,-8; and finally, the cost of the fixed pre-cooling system is a sum of the above-mentioned items, i.e.,
Csto =P Cp +p Cot THng cs Ang ET +2 Dg PBO tT +g
Qs-6.
S3.2.1.3: calculating the cost Cs of the mobile pre-cooling system
Firstly, the type corresponding to the carrying capacity that is greater than and the closest to the maximum element value in the demand matrix is type u of pre-cooling vehicles; n, is the num- ber of rows in the demand matrix of the pre-cooling method; sec- ondly, a total transport distance D, of the transport vehicles needs to be calculated, that is, the distances of all paths are summed according to the path matrix and the distance between the points. Then, the total demand D, of the service stations that adopt the mobile pre-cooling method is calculated, that is, the elements of the demand matrix are summed. Therefore, the purchase cost of pre-cooling vehicles is ny 'c{%, the operating cost is nu cp -t:T, and the transport cost is 2:Dp:c7%:30:t:T; and the loss cost is §-Q,-68; finally, the cost of the mobile pre-cooling system is a sum of the above-mentioned items, i.e.,
Crop = Tu CT tn tT +2 Dy cl 30 T+6: 080.
S3.2.1.4: adding C+, and Caos to obtain the total cost C,;; of the chromosome system, and assigning a value to f(X;); 83.2.2: recording an optimal solution
S3.2.2.1: repeating the steps in S3.2.1, sequentially calcu- lating the total cost of each chromosome system in the matrix X to obtain a matrix f(X) of objective function values, and recording the minimum value as f,;,; and recording the chromosome correspond- ing to the minimum value as Xin?
S3.2.2.2: comparing the optimal objective function value of this generation with the currently obtained optimal minf; when fun <minf, minf=f,:,, and updating the optimal chromosome minX into Xuan at the same time; 83.3: calculating a fitness value of each chromosome accord- ing to the following formula to obtain a matrix F of population fitness value:
Fo 1 te FX) == [min +1
S4: selection operation
Selecting a population by means of a roulette, namely: 84.1: calculating a probability of each chromosome X; being chosen according to the following formula: bi Zio Fy
S4.2: accumulating p; values to obtain a cumulative probabil- ity Pr, and generating a random number a; in an interval [0,1]; when a:SP:, X. is inherited into a new population X’; when Pi < a:SP;, X: is inherited into the new population X’ until the number of chromosomes in the new population X; reaches np.
S5: crossover operation
S5.1: randomly pairing chromosomes in the population X’;
S5.2: judging in sequence whether each pair of chromosomes are subject to the crossover operation, that is, a random number is firstly generated in an interval [0,1], when the random number is less than or equal to a crossover probability p., go to $5.3; otherwise, keep the pair of original genes and go to $5.5; 55.3: performing the crossover operation by using a strategy of crossing the separator part and a non-separator part, respec- tively, that is, firstly inheriting the position and number of separators of Parent 1 to Offspring 1, and then filling the non- separator elements of Parent 2 sequentially in the Offspring 1 chromosome, as shown in FIG. 4; similarly, for Offspring 2, first-
ly inheriting the position and number of the separator of Parent 2 to Offspring 2, and then filling the non-separator elements of
Parent 1 in Offspring 2. 55.4: checking and adjusting the feasibility for the crossed chromosomes according to S2.2.4; $5.5: performing the operations in S5.2-S5.4 for all chromo- somes to obtain a new population X”.
S6: mutation operation
The present invention uses a total of 3 mutation operators: the first mutation is a mutation of the gene in the 1°" bit for siting; the second mutation is a mutation of service path segment gene part; the third mutation is a mutation of the pre-cooling service method. Therefore, it shall be judged whether the mutation operation is performed for each chromosome for 3 times. If muta- tion is required, perform the mutation, and otherwise, skip it and go to S6.5.
S6.1: generating a random number in an interval [0,1]. When the random number is less than or equal to the mutation probabil- ity Dx randomly selecting another point in the set N as a new op- tional site for the pre-cooling station (parking lot}; when the random number is greater than Dx, directly going to S6.2;
S6.2: generating a random number in an interval [0,1]. When the random number is less than or equal to p,, randomly selecting two genes (not 0 at the same time) at the 3*%-2m+1*® gene segments of the chromosome for crossover, as shown in FIG. 5; when the ran- dom number is greater than p,, going to S6.3;
S6.3: generating a random number in an interval [0,1]. When the random number is less than or equal to pm randomly selecting a path in the chromosome to change its pre-cooling method by means of increasing or reducing separators, as shown in FIG. 6; when the random number is greater than Dm; going to S6.4;
S6.4: checking and adjusting the feasibility for the mutated chromosomes according to S2.2.4; 56.5: performing the operations in S6.1-S6.4 for all chromo- somes to obtain a new population X/Y.
S7: iteration
S3-S6 are repeated until a maximum number of iterations is reached.
Besides, when the optimal value does not change for mul- tiple consecutive generations any more, or the chromosomes of the population are completely consistent, the iteration will directly end.
After iteration, an optimal chromosome minX can be finally obtained, it is interpreted according to the coding method in £1, and then the final planning solution can be obtained.

Claims (4)

CONCLUSIESCONCLUSIONS 1. Werkwijze voor het plannen van een op oorsprong gebaseerd voor- koelsysteem, rekening houdend met een investering in installaties met meerdere typen, die de volgende stappen omvat: Stap I, modellering het probleem wordt als volgt omschreven: in een landelijke omge- ving zijn er m voorkoel servicestations, n optionele voorkoel sta- tions (parkeerplaatsen), ¢ transportvoertuigen die pendelen tussen de voorkoelstations en de servicestations, en © mobiele voorkoel voertuigen; M={1, 2,.., m} is een verzameling servicestations, A={mt1, m+2,.., mtn} is een verzameling voorkoelstations (parkeer- plaatsen), &= {1, 2,.., 9} is een verzameling transportvoertuigen, &={1, 2,.., w} is een verzameling voorkoel voertuigen, V=MUN is een verzameling van alle punten, E= {(i,j)li,jeV} \ {i,j)li,jEN} is een verzameling zijden, waarbij elke zijde komt overeen met een af- stand van d;,;, en g, is een voorkoeling vraag van het servicesta- tion m(mEM); waarbij de modellering tot doel heeft om de totale kosten van een voorkoelsysteem te minimaliseren, en de inhoud van de besluitvor- ming omvat: 1) een voorkoelmethode van elke landbouwer; 2) een lo- catie en capaciteit van voorkoelstations, evenals een hoeveelheid, type en pad van ondersteunende transportvoertuigen; 3) een hoe- veelheid, type en traject van voorkoel voertuigen; en waarbij va- riabelen en betekenissen daarvan in het model als volgt zijn: cL: een eenheidsconstructiekost van een voorkoelstation; ct een maandelijkse eenheidsbedrijfskost van een voorkoelstation; cs: een aanschafprijs van een s-type transportvoertuig; ce: een maandelijkse exploitatiekost van een s-type transport- voertuig; cf: rijkosten per eenheid van een s-type transportvoertuig; ds: een maximale reisafstand van een vervoermiddel s-type; v‚: een rijsnelheid van een s-type transportvoertuig; cif: een aanschafprijs van een u-type voorkoelvoertuig; ce: een maandelijkse bedrijfskost van een u-type voorkoelings-1. Method for planning an origin-based pre-cooling system, taking into account an investment in multi-type installations, comprising the following steps: Step I, modeling the problem is described as follows: being in a rural environment er m pre-cooling service stations, n optional pre-cooling stations (parking areas), ¢ transport vehicles that commute between the pre-cooling stations and the service stations, and © mobile pre-cooling vehicles; M={1, 2,.., m} is a collection of service stations, A={mt1, m+2,.., mtn} is a collection of pre-cooling stations (parking lots), &= {1, 2,.. , 9} is a collection of transport vehicles, &={1, 2,.., w} is a collection of pre-cooling vehicles, V=MUN is a collection of all points, E= {(i,j)li,jeV} \ { i,j)li,jEN} is a set of sides, where each side corresponds to a distance of d;,;, and g, is a pre-cooling request from the service station m(mEM); where the modeling aims to minimize the total cost of a pre-cooling system, and the content of the decision making includes: 1) a pre-cooling method of each farmer; 2) a location and capacity of pre-cooling stations, as well as a quantity, type and path of supporting transport vehicles; 3) a quantity, type and range of pre-cooled vehicles; and wherein variables and meanings thereof in the model are as follows: cL: a unit construction cost of a pre-cooling station; ct a monthly unit operating cost of a pre-cooling station; cs: a purchase price of an s-type transport vehicle; ce: a monthly operating cost of an s-type transport vehicle; cf: driving costs per unit of an s-type transport vehicle; ds: a maximum travel distance of an s-type means of transport; v‚: a driving speed of an s-type transport vehicle; cif: a purchase price of a u-type pre-cooled vehicle; ce: a monthly operating cost of a u-type pre-cooling voertuig; cl: rijkosten per eenheid van een u-type voorkoelvoertuig; d;: een maximale reisafstand van een u-type voorkoelvoertuig; ou: een enkele voorkoeldiensttijd van een u-type voorkoelvoertuig; vu: een rijsnelheid van een u-type voorkoelvoertuig; H,: een aantal transport knooppunten op het p'* pad voor transport- voertuigen; bij voorbeeld, het 1°%* pad voor transportvoertuigen is “12155512”, in dat geval geldt H=4; ne(2<k<H,—1): een volgnummer van een servicestation gelegen op het kk" knooppunt op het ¢° pad voor transportvoertuigen; bijvoor- beeld is het le pad voor transportvoertuigen “1251552512, in welk geval geldt dat ni=1, wat aangeeft dat het 2° knooppunt waar een transportvoertuig langs het 1° pad passeert een nr. 1 servicesta- tion is; G,: een aantal transportknooppunten op het «° pad voor voorkoel- voertuigen; Af: een volgnummer van een servicestation gelegen op het 1°® knoop- punt op het «® pad voor voorkoeling van voertuigen; het 2° pad voor voertuigen met voorkoeling is bijvoorbeeld “12-45-3512, in welk geval geldt dat 22=3, wat aangeeft dat het 3° knooppunt waar een voertuig met voorkoeling langs het 2° pad passeert, een nr. 3 ser- vicestation is; s: een type transportvoertuig, dat wordt weergegeven door zijn laadvermogen, bijvoorbeeld s = 500 kg, 1.000 kg, 1.500 kg..., en SES, waarbij S een verzameling is van de soorten van transport- voertuigen ; u: een type voorkoelvoertuig, dat wordt weergegeven door zijn laadvermogen, bijvoorbeeld u = 500 kg, 1.000 kg, 1.500 kg..., en UEU, waarbij U een verzameling is van de typen voorkoelvoertuigen ; ty: een reistijd van een transportvoertuig ¢ van een servicesta- tion i naar een servicestation j, in welk geval geldt dat tio ap = yo a? . vs 7 ej: een reistijd van een voorkoelvoertuig w van een servicestationvehicle; cl: driving costs per unit of a u-type pre-cooled vehicle; d;: a maximum travel distance of a u-type pre-cooled vehicle; ou: a single pre-cooling service time of a u-type pre-cooling vehicle; vu: a driving speed of a u-type pre-refrigerated vehicle; H 1 : a number of transport nodes on the p'* path for transport vehicles; for example, the 1°%* path for transport vehicles is “12155512”, in which case H=4; ne(2<k<H,—1): a sequence number of a service station located at the kk" node on the ¢° path for transport vehicles; for example, the le path for transport vehicles is “1251552512, in which case ni= 1, indicating that the 2° node where a transport vehicle passes along the 1° path is a No. 1 service station G,: a number of transport nodes on the «° path for pre-cooled vehicles Af: a sequence number of a service station located at the 1°® node on the «® vehicle pre-cooling path; for example, the 2° path for vehicles with pre-cooling is “12-45-3512, in which case 22=3, indicating that the 3 ° node where a pre-cooled vehicle passes along the 2° path, is a No. 3 service station, s: a type of transport vehicle, which is represented by its payload, for example s = 500 kg, 1,000 kg, 1,500 kg... , and SES, where S is a collection of the types of transport vehicles; u: a type of pre-refrigerated vehicle, which is represented by its payload, e.g. u = 500 kg, 1,000 kg, 1,500 kg..., and UEU, where U is a collection of pre-cooled vehicle types; ty: a travel time of a transport vehicle ¢ from a service station i to a service station j, in which case tio ap = yo a? . vs 7 ej: a travel time of a pre-cooled vehicle w from a service station 9 dyn a0 i naar een servicestation j, in welk geval geldt dat 0 ae = To of’: een verblijftijd van een voorkoelvoertuig © bij een service- station i; indien een u-type voorkoelvoertuig service verleent aan een servicestation i, in dat geval geldt dat of = Hoy; Ef: een moment waarop een voorkoelvoertuig w arriveert bij een servicestation i, in welk geval geldt dat Eyo = Eje +079 +870 207 8: een eenheidsprijs van een landbouwproduct; g: en laad- en losverlies percentage van een vaste voorkoelingsme- thode; &: een laad- en losverliessnelheid van een mobiele voorkoelmetho- de, en <9; twor:: dagelijkse arbeidsuren van een voorkoelvoertuig; tdelay! een maximale voorkoel vertragingstijd; t: een aantal werkdagen voor het plukken en oogsten in een jaar; T: zakelijk boekjaar; 7,: een variable van 0-1; wanneer een oorsprong n is geselecteerd als parkeerplaats voor alle voertuigen, dan geldt dat 7,=1, anders 7,=0; als er een voorkoelstation in het systeem moet worden inge- bouwd, wordt standaard een voorkoelstation als parkeerplaats geko- zen; p: een schaal van een voorkoelstation; o,: een variabele van 0-1; wanneer een voorkoelstation wordt ge- bouwd op een oorsprong n, dan geldt dat «,=1, anders o,=0; Xis9: een variabele van 0-1, die aangeeft of er een direct pad is tussen zijden (i,j) en dat een transportvoertuig ¢ wordt gebruikt voor service; zo ja, dan geldt dat Xi1o=1, anders x;;,=0; Viia: een variabele van 0-1, die aangeeft of er een direct pad is tussen zijden (i,j) en dat een voertuig met voorkoeling w wordt gebruikt voor service; zo ja, dan geldt dat y;;.=1, anders y:;.=0; B: een variabele van 0-1; wanneer een transportvoertuig dienst verleent aan een servicestation m, dan geldt dat £=1; anders Bmp=07 Ome: een variabele van 0-1; wanneer een voorkoelvoertuig @ service verleent aan een servicestation m, dan geldt dat p.,=1, anders Om=0;9 dyn a0 i to a service station j, in which case 0 ae = To of': a residence time of a pre-cooled vehicle © at a service station i; if a u-type pre-cooled vehicle provides service to a service station i, in that case or = Hoy; Ef: a moment when a pre-cooled vehicle w arrives at a service station i, in which case Eyo = Eje +079 +870 207 8: a unit price of an agricultural product; g: and loading and unloading loss percentage of a fixed pre-cooling method; &: a load and unload loss rate of a mobile pre-cooling method, and <9; twor:: daily working hours of a pre-cooled vehicle; tdelay! a maximum precool delay time; t: a number of working days for picking and harvesting in a year; T: business year; 7, : a variable from 0-1; if an origin n is selected as a parking space for all vehicles, then 7,=1, otherwise 7,=0; if a pre-cooling station is to be built into the system, a pre-cooling station is selected as a parking space by default; p: a scale of a pre-cooling station; o, : a variable from 0-1; if a pre-cooling station is built on an origin n, then «,=1, otherwise o,=0; Xis9: a variable from 0-1, indicating whether there is a direct path between sides (i,j) and whether a transport vehicle ¢ is used for service; if so, then Xi1o=1, otherwise x;;,=0; Viia: a variable from 0-1, which indicates whether there is a direct path between sides (i,j) and whether a vehicle with pre-cooling w is used for service; if so, then y;;.=1, otherwise y:;.=0; B: a variable from 0-1; when a transport vehicle provides service to a service station m, then £=1; else Bmp=07 Ome: a variable from 0-1; if a pre-cooled vehicle @ provides service to a service station m, then p.,=1, otherwise Om=0; Ys: een variabele van 0-1; wanneer een transportvoertuig van het s- type wordt gebruikt, dan geldt dat y,=1, anders y. =0; Ys: een variabele van 0-1; wanneer een u-type voorkoelvoertuig wordt gebruikt, dan geldt dat =1, anders vy, =0;Ys: a variable from 0-1; if an s-type transport vehicle is used, then y,=1, otherwise y. =0; Ys: a variable from 0-1; if a u-type pre-cooled vehicle is used, then =1, otherwise vy, =0; het model, met als doel om de totale kosten C,;; van een landelijk voorkoelsysteem te minimaliseren, omvat de kosten van een vast voorkoel subsysteem en een mobiel voorkoel subsysteem, uitgedrukt als respectievelijk Cs: en Cupp, en de doelstelling van het model kan worden uitgedrukt als formule (1):the model, with the aim of total costs C,;; of a rural pre-cooling system includes the cost of a fixed pre-cooling subsystem and a mobile pre-cooling subsystem, expressed as Cs: and Cupp, respectively, and the objective of the model can be expressed as formula (1): min Cay = Csto + Cop (1) in het vaste voorkoelsysteem omvat een kostenstructuur: 1) voor- koelstation gerelateerde kosten Cob, omvattende een constructie- kost en een bedrijfskost van een voorkoelstation; 2) ondersteuning van aan transportvoertuig gerelateerde kosten Ctru, omvattende drie delen: aankoopkosten van een transportvoertuig, bedrijfskos- ten van transportvoertuigen en transportkosten van een transport- voertuig; en 3) een laad- en losverlies kost Cwas. in dit model geeft een objectieve functie, zoals die wordt weerge- geven door formule (1), de minimumkosten van een landelijk voor- koeling faciliteitssysteem, wat een som is van de kosten van de vaste en mobiele voorkoeling subsystemen; Stap II, het oplossen van het model Sl: chromosoomcodering een chromosoom is samengesteld uit drie delen: 1 bit voor een op- tionele plaats van een voorkoelstation (parkeerplaats), m bits voor een voorkoel servicestation voor landbouwproducten en m bits voor separatoren; een gen in het 1° bit is een geselecteerde loca- tie voor een voorkoelstation (parkeerplaats), en wanneer er geen voorkoelstation hoeft te worden gebouwd, vertegenwoordigt het gen in het 1° bit slechts een startpunt voor een voertuig; andere niet- 0 genen vertegenwoordigen eenservicestation; 0 genen vertegenwoor- digen een separator, opeenvolgende genen tussen twee separatoren vertegenwoordigen de stations die opeenvolgend op een pad worden bediend, en een gen in de 2° bit is een vaste separator; om een voorkoelingsmethode te onderscheiden die door elk servicestation wordt gebruikt, wanneer een positie van een niet-0 gen in het 1° bit op een pad is ingesteld als een oneven getal, wordt de mobiele voorkoelingsmethode geselecteerd voor het overeenkomstige service- station en alle servicestations op hetzelfde pad; in tegenstelling daarmee, als een positie van een niet-0 gen in het 1° bit op het pad een even getal is, wordt de vaste voorkoelingsmethode geselec- teerd voor het overeenkomstige servicestation en alle servicesta- tions op hetzelfde pad; Afb. 3 toont 1 chromosoom dat kan ver- schijnen; S2: initialisatie van een populatiemin Cay = Csto + Cop (1) in the fixed pre-cooling system, a cost structure includes: 1) pre-cooling station related costs Cob, including a construction cost and an operating cost of a pre-cooling station; 2) supporting transport vehicle related costs Ctru, comprising three parts: purchasing costs of a transport vehicle, operating costs of transport vehicles and transport costs of a transport vehicle; and 3) a loading and unloading loss costs Cwas. in this model, an objective function, as represented by formula (1), gives the minimum cost of a nationwide pre-cooling facility system, which is a sum of the costs of the fixed and mobile pre-cooling subsystems; Step II, solving the model S1: chromosome coding a chromosome is composed of three parts: 1 bit for an optional pre-cooling station location (parking lot), m bits for a pre-cooling service station for agricultural products and m bits for separators; a gene in the 1st bit is a selected location for a pre-cooling station (parking lot), and if no pre-cooling station is to be built, the gene in the 1st bit only represents a starting point for a vehicle; other non-0 genes represent a service station; 0 genes represent a separator, consecutive genes between two separators represent the stations served sequentially on a path, and a gene in the 2nd bit is a fixed separator; to distinguish a pre-cooling method used by each service station, when a position of a non-0 gene in the 1st bit on a path is set as an odd number, the mobile pre-cooling method is selected for the corresponding service station and all service stations on the same path; in contrast, if a position of a non-0 gene in the 1st bit on the path is an even number, the fixed precooling method is selected for the corresponding service station and all service stations on the same path; Fig. 3 shows 1 chromosome that can appear; S2: initialization of a population S2.1: de grootte van een populatie instellen als np, en de popula- tie X instellen als een nulmatrix van np rijen en 2m+1 lijnen;S2.1: set the size of a population as np, and set the population X as a null matrix of np rows and 2m+1 lines; S2.2: sequentieel waarden toekennen voor de vectoren X; van elke rij in de populatie XS2.2: sequentially assign values for the vectors X; of each row in the population X S2.2.1: Locatie gedeelte van een voorkoelstationS2.2.1: Location part of a pre-cooling station S2.2.1.1: bepalen van een kans u, dat elke optionele locatie voor een voorkoelstation (parkeerplaats) wordt gekozen volgens een lo- gistiek capaciteit-afstandsproduct, waarbij de berekeningsformule als volgt is Cu, = mem Ymimn : 2neN ZmeM ImmaS2.2.1.1: Determining a probability u that each optional location for a pre-cooling station (parking lot) is selected according to a logistic capacity-distance product, where the calculation formula is Cu, = mem Ymimn : 2neN ZmeM Imma S2.2.1.2: willekeurig een site selecteren door middel van een rou- lette om een waarde van een gen in het eerste bit van X; te bepa- len, dat wil zeggen, uy, waarden worden opeenvolgend geaccumuleerd om een cumulatieve kans A, te verkrijgen, en een willekeurig getal a; wordt gegenereerd in een interval [ 0,1]; wanneer a;<A4;, wordt een optionele locatie nr. 1 geselecteerd als voorkoelstation (par- keerplaats), en wanneer A, ;Xa;S4,, wordt een optionele locatie nr. b geselecteerd;S2.2.1.2: Randomly select a site by means of a roulette for a value of a gene in the first bit of X; to be determined, i.e., uy, values are sequentially accumulated to obtain a cumulative probability A, and a random number a; is generated in an interval [ 0,1]; when a;<A4;, an optional location No. 1 is selected as a pre-cooling station (parking lot), and when A, ;Xa;S4,, an optional location No. b is selected; S2.2.2: een gen in de 2° bit waarderen als 0, wat een vast schei- dingsteken is;S2.2.2: Value a gene in the 2nd bit as 0, which is a fixed separator; S2.2.3: het willekeurig rangschikken van m-1 0 genen en nr. 1 -m servicestations en deze invullen in de 3% - 2m+1° bits van X;;S2.2.3: Randomly arranging m-1 0 genes and no. 1 -m service stations and filling them in the 3% - 2m+1° bits of X;; S2.2.4: toetsing en bijsturing van de haalbaarheidS2.2.4: testing and adjusting the feasibility S2.2.5: herstel van het chromosoom op basis van de laatste 7° en LY om een haalbare oplossing X; te verkrijgen;S2.2.5: Restore the chromosome from the last 7° and LY to a viable solution X; to obtain; S2.3: het herhalen van de stappen in S2.2 voor np tijden om een initiële populatie X te verkrijgen; S3: fitnessberekeningS2.3: repeating the steps in S2.2 for np times to obtain an initial population X; S3: fitness calculation 83.1: het toekennen van waarden aan de parameters die nodig zijn voor de berekening op basis van de werkelijke situatie;83.1: assigning values to the parameters necessary for the calculation based on the actual situation; S3.2: een fitnesswaarde berekenen van elk chromosoom in XS3.2: Calculate a Fitness Value of Each Chromosome in X S3.2.1: het identificeren van een chromosoom X; en het verkrijgen van de totale kosten van het systeem volgens de voorkoel methodeS3.2.1: identifying a chromosome X; and obtaining the total cost of the system according to the pre-cooling method S3.2.2: het vastleggen van een optimale oplossingS3.2.2: Defining an optimal solution S3.2.2.1: het herhalen van de stappen in S3.2.1, het achtereenvol- gens berekenen van de totale kosten van elk chromoscomsysteem in X om een matrix f(X) van objectieve functiewaarden te verkrijgen, en het opnemen van de minimumwaarde als f,;,; en het opnemen van het chromosoom dat overeenkomt met de minimumwaarde als X.i.;S3.2.2.1: Repeating the steps in S3.2.1, sequentially calculating the total cost of each chromosome system in X to obtain a matrix f(X) of objective function values, and recording the minimum value as f,;,; and listing the chromosome corresponding to the minimum value as X.i.; S3.2.2.2: het vergelijken van de optimale objectieve functiewaarde van deze generatie met de momenteel verkregen optimale minf; wan- neer fu; mint, minf=f,;,; en het tegelijkertijd bijwerken van het optimale chromosoom minX naar Xun;S3.2.2.2: comparing the optimal objective function value of this generation with the currently obtained optimal minf; when fu; mint, minf=f,;,; and simultaneously updating the optimal chromosome minX to Xun; S3.3: een fitnesswaarde van elk chromosoom berekenen volgens de volgende formule om een matrix F van populatie fitnesswaarden te verkrijgen: Fe 1 JOD Sain +1 S4: selectie operatie door middel van een roulette een populatie selecteren, namelijk:S3.3: Calculate a fitness value of each chromosome according to the following formula to obtain a matrix F of population fitness values: Fe 1 JOD Sain +1 S4: Selecting a population using a roulette, namely: S4.1: een kans berekenen dat elk chromosoom X; wordt gekozen vol- gens de volgende formule: VDE,S4.1: Calculate a Probability that Each Chromosome X; is selected according to the following formula: VDE, S4.2: het accumuleren van p;- waarden om een cumulatieve waarschijn- lijkheid P; te verkrijgen, en het genereren van een willekeurig getal a; in een interval [0,1]; wanneer a.<pP,, wordt X; geërfd in een nieuwe populatie X'; wanneer P; ;<a,<P;, wordt X; overgeërfd in de nieuwe populatie X’ totdat het aantal chromosomen in de nieuwe populatie X’ np bereikt; S5: crossover werkingS4.2: accumulating p i values to obtain a cumulative probability P; obtain, and generate a random number a; in an interval [0,1]; when a.<pP, becomes X; inherited in a new population X'; when P; ;<a,<P;, becomes X; inherited in the new population X' until the number of chromosomes in the new population X' reaches np; S5: crossover operation S5.1: het willekeurig paren van de chromosomen in populatie X/’;S5.1: random pairing of the chromosomes in population X/'; S5.2: het in volgorde beoordelen of elk paar chromosomen onderhe- vig is aan de crossover-operatie, dat wil zeggen dat eerst een willekeurig getal wordt gegenereerd in een interval [0,1], wanneer het willekeurige getal kleiner is dan of gelijk is aan een cros- sover- kans p., ga naar S5.3; anders, behoud het paar originele ge- nen en ga naar S5.5;S5.2: Assessing in sequence whether each pair of chromosomes is subject to the crossover operation, i.e. first generates a random number in an interval [0,1], when the random number is less than or equal is on a crossover opportunity p., go to S5.3; otherwise, keep the pair of original genes and go to S5.5; S5.3: het uitvoeren van de crossover-operatie door gebruik te ma- ken van een strategie van het kruisen van respectievelijk een scheidingsgedeelte en een niet-scheidingsgedeelte, dat wil zeggen eerst de positie en het aantal scheidingstekens van ouder 1 naar nakomelingen 1 erven en vervolgens het opeenvolgend invullen van niet- scheidingselementen van Ouder 2 in het Nakomeling 1- chromosoom, zoals getoond in FIG. 4; evenzo, voor Nakomeling 2, eerst de positie en het nummer van het scheidingsteken van Ouder 2 naar Nakomeling 2 erven, en vervolgens de niet-scheidingselementen van Ouder 1 in Nakomeling 2 invullen; dat wil zeggen, het nage- slacht erft de voorkoelmethode van de ouder en de hoeveelheden van de twee soorten voertuigen, evenals de locatie van het voorkoel- station (parkeerplaats) van de andere ouder en een bepaalde mate van servicepad opdrachten;S5.3: Carrying out the crossover operation by using a strategy of crossing a separator part and a non-separator part respectively, i.e. first inheriting the position and number of separators from parent 1 to offspring 1 and then sequentially filling non-segregation elements from Parent 2 into the Descendant 1 chromosome, as shown in FIG. 4; similarly, for Descendant 2, first inherit the position and number of the separator from Parent 2 to Descendant 2, then fill in the non-separator elements of Parent 1 in Descendant 2; that is, the offspring inherits the parent's pre-cooling method and the quantities of the two types of vehicles, as well as the location of the other parent's pre-cooling station (parking lot) and a certain amount of service path assignments; 55.4: het controleren en aanpassen van de haalbaarheid van de ge- kruiste chromosomen volgens S2.2.4;55.4: checking and adjusting the feasibility of the crossed chromosomes according to S2.2.4; S5.5: het uitvoeren van de bewerkingen in S5.2-S5.4 voor alle chromosomen om een nieuwe populatie X” te verkrijgen; S6: mutatiebewerking S7: iteratie 33-56 worden herhaald totdat een maximum aantal iteraties is be- reikt; bovendien, wanneer de optimale waarde gedurende meerdere opeenvolgende generaties niet meer verandert, of de chromosomen van de populatie volledig consistent zijn, zal de iteratie direct eindigen; na iteratie kan uiteindelijk een optimaal chromosoom minX worden verkregen, het wordt geïnterpreteerd volgens de code- ringsmethode in S1 en vervolgens kan de definitieve planningsop- lossing worden verkregen.S5.5: perform the edits in S5.2-S5.4 for all chromosomes to obtain a new population X”; S6: Mutation operation S7: Iteration 33-56 are repeated until a maximum number of iterations is reached; moreover, when the optimal value does not change for several successive generations, or the chromosomes of the population are completely consistent, the iteration will immediately end; after iteration an optimal chromosome minX can finally be obtained, it is interpreted according to the coding method in S1 and then the final planning solution can be obtained. 2. Werkwijze voor het plannen van een op oorsprong gebaseerd voor- koelsysteem, waarbij rekening wordt gehouden met een investering van multi-type faciliteiten volgens conclusie 1, waarbij het spe- cifieke operationele proces in S2.2.4 als volgt is:A method for planning an origin-based pre-cooling system taking into account an investment of multi-type facilities according to claim 1, wherein the specific operational process in S2.2.4 is as follows: S2.2.4.1: het identificeren van een chromosoom, het scheiden van de paden volgens de voorkoelingsmethoden, en het verkrijgen van een padmatrix en een vraagmatrix die respectievelijk overeenkomen met de twee voorkoelingsmethoden; ten eerste worden de posities van alle 0 genen in een chromosoom gevonden en wordt achtereenvolgens beoordeeld of er een niet-0 gen is tussen elke twee 0 genen, zo niet, ga dan naar het volgende 0 gen, en zo ja, het niet-0 gen wordt gebruikt als een servicepad; een nul afwijking wordt beoordeeld op een positie van een 1° niet-0 gen in het chromosoom; als het zich bevindt in een even bit, wordt een vast voorkoelstation gekozen voor voorkoeling op het pad, het pad wordt opgeslagen in een vaste voorkoel padmatrix 1°, en onder- tussen dient de vraag van elk servicestation op het pad ook te worden geregistreerd en opgeslagen in de vaste vraagmatrix C°, waarbij het aantal rijen n° is; als het in een oneven bit is, wordt een mobiel voorkoelvoertuig gekozen voor voorkoeling op het pad, en dienovereenkomstig worden het pad en de vraag opgeslagen in een mobiele voorkoelpadmatrix LY en een mobiele vraagmatrix 90°, waarbij het aantal rijen is n'; dit oordeel zal doorgaan tot het laatste scheidingsteken; als er na het laatste 0 gen nog steeds een niet-0 gen is, wordt het niet-0 gen als servicepad gebruikt, wordt de voorkoelingsmethode beoordeeld volgens de bovengenoemde stappen en worden het pad en de vraag opgeslagen in de overeenkomstige matri- ces; ten tweede is het gen in het 1° bit van het chromosoom een startpunt van alle geregistreerde servicepaden en het wordt toege- voegd aan het begin en het einde van elke rij T° en LY;S2.2.4.1: identifying a chromosome, separating the paths according to the pre-cooling methods, and obtaining a path matrix and a demand matrix respectively corresponding to the two pre-cooling methods; first, the positions of all 0 genes in a chromosome are found and it is judged sequentially whether there is a non-0 gene between any two 0 genes, if not, move to the next 0 gene, and if so, the non-0 gen is used as a service path; a zero deviation is judged at a position of a 1st non-0 gene in the chromosome; if it is in an even bit, a fixed pre-cooling station is chosen for pre-cooling on the path, the path is stored in a fixed pre-cooling path array 1°, meanwhile the demand from each service station on the path should also be registered and stored in the fixed query matrix C°, where the number of rows is n°; if it is in an odd bit, a mobile precooling vehicle is selected for path precooling, and accordingly the path and demand are stored in a mobile precooling path matrix LY and a mobile demand matrix 90°, where the number of rows is n'; this judgment will continue to the last separator; if there is still a non-0 gene after the last 0 gene, the non-0 gene is used as the service path, the precooling method is judged according to the above steps, and the path and demand are stored in the corresponding matrices; second, the gene in the 1st bit of the chromosome is a starting point of all registered service paths and is added to the beginning and end of each row T° and LY; S2.2.4.2: het achtereenvolgens controleren of het bestaande chro- mosoom voldoet aan de randvoorwaarden; als L° niet nul is, wordt een beoordeling van de capaciteitsbeper- king van de vaste voorkoelingsmethode uitgevoerd, dat wil zeggen dat de elementen van elke rij in Q° opeenvolgend worden geaccumu- leerd om een matrix te verkrijgen Qc; voor de eerste n.-I rijen, wanneer geldt dat Qj.(c,d) een maximale voertuig transportcapaci- teit Ss: overschrijdt, worden de serienummers van de servicestati- ons die overeenkomen met het element en alle volgende elementen in de rij achtereenvolgens toegevoegd aan I° vanuit de posities van I°{(c+1, 2), terwijl de originele elementen in L° naar achteren wor-S2.2.4.2: successively checking whether the existing chromosome meets the preconditions; if L° is not zero, an assessment of the capacity limitation of the fixed pre-cooling method is performed, that is, the elements of each row in Q° are accumulated sequentially to obtain a matrix Qc; for the first n.-I rows, when Qj.(c,d) exceeds a maximum vehicle transport capacity Ss: , the serial numbers of the service stations corresponding to the element and all subsequent elements in the row are successively added to I° from the positions of I°{(c+1, 2), while the original elements in L° are moved backward den verplaatst, en dienovereenkomstig worden de matrices Q° en Qj. tegelijkertijd bijgewerkt; voor de laatste rij n°, als de totale padvraag een capaciteitslimiet overschrijdt, wordt het aantal transportvoertuigen verhoogd met [Refued)l dat wil zeggen,den are moved, and the matrices Q° and Qj. updated at the same time; for the last row n°, if the total path demand exceeds a capacity limit, the number of transport vehicles is increased by [Refued)l i.e., reat) rijen van element 0 worden respectievelijk toege- voegd aan de matrices L°, Q° en Qj., , het gen in het 1° bit van het chromosoom wordt toegevoegd aan het begin en het einde van el- ke nieuwe rij L°, en op dit moment is het aantal rijen in de boven- genoemde matrix n;’; dan wordt het oordeel over capaciteitsbeper-reat) rows of element 0 are added respectively to the matrices L°, Q° and Qj., , the gene in the 1st bit of the chromosome is added to the beginning and the end of each new row L° , and at this time, the number of rows in the above matrix is n;'; then the judgment about capacity limitation king en de padaanpassing voortgezet; wanneer QF..(c’,d) het maximale laadvermogen van het voertuig Sms, overschrijdt, worden de serie- nummers van de servicestations die overeenkomen met het element en alle volgende elementen in de rij ingevoegd vanaf [I°(c'+1,2}), wor- den de originele elementen in L° naar achteren verplaatst, en dien-king and path adjustment continued; when QF..(c',d) exceeds the maximum payload of the vehicle Sms, the serial numbers of the service stations corresponding to the element and all subsequent elements in the row are inserted from [I°(c'+1 ,2}), the original elements in L° are moved backward, and overeenkomstig worden de matrices O° en QF. tegelijkertijd bijge- werkt; vervolgens wordt een beoordeling uitgevoerd van de tijdsdruk van de vaste voorkoelmethode, dat wil zeggen, volgens de servicepaden in 7°, wordt de tijd die nodig is om het voorkoelstation te berei-correspondingly, the matrices O° and QF. updated at the same time; then an assessment is made of the time pressure of the fixed pre-cooling method, i.e. according to the service paths in 7°, the time required to prepare the pre-cooling station is ken vanaf elk servicestation in elk pad sequentieel berekend om een matrix T° te verkrijgen; voor de eerste n,'-1 rijen wordt in volgorde beoordeeld of elk element in de matrix fg.;., overschrijdt; zo ja, dan worden de serienummers van de servicestations die over- eenkomen met het element en de volgende elementen opeenvolgend toegevoegd aan de laatste rij van I° vanuit de posities van I(n ',;2), terwijl de originele elementen in [I° naar achteren wor- den verplaatst, en dienovereenkomstig worden de matrices T°, 0° en Qzcc tegelijkertijd bijgewerkt; voor de laatste rij n,', als tue, wordt overschreden, moet het aantal transportvoertuigen worden verhoogd net [mere]; rijen van element 0, az, [Re]. 1 rijen van element 0 worden toegevoegd aan respectievelijk de ma- trices I°, T°, O° en Qc: en het gen in het 1° bit van het chromo- soom wordt toegevoegd aan het begin en het einde van elke nieuwe rij L°, en op dit moment is het aantal rijen in de bovengenoemde matrix n,”; dan wordt het oordeel over capaciteitsbeperking en de padaanpassing voortgezet; wanneer T°(c”,d”) groter is dan Lgelayr worden de serienummers van de servicestations die overeenkomen met het element en alle volgende elementen in de rij ingevoegd vanaf I°(c"+1,2), de originele elementen in Z° zijn naar achteren ver- plaatst, en dienovereenkomstig worden de matrices T°, 0° en Qj. te- gelijkertijd bijgewerkt; tegen die tijd, behalve de laatste rij JZ, hebben alle andere paden tegelijkertijd voldaan aan de capaci- teits- en tijdsbeperkingen, en dus wordt de capaciteitsbeperking opnieuw gecontroleerd voor de laatste rij met dezelfde stappen hierboven; tot slot wordt de beoordeling van de tijdsdruk van de mobiele voorkoelwerkwijze uitgevoerd volgens het voornoemde idee, dat wil zeggen, volgens de servicepaden in LY, worden de geaccumuleerde service-uren T° in elk pad opeenvolgend berekend; wanneer de ser- vice-uren voor het pad de maximale arbeidsuren twork overschrij- den, worden de serienummers van het overwerk servicestation en de daaropvolgende servicestations verplaatst naar het volgende pad, en dienovereenkomstig worden de matrixen TV en OQO" tegelijkertijd bijgewerkt; voor het laatste pad, als de diensturen voor het pad twor: overschrijden, moet het aantal voertuigen voor voorkoeling worden verhoogd met meee)] 4, dat wil zeggen, [peel], rijen van element 0 worden toegevoegd aan respectievelijk de ma- trices LY, T' en O9", en de gen in het 1° bit van het chromosoom wordt toegevoegd aan het begin en het einde van elke nieuwe rij LY, en op dit moment is het aantal rijen in de bovengenoemde matrix ns’; dan wordt het oordeel over capaciteitsbeperking en de padaan- passing voortgezet; wanneer T{(c‚d} tx overschrijdt, worden de serienummers van de servicestations die overeenkomen met het ele- ment en alle volgende elementen in de rij ingevoegd vanaf I"{c+1,2}, worden de originele elementen in LY achterwaarts ver- plaatst, en dienovereenkomstig worden de matrices TY en Q°* tegelij- kertijd bijgewerkt.calculated sequentially from each service station in each path to obtain a matrix T°; for the first n,'-1 rows, it is judged in sequence whether each element in the matrix exceeds fg.;.; if so, the serial numbers of the service stations corresponding to the element and the following elements are sequentially added to the last row of I° from the positions of I(n ',;2), while the original elements in [I ° are moved backward, and accordingly the matrices T°, 0° and Qzcc are updated simultaneously; for the last row n,', if tue, is exceeded, the number of transport vehicles must be increased by [mere]; rows of element 0, az, [Re]. 1 rows of element 0 are added to matrices I°, T°, O° and Qc respectively: and the gene in the 1° bit of the chromosome is added to the beginning and end of each new row L °, and at this time the number of rows in the above matrix is n,”; then the judgment on capacity limitation and the path adjustment continues; when T°(c”,d”) is greater than Lgelayr, the serial numbers of the service stations corresponding to the element and all subsequent elements in the row are inserted from I°(c"+1,2), the original elements in Z ° have been moved backward, and accordingly the matrices T°, 0° and Qj are updated at the same time, by which time, except the last row JZ, all other paths will have met the capacity and time constraints at the same time , and thus the capacity limitation is checked again for the last row with the same steps above; finally, the assessment of the time pressure of the mobile pre-cooling method is carried out according to the aforementioned idea, that is, according to the service paths in LY, the accumulated service hours T° in each path calculated sequentially, when the service hours for the path exceed the maximum working hours twork, the serial numbers of the overtime service station and subsequent service stations are moved to the next path, and the matrices TV are adjusted accordingly and OQO" updated at the same time; for the last path, if the service hours for the path exceed twor:, the number of vehicles for pre-cooling must be increased by meee)] 4, that is, [peel], rows of element 0 are added to the matrices LY respectively , T' and O9", and the gene in the 1st bit of the chromosome is added to the beginning and the end of each new row LY, and at this time the number of rows in the above matrix is ns'; then it becomes capacity limitation judgment and path modification continued, when T{(c,d} exceeds tx, the serial numbers of the service stations corresponding to the element and all subsequent elements are inserted in the queue from I"{c+1, 2}, the original elements in LY are moved backward, and accordingly the matrices TY and Q°* are updated simultaneously. 3. Werkwijze voor het plannen van een op oorsprong gebaseerd voor- koelsysteem, rekening houdend met een investering van multi-type faciliteiten volgens conclusie 1 of 2, waarbij het specifieke ope- rationele proces in S3.2.1 als volgt is:A method for planning an origin-based pre-cooling system taking into account an investment of multi-type facilities according to claim 1 or 2, wherein the specific operational process in S3.2.1 is as follows: S3.2.1.1: volgens S2.2.4.1, het identificeren van een chromosoom, het scheiden van de paden volgens de voorkoelingsmethoden en het verkrijgen van de padmatrix en de vraagmatrix die respectievelijk overeenkomen met de twee voorkoelingsmethoden;S3.2.1.1: According to S2.2.4.1, identifying a chromosome, separating the paths according to the pre-cooling methods, and obtaining the path matrix and demand matrix respectively corresponding to the two pre-cooling methods; S3.2.1.2: berekening van de kosten Cs van het vaste voorkoelsys- teem ten eerste worden de schaal p van het voorkoelstation, het type s en het aantal n, transportvoertuigen bepaald, p is een som Q, van alle elementen van de vraagmatrix die overeenkomen met de vaste voorkoelmethode; s moet worden bepaald volgens de vraagmatrix en het laadvermogen van elk type transportvoertuig, waarbij elke rij van de vraagmatrix van de voorkoelingsmethode eerst wordt opgeteld om de maximale waarde te verkrijgen, vervolgens wordt deze maxima- le waarde vergeleken met het laadvermogen van elk type van de transportvoertuigen, en het type dat overeenkomt met het vermogen dat groter is dan en het dichtst bij deze maximale waarde het ver- eiste type is; n, is het aantal rijen in de vraagmatrix van de voorkoelmethode; ten tweede moet een totale transportafstand D. van de transportvoertuigen worden berekend, dat wil zeggen dat de af- standen van alle paden worden opgeteld volgens de padmatrix en de afstand tussen de punten; daarom zijn de bouwkosten van het voor- koelstation met een schaal p p-¢,, en de bedrijfskosten zijn prc tT; de aanschafkosten van de transportvoertuigen is n,c£%, de bedrijfskosten zijn nge tT, en de transportkosten zijn 2: Dgcl74-30:t:T; en de laad- en loskosten zijn g-Q,-8; en, tot slot, zijn de kosten van het vaste voorkoelsysteem een som van de bovengenoemde posten, dat wil zeggen, deze zijn gelijk aan Co =P Cop Cot THng cf Ang tT +2 Dc’ 30-t-T+g-Q 0;S3.2.1.2: Calculation of the cost Cs of the fixed pre-cooling system Firstly, the scale p of the pre-cooling station, the type s and the number n, transport vehicles are determined, p is a sum Q, of all elements of the demand matrix which correspond to the fixed pre-cooling method; s should be determined according to the demand matrix and the payload of each type of transport vehicle, each row of the demand matrix of the pre-cooling method is first added to obtain the maximum value, then this maximum value is compared with the payload of each type of the transport vehicles, and the type corresponding to the power greater than and closest to this maximum value is the type required; n, is the number of rows in the demand matrix of the pre-cooling method; secondly, a total transport distance D. of the transport vehicles must be calculated, i.e. the distances of all paths are added according to the path matrix and the distance between the points; therefore, the construction cost of the pre-cooling station of scale p is p-¢, and the operating cost is prc tT; the purchase cost of the transport vehicles is n.c£%, the operating cost is nge tT, and the transport cost is 2: Dgcl74-30:t:T; and the loading and unloading costs are g-Q,-8; and, finally, the cost of the fixed pre-cooling system is a sum of the above items, that is, it is equal to Co =P Cop Cot THng cf Ang tT +2 Dc' 30-t-T+g-Q 0; S3.2.1.3: berekening van de kosten van het mobiele voorkoelsysteem Cmob eerst worden het type u en de hoeveelheid n, van de voorkoelvoer- tuigen bepaald, u moet worden bepaald volgens de maximale element- waarde in de vraagmatrix die overeenkomt met de mobiele methode en het laadvermogen van elk type voorkoeling voertuigen, en het type dat overeenkomt met het laadvermogen dat groter is dan en het dichtst bij de maximale elementwaarde in de vraagmatrix het ver- eiste type is; n, is het aantal rijen in de vraagmatrix van de voorkoelmethode; ten tweede moet de totale transportafstand D, van de transportvoertuigen worden berekend, dat wil zeggen dat de af- standen van alle paden worden opgeteld volgens de padmatrix en de afstand tussen de punten; vervolgens wordt de totale vraag D, bere- kend van de servicestations die de mobiele voorkoelingsmethode toepassen, dat wil zeggen dat de elementen van de vraagmatrix wor- den opgeteld; daarom zijn de aanschafkosten van de voorkoelvoer- tuigen nyc, de bedrijfskosten zijn ny cf -t:T, en de transport- kosten zijn 2:D,:cl4-:30:t:T; en de verlieskosten zijn 6:04:68; tot slot, de kosten de kosten van het mobiele voorkoelsysteem zijn een som van de bovengenoemde posten, dat wil zeggen, Cop =P CT Hy tT +2 Dy cl 30E T +6 Qs 0;S3.2.1.3: calculation of the cost of the mobile pre-cooling system Cmob first, the type u and the quantity n, of the pre-cooling vehicles are determined, u must be determined according to the maximum element value in the demand matrix corresponding to the mobile method and the payload of each type of pre-cooling vehicles, and the type corresponding to the payload greater than and closest to the maximum element value in the demand matrix is the required type; n, is the number of rows in the demand matrix of the pre-cooling method; secondly, the total transport distance D, of the transport vehicles must be calculated, i.e. the distances of all paths are added according to the path matrix and the distance between the points; then the total demand D is calculated from the service stations applying the mobile pre-cooling method, i.e. the elements of the demand matrix are added; therefore, the purchase cost of the pre-cooling vehicles is nyc, the operating cost is ny cf -t:T, and the transportation cost is 2:D,:cl4-:30:t:T; and the loss cost is 6:04:68; finally, the cost of the mobile pre-cooling system is a sum of the above items, i.e. Cop =P CT Hy tT +2 Dy cl 30E T +6 Qs 0; S3.2.1.4: het toevoegen van Cs: en Cup om de totale kosten C,;; van het chromosoomsysteem te verkrijgen, en het toewijzen van een waarde aan f(X).S3.2.1.4: adding Cs: and Cup to total cost C,;; of the chromosome system, and assigning a value to f(X). 4. Werkwijze voor het plannen van een op oorsprong gebaseerd voor- koelsysteem, rekening houdend met een investering van multi-type faciliteiten volgens conclusie 1 of 2, waarbij het specifieke ope- rationele proces in S6 als volgt is:A method for planning an origin-based pre-cooling system taking into account an investment of multi-type facilities according to claim 1 or 2, wherein the specific operational process in S6 is as follows: S6.1: het genereren van een willekeurig getal in een interval [0,1]; wanneer het willekeurige getal kleiner is dan of gelijk is aan de mutatiekans p,, het willekeurig selecteren van een ander punt in de verzameling N als een nieuwe optionele locatie voor het voorkoelstation (parkeerplaats); wanneer het willekeurige getal groter is dan p,, direct naar S6.2 gaan;S6.1: Generating a random number in an interval [0,1]; if the random number is less than or equal to the mutation probability p i , randomly selecting another point in the set N as a new optional location for the pre-cooling station (parking lot); if the random number is greater than p, go directly to S6.2; S6.2: het genereren van een willekeurig getal in een interval [0,1]; wanneer het willekeurige getal kleiner is dan of gelijk is aan py, het willekeurig selecteren van twee genen (niet beide tege- lijkertijd gelijk aan 0) op de 3° - 2m+1° gensegmenten van het chromosoom voor cross-over, zoals getoond in FIG. 5; wanneer het willekeurige getal groter is dan p,, naar S6.3 gaan;S6.2: Generating a random number in an interval [0,1]; when the random number is less than or equal to py, randomly selecting two genes (not both equal to 0 at the same time) on the 3° - 2m+1° gene segments of the chromosome for crossover, as shown in FIG. 5; when the random number is greater than p1, go to S6.3; S6.3: het genereren van een willekeurig getal in een intervalS6.3: Generating a Random Number in an Interval [0,1]; wanneer het willekeurige getal kleiner is dan of gelijk is aan Dm, het willekeurig selecteren van een pad in het chromosoom om de voorkoelmethode ervan te veranderen door middel van het vergro- ten of verkleinen van separatoren, zoals getoond in FIG. 6; wan- neer het willekeurige getal groter is dan p,, naar S6.4 gaan;[0.1]; when the random number is less than or equal to Dm, randomly selecting a path in the chromosome to change its pre-cooling method by increasing or decreasing separators, as shown in FIG. 6; if the random number is greater than p1, go to S6.4; S6.4: het controleren en bijstellen van de haalbaarheid van de ge- muteerde chromosomen volgens S2.2.4;S6.4: checking and adjusting the feasibility of the mutated chromosomes according to S2.2.4; S6.5: het uitvoeren van de bewerkingen in S6.1-S6.4 voor alle chromosomen om een nieuwe populatie X''' te verkrijgen.S6.5: Performing the edits in S6.1-S6.4 for all chromosomes to obtain a new population of X'''.
NL2030763A 2021-04-06 2022-01-28 Method for planning origin-based pre-cooling system considering investment of multi-type facilities NL2030763B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110366073.2A CN113516272B (en) 2021-04-06 2021-04-06 Production place precooling system planning method considering multi-type facility investment

Publications (2)

Publication Number Publication Date
NL2030763A NL2030763A (en) 2022-10-19
NL2030763B1 true NL2030763B1 (en) 2023-04-17

Family

ID=78062182

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030763A NL2030763B1 (en) 2021-04-06 2022-01-28 Method for planning origin-based pre-cooling system considering investment of multi-type facilities

Country Status (2)

Country Link
CN (1) CN113516272B (en)
NL (1) NL2030763B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808627A (en) * 2015-04-20 2015-07-29 海安县申菱电器制造有限公司 Workshop layout method of discrete manufacturing system
CN110245779A (en) * 2019-05-10 2019-09-17 杭州电子科技大学 A kind of public transport dynamic based on genetic algorithm is dispatched a car method for optimizing scheduling
CN112598258B (en) * 2020-12-17 2023-04-07 西北农林科技大学 Multi-type precooling service resource scheduling optimization method in first kilometer

Also Published As

Publication number Publication date
CN113516272B (en) 2023-09-01
CN113516272A (en) 2021-10-19
NL2030763A (en) 2022-10-19

Similar Documents

Publication Publication Date Title
Mogale et al. Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network
Sahebjamnia et al. Optimization of multi-period three-echelon citrus supply chain problem
Lamsal et al. Sugarcane harvest logistics in Brazil
An et al. Robust grain supply chain design considering post-harvest loss and harvest timing equilibrium
Lamsal et al. Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage
Galetti et al. Palm heart harvesting in the Brazilian Atlantic forest: changes in industry structure and the illegal trade
Dutta et al. The design and planning of an integrated supply chain for perishable products under uncertainties: A case study in milk industry
CN107944598A (en) A kind of logistics route collocation method and system
Shilpi et al. Market facilities and agricultural marketing: Evidence from Tamil Nadu, India
JP2003535416A (en) Transaction supply chain system and method
Yadav et al. Design of multi-objective sustainable food distribution network in the Indian context with multiple delivery channels
Kyomugisha et al. Potato market access, marketing efficiency and on-farm value addition in Uganda
CN110147974A (en) Inventory&#39;s sharing method and device between distributed warehouse
US20020095232A1 (en) Transactional supply chain system and method
CN107274014A (en) A kind of processing method, system and the terminal of the dispatching task based on standard container
CN111768052A (en) Automatic planning method for whole-vehicle factory approach logistics route based on algorithm model
CN107274084A (en) A kind of order intelligent dispatching method, system and terminal based on standard container
Nasr et al. An efficient solution method for an agri-fresh food supply chain: hybridization of Lagrangian relaxation and genetic algorithm
CN111178591A (en) Cold chain logistics product refrigeration transportation quality optimization management system based on big data
NL2030763B1 (en) Method for planning origin-based pre-cooling system considering investment of multi-type facilities
Ambekar et al. Structural mapping of public distribution system using multi-agent systems
Patidar et al. Restructuring the Indian agro-fresh food supply chain network: a mathematical model formulation
CN116432880B (en) Intelligent selection and freight quotation system for shared cloud warehouse logistics city distribution route
Chen et al. Integrated online order picking and vehicle routing of food cold chain with demand surge
CN114418653B (en) Anti-channel conflict processing method based on NFC (near field communication) label