NL2030315B1 - Computer-implemented ai method for detecting surface defects of electroluminescent semiconductor panel - Google Patents

Computer-implemented ai method for detecting surface defects of electroluminescent semiconductor panel Download PDF

Info

Publication number
NL2030315B1
NL2030315B1 NL2030315A NL2030315A NL2030315B1 NL 2030315 B1 NL2030315 B1 NL 2030315B1 NL 2030315 A NL2030315 A NL 2030315A NL 2030315 A NL2030315 A NL 2030315A NL 2030315 B1 NL2030315 B1 NL 2030315B1
Authority
NL
Netherlands
Prior art keywords
images
image
defect
panel
implemented
Prior art date
Application number
NL2030315A
Other languages
Dutch (nl)
Other versions
NL2030315A (en
Inventor
Chen Boyuan
Original Assignee
Chen Boyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Boyuan filed Critical Chen Boyuan
Publication of NL2030315A publication Critical patent/NL2030315A/en
Application granted granted Critical
Publication of NL2030315B1 publication Critical patent/NL2030315B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The present invention relates to a computer-implemented AI method for detecting surface defects of an electroluminescent semiconductor panel, comprising the steps of 5 first time of image enhancement processing, marking and transformation of image defects, random distribution of training, verification and testing of images, second time of image enhancement processing, establishment of a target detection neural network, data training and obtaining of optimal weight parameters, and AI detection of the panel images. The present invention aims to solve the technical problem that during defect 10 detection of the surface of the EL semiconductor panel, as limited by quality and amount of image datasets and restricted by a singular preprocessing method of image data and a small network scale of a pixel algorithm, the defects are recognized slowly in low precision, and the defects cannot be classified and positioned accurately. The method is applicable to detection of semiconductor chips and panels made of Si, Ge, AsGa, SiC 15 and the like.

Description

COMPUTER- IMPLEMENTED AI METHOD FOR DETECTING SURFACE DEFECTS OF ELECTROLUMINESCENT SEMICONDUCTOR PANEL TECHNICAL FIELD
[01] The present invention relates to an Al detection method for surface defects and in particular to a computer-implemented AI method for detecting surface defects of an electroluminescent semiconductor panel and belongs to the field of image recognition and nondestructive testing.
BACKGROUND ART
[02] Electroluminescent is called EL for short. EL detection is a testing technology that detects a panel surface detects using a near-infrared image shot by an HD infrared camera and plays a crucial role in fields such as operation and maintenance of photovoltaic power stations. Recognition of characteristic information of EL image defects is a core part in a detection process.
[03] Chinese patent 201810794758.5 discloses a method for detection and defect recognition of an EL image of a solar cell piece, comprising the following steps: obtaining an EL image of a solar cell piece to be detected, positioning a grid line and conducting regional division; deleting a grid line area and re-combining the image, calculating an image gray value and conducting 2D construction; calculating an interclass dispersion matrix of a particle swarm and determining a current optimal position; updating an optimal individual of a particle population and an optimal individual of a particle history; using a chaos model to generate a new chaos variable; updating positions and speeds of all particles in the particle swarm and conducting re- calculation till a number of iterations is reached; and obtaining a defect image of the cell piece by division according to the obtained optimal position and conducting defect recognition.
[04] Chinese patent 2019111876125 discloses an EL defect detection method applied to a site of a photovoltaic power station, comprising the following steps:
preprocessing an EL image obtained of an original photovoltaic module and obtaining a corrected EL image; cutting the corrected EL image to form a cell piece with a specification of m x n; processing the obtained cell piece by graying, corrosion, expansion, binarization and pixel calculation, finding a possible EL defect according to apixel projection and conducting defect analysis.
[05] The method can realize division, classification and combined processing of an EL image and determine types of surface defects of a panel through pixel calculation. However, as limited by quality and amount of image datasets and restricted by a singular preprocessing method of image data and a small network scale of a pixel algorithm, the panel defect displayed by the EL image is recognized slowly in low precision, and different types of defects on the surface of a same panel cannot be classified and positioned accurately.
SUMMARY
[06] Aiming at defects in the prior art, the present invention aims to provide a computer-im plemented AI method for detecting surface defects of an electroluminescent semiconductor panel and expects to solve technical problems in the prior art, such as singular image data, a small network scale of a pixel algorithm, a slow recognition process, low precision and lack of accurate defect positioning. The method is applicable to detection of semiconductor chips and panels made of Si, Ge, AsGa, SiC and the like.
[07] In order to solve above technical problems, the present invention discloses a computer-im plemented AI method for detecting surface defects of an electroluminescent semiconductor panel, comprising the following steps in sequence:
[08] 1. First time of image enhancement processing
[09] (1) Inputting EL images of a semiconductor panel containing defects, and using an image cutting function to adjust sizes of the input images into square images with a pixel of 640 x 640;
[10] (2) Writing an image random flipping algorithm, setting a flipping probability of the images to be 0.5 in a horizontal direction and a vertical direction, and flipping and saving the images;
[11] (3) Writing an image random rotating algorithm, setting a step length to be 2° to 10°, setting a probability of whether rotation takes place in each rotation direction to be
0.5 so as to ensure randomness of image changing, and rotating and saving the images; and
[12] (4) Obtaining different defect images of the semiconductor panel with a pixel of 640 x 640, of which the number is in total 4 times the original number of the input images, and conducting renaming in batch.
[13] 2. Marking and transformation of image defects
[14] (1) Marking defect positions of the semiconductor panel and obtaining image information corresponding to each defect;
[15] (2) Writing a format transformation algorithm, and transforming defect information of an XML format into a tensor format, wherein a coefficient before a tensor denotes a defect type and is corresponding to a format needed by an input end of a convolutional neural network; and
[16] (3) Normalizing labels of the defect images and tensor names and sequencing the labels and tensor names in a sequence under same label names through a sequencing algorithm.
[17] 3. Random distribution of training, verification and testing of images
[18] (1) Writing a random sampling algorithm, using a random.Sample function to conduct traversal on the images arranged in sequence and the corresponding labels, and conducting sampling at a random step length according to a sampling ratio of 5-8:2-4:1; and
[19] (2) Determining a file path and saving the defect information in corresponding datasets in a tensor form.
[20] 4. Second time of image enhancement processing
[21] (1) Setting a program to read data of 4-9 pictures while normalizing image parameters each time; and
[22] (2) Randomly selecting 4-9 pictures from a training set for processing of random distribution, random scaling and random splicing.
[23] 5. Establishment of target detection neural network
[24] (1) Using a self-adapted anchor frame calculation method to output a prediction frame based on an initial anchor frame, comparing the prediction frame with a true frame groundtruth, calculating a difference thereof, then conducting reverse updating and iteration, adjusting network weight parameters, and outputting an optimal anchor frame value in the training set in a self-adapted manner in each training;
[25] (2) Inputting a preprocessed image with specifications of 3 x 640 x 640, making 4 copies thereof and using a sectioning operation to cutting the copied images into 4 sections of 3 x 320 x 320;
[26] (3) Using a concat function to connect the 4 sections in an image depth direction to obtain an output image with specifications of 12 x 320 x 320;
[27] (4) Generating an image with specifications of 32 x 320 x 320 by a convolution layer with a convolution kernel number of 32, and using a batch _borm function and a leaky relu function to input an output result into a next convolution layer;
[28] (5) Using a Resnet residual network structure in a backbone network, adding the residual structure with initial input after convolution of the convolution layer with a convolution kernel number of 32, and using a depth multiple function to control the depth of the model;
[29] (6) Dividing the original input into two branches, conducting a convolution operation for each to halve a number of channels, conducting a bottleneck network multiplication operation in an input branch 1, and using the concat function to divide output into an output branch 1 and the output branch 2 so as to equalize characteristic sizes of input and output images of a cross-stage local network;
[30] (7) Conducting up-sampling processes of deconvolution and de-pooling of a high-level characteristic image, and using a direct addition method for characteristic fusion; and using a self-adapted characteristic pooling to recover damaged information paths between each candidate area and all characteristic layers, and aggregating each candidate area on each characteristic layer to avoid arbitrary distribution; and
[31] (8) Inputting the characteristic image on an spp layer, outputting after passing a convolution layer of 1x1, conducting down-sampling by three parallel Maxpools, adding a result with initial characteristics thereof and outputting a result.
[32] 6. Data training and obtaining of optimal weight parameters
[33] (1) Inputting the pre-processed EL images of the semiconductor panel for iteration trainings;
[34] (2) Calculating a loss function value, a recall (positive types found/all positive types that should be found) value and a map (Mean Average Precision) value in each iteration and drawing a broken line statistical diagram; and
[35] (3) Obtaining a weight document of optimal parameters, conducting coverage and saving of the optimal parameters after each iteration and obtaining an optimal parameter set document which is used for AI detection of the panel images.
[36] 7. Al detection of panel images
[37] Inputting non-preprocessed EL images of the semiconductor panel, which are directly shot by a near-infrared camera, and obtaining defect recognition results containing types and position information of the defects.
[38] According to specific embodiments provided by the present invention, the present invention discloses the following technical effects:
[39] (1) The AI detection technology adopted in the present invention can detect whether a panel has scratches and black spot abnormities based on EL images and can position and mark defect positions.
[40] (2) According to the present invention, under very limited image datasets of the EL semiconductor panel, the defect images are processed with two times of image enhancement, so that without influences on defect positioning precision, dataset richness and recognition precision are significantly increased.
[41] (3) In the present invention, the dataset random classification algorithm is used to transform and classify the data in the tensor form after two times of the image enhancement, so that exclusiveness of the data applied to training, verification and testing is ensured. In this way, stability of the detection model is enhanced, and generalization ability of target recognition is increased.
[42] (4) In the present invention, the target detection network is established through combination of the residual neural network, the characteristic fusion method and the cross-stage local network. Besides enhancement of model complexity and expansion of the network scale, recognition precision is increased, model robustness is increased, memory consumption is reduced and recognition is quicker.
[43] (5) In the present invention, optimal weight configuration is covered and saved, so that effectiveness of the training result is ensured, and recognition precision and speed are increased.
BRIEFT DESCRIPTION OF THE DRAWINGS
[44] FIG. 1 is a diagram showing means of a classification loss function;
[45] FIG. 2 shows recall;
[46] FIG. 3 shows map (Mean Average Precision) values;
[47] FIG. 4 shows a detection result of a photovoltaic plate with scratches;
[48] FIG. 5 shows a detection result of a photovoltaic plate with black spots; and
[49] FIG. 6 shows a detection result of a photovoltaic plate with both scratches and black spots.
DETAILED DESCRIPTION OF THE EMBODIMENTS [S0] In order to make purposes of the present invention, principles of technical solutions and advantages clearer, the present invention will be further described in detail in conjunction with accompanying drawings and specific implementations. In the implementation, the specific implementation schemes described are only for explaining the present invention, rather than set limits to the present invention. [S1] Embodiment
[52] An EL technology is used to shoot photos of a surface of a SiC semiconductor panel, and then the method of the present invention is used for defect detection. Detection steps are as follows:
[S3] An EL technology is used to shoot photos of a surface of a Si semiconductor photovoltaic module, and then the method of the present invention is used for defect detection. Detection steps are as follows:
[54] 1. First time of image enhancement processing
[55] (1) Inputting 500 EL images of a semiconductor panel containing defects of black spots and scratches, and using an image cutting function to adjust sizes of the input images into square images with a pixel of 640 x 640;
[56] (2) Designing an image random flipping algorithm, setting a flipping probability of the images to be 0.5 in a horizontal direction and a vertical direction, and flipping and saving the images;
[57] (3) Designing an image random rotating algorithm, setting a step length to be 5°, setting a probability of whether rotation takes place in each rotation direction to be
0.5 so as to ensure randomness of image changing, and rotating and saving the images; and
[58] (4) Obtaining 2000 different defect images of black spots and scratches of the semiconductor panel with a pixel of 640 x 640, and conducting renaming in batches of 0-2000. [S9] 2. Marking and transformation of image defects
[60] (1) Marking black spot positions of the semiconductor panel and obtaining image information corresponding to each defect;
[61] (2) Designing a format transformation algorithm, and transforming defect information of an XML format into a tensor format, wherein a coefficient before a tensor denotes a defect type and is corresponding to a format needed by an input end of a convolutional neural network; and
[62] (3) Normalizing labels of the defect images and tensor names and sequencing the labels and tensor names in a sequence under same label names through a sequencing algorithm.
[63] 3. Random distribution of training, verification and testing of images
[64] (1) Designing a random sampling algorithm, using a random. Sample function to conduct traversal on the images arranged in sequence and the corresponding labels, and conducting sampling at a random step length according to a sampling ratio of 6:3:1; and
[65] (2) Determining a file path and saving the defect information in corresponding datasets in a tensor form.
[66] 4. Second time of image enhancement processing
[67] (1) Setting a program to read data of 6 pictures while normalizing image parameters each time; and
[68] (2) Randomly selecting 6 pictures from a training set for processing of random distribution, random scaling and random splicing.
[69] 5. Establishment of target detection neural network
[70] (1) Using a self-adapted anchor frame calculation method to output a prediction frame based on an initial anchor frame, comparing the prediction frame with a true frame groundtruth, calculating a difference thereof, then conducting reverse updating and iteration, adjusting network weight parameters, and outputting an optimal anchor frame value in the training set in a self-adapted manner in each training;
[71] (2) Inputting a preprocessed image with specifications of 3 x 640 x 640, making 4 copies thereof and using a sectioning operation to cutting the 4 copied images into 4 sections of 3 x 320 x 320;
[72] (3) Using a concat function to connect the 4 sections in an image depth direction to obtain an output image with specifications of 12 x 320 x 320;
[73] (4) Generating an image with specifications of 32 x 320 x 320 by a convolution layer with a convolution kernel number of 32, and using a batch borm function and a leaky relu function to input an output result into a next convolution layer,
[74] (5) Using a Resnet residual network structure in a backbone network, adding the residual structure with initial input after convolution of the convolution layer with a convolution kernel number of 32, and using a depth multiple function to control the depth of the model;
[75] (6) Dividing the original input into two branches, conducting a convolution operation for each to halve a number of channels, conducting a bottleneck network multiplication operation in an input branch 1, and using the concat function to divide output into an output branch 1 and the output branch 2 so as to equalize characteristic sizes of input and output images of a cross-stage local network;
[76] (7) Conducting up-sampling processes of deconvolution and de-pooling of a high-level characteristic image, and using a direct addition method for characteristic fusion; and using a self-adapted characteristic pooling to recover damaged information paths between each candidate area and all characteristic layers, and aggregating each candidate area on each characteristic layer to avoid arbitrary distribution; and
[77] (8) Inputting the characteristic image on an spp layer, outputting after passing a convolution layer of 1x1, conducting down-sampling by three parallel Maxpools, adding a result with initial characteristics thereof and outputting a result.
[78] 6. Data training and obtaining of optimal weight parameters
[79] (1) Inputting the pre-processed 2000 EL images of the semiconductor panel for 100 iteration trainings;
[80] (2) Calculating a loss function value, a recall (positive types found/all positive types that should be found) value and a map (Mean Average Precision) value in each iteration and drawing a broken line statistical diagram; and
[81] (3) Obtaining a weight document of optimal parameters, conducting coverage and saving of the optimal parameters after each iteration and obtaining an optimal parameter set document which is used for Al detection of the panel images.
[82] 7. Al detection of panel images
[83] Inputting non-preprocessed EL images of the semiconductor panel, which are directly shot by a near-infrared camera, and obtaining defect recognition results containing types and position information of the defects. On average, recognition of each image with the pixel size of 640 x 640 spends 0.016s.
[84] Testing effects: As shown in Fig.l to Fig.6, when the number of iterations exceeds 70, the recall (positive types found/all positive types that should be found) value and the map value reach about 99.5% and tend to be stable. The loss function value decreases to 0.02 after 100 iterations. Obviously, the model has a very excellent ability in defect recognition.
Both photovoltaic panels with separate existence of scratches and black spots and those with coexistence of the scratches and black spots can be recognized and detected, while the defects can be marked with words, so that results can be analyzed easily.

Claims (8)

_11- Conclusies_11- Conclusions 1. Computer-geimplementeerde Al-werkwijze voor het detecteren van oppervlaktedefecten van een elektroluminiscent halfgeleiderpaneel, die gekenmerkt wordt doordat deze de volgende stappen in volgorde omvat: (1) een eerste keer van afbeeldingsverbeteringsverwerking; (2) het markeren en transformeren van afbeeldingsdefecten; (3) willekeurige distributie van training, verificatie en het testen van afbeeldingen; (4) een tweede keer van afbeeldingsverbeteringsverwerking; (5) totstandbrening van een neuraal doeldetectienetwerk; (6) datatraining en verwerven van optimale gewichtsparameters; en (7) Al-detectie van paneelatbeeldingen.A computer-implemented Al method for detecting surface defects of an electroluminescent semiconductor panel, characterized in that it comprises the following steps in sequence: (1) a first time of image enhancement processing; (2) highlighting and transforming image defects; (3) random distribution of training, verification and testing images; (4) a second time of image enhancement processing; (5) establishment of a neural target detection network; (6) data training and acquisition of optimal weight parameters; and (7) Al detection of panel images. 2. Computer-geïmplementeerde Al-werkwijze volgens conclusie 1, met het kenmerk dat de eerste keer afbeeldingsverbeteringsverwerking de volgende stappen in volgorde omvat: (1) invoeren van EL-afbeeldingen van een halfgeleiderpaneel dat defecten bevat, en gebruiken van een afbeeldingsafsnijdfunctie om afmetingen van de invoerafbeeldingen aan te passen naar vierkante afbeeldingen met een pixel van 640 x 640; (2) het schrijven van een afbeeldingswillekeurigeflipalgoritme, het instellen van een flipwaarschijnlijkheid van de afbeeldingen om 0,5 te zijn in een horizontale richting en een verticale richting, en het flippen en opslaan van de afbeeldingen; (3) het schrijven van een afbeldingswillekeurigerotatiealgoritme, het instellen van een staplengte om 2° — 10° te zijn, het instellen van een waarschijnlijkheid of rotatie plaatsvindt in elke rotatierichting om 0,5 te zijn om zo willekeurigheid van afbeeldingsverandering te verzekeren, en het roteren en opslaan van de afbeeldingen; en (4) het verwerven van verschillende defectafbeeldingen van het halfgeleiderpaneel met een pixel van 640 x 640, waarvan het aantal in totaal 4 keer het originele aantal van de invoerafbeeldingen is, en uitvoeren van het in batch hernoemen.The computer-implemented AI method according to claim 1, characterized in that the first time image enhancement processing comprises the following steps in sequence: (1) inputting EL images of a semiconductor panel containing defects, and using an image clipping function to reduce dimensions of adjust the input images to square images with a pixel size of 640 x 640; (2) writing an image random flip algorithm, setting a flip probability of the images to be 0.5 in a horizontal direction and a vertical direction, and flipping and storing the images; (3) writing an image random rotation algorithm, setting a step length to be 2° — 10°, setting a probability of rotation occurring in each direction of rotation to be 0.5 to ensure randomness of image change, and rotate and save the images; and (4) acquiring several defect images of the semiconductor panel having a pixel of 640 x 640, the number of which is a total of 4 times the original number of the input images, and performing batch renaming. 3. Computer-geïmplementeerde Al-werkwijze volgens conclusie 1, met het kenmerk dat de markering en transformatie van afbeeldingsdefecten de volgende stappen in volgorde omvatten: (1) het markeren van defectposities van het halfgeleiderpaneel en het verwerven van afbeeldingsinformatie die overeenkomt met elk defect; (2) het schrijven van een formaattransformatiealgoritme, en het transformeren van defectinformatie van een XML-formaat naar een tensorformaat, waarbij eenThe computer-implemented Al method according to claim 1, characterized in that the marking and transformation of image defects comprises the following steps in sequence: (1) marking defect positions of the semiconductor panel and acquiring image information corresponding to each defect; (2) writing a format transformation algorithm, and transforming defect information from an XML format to a tensor format, where a -12- coëfficiënt voorafgaand aan een tensor een defecttype aangeeft en overeenkomt met een formaat dat benodigd is door een invoereinde van een convolutioneel neuraal netwerk; en (3) het normaliseren van labels van de defectafbeeldingen en tensornamen en volgorde aanbrengen in de labels en tensornamen in een volgorde onder dezelfde labelnamen door een volgordeaanbrengingsalgoritme.-12- coefficient preceding a tensor indicates a defect type and corresponds to a format required by an input end of a convolutional neural network; and (3) normalizing labels of the defect images and tensor names and sequencing the labels and tensor names into an order under the same label names by a sequencing algorithm. 4. Computer-geïmplementeerde Al-werkwijze volgens conclusie 1, met het kenmerk dat de willekeurige distributie van training, verificatie en het testen van afbeeldingen de volgende stappen in volgorde omvat: (1) het schrijven van een willekeurigebemonsteringsalgoritme, het gebruiken van een willekeurigebemonsteringsfunctie om doorlopen uit te voeren over de afbeeldingen die ingericht zijn in volgorde en de overeenkomstige labels, en het uitvoeren van bemonstering bij een willekeurige staplengte volgens een bemonsteringsverhouding van 5-8:2-4:1; en (2) het bepalen van een bestandspad en het opslaan van de defectinformatie in overeenkomstige datasets in een tensorvorm.The computer-implemented AI method according to claim 1, characterized in that the random distribution of training, verification and testing images comprises the following steps in order: (1) writing a random sampling algorithm, using a random sampling function to perform looping over the images arranged in order and the corresponding labels, and perform sampling at an arbitrary step length according to a sampling ratio of 5-8:2-4:1; and (2) determining a file path and storing the defect information in corresponding data sets in a tensor form. 5. Computer-geïmplementeerde Al-werkwijze volgens conclusie 1, met het kenmerk dat de tweede keer van afbeeldingsverbeteringsverwerking de volgende stappen in volgorde omvat: (1) het instellen van een programma om data van 4 — 9 afbeeldingen te lezen en ondertussen elke keer afbeeldingsparameters te normaliseren; en (2) het willekeurig selecteren van 4 — 9 afbeeldingen van een trainingsset voor verwerking van willekeurige distributie, het willekeurig schalen en het willekeurig splitsen.The computer-implemented AI method according to claim 1, characterized in that the second time of image enhancement processing comprises the following steps in sequence: (1) setting a program to read data from 4 to 9 images, meanwhile adjusting image parameters each time to normalize; and (2) randomly selecting 4 — 9 images from a training set for random distribution processing, random scaling, and random splitting. 6. Computer-geïmplementeerde Al-werkwijze volgens conclusie 1, met het kenmerk dat het instellen van het neurale doeldetectienetwerk de volgende stappen in volgorde omvat (1) het gebruiken van een zelfaangepaste ankerframeberekeningswerkwijze om een voorspellingsframe uit te voeren op basis van een initieel ankerframe, het vergelijken van het voorspellingsframe met een werkelijke framegrondwaarheid, het berekenen van een verschil daarvan, vervolgens het uitvoeren van omgekeerd bijwerken en iteratie, het aanpassen van netwerkgewichtsparameters, en het uitvoeren van een optimale ankerframewaarde in de trainingsset op een zelfaangepaste manier in elke training; (2) het invoeren van een voorverwerkteThe computer-implemented AI method according to claim 1, characterized in that setting up the neural target detection network comprises the following steps in sequence (1) using a self-adapted anchor frame calculation method to output a prediction frame based on an initial anchor frame, comparing the prediction frame with an actual frame ground truth, calculating a difference thereof, then performing reverse updating and iteration, adjusting network weight parameters, and outputting an optimal anchor frame value in the training set in a self-adjusted manner in each training; (2) entering a pre-processed S13 - afbeelding met specificaties van 3 x 640 x 640, het maken van 4 kopieén daarvan en het gebruiken van een opdelingshandeling om de gekopieerde afbeeldingen in 4 gedeeltes te verdelen van 3 x 320 x 320; (3) het gebruiken van een concatenatiefunctie om de 4 gedeeltes te verbinden in een afbeeldingsdiepterichting om een uitvoerafbeelding met specificaties van 12 x 320 x320 te verwerven; (4) het genereren van een afbeelding met specificaties van 32 x 320 x 320 door een convolutielaag met een convolutiekernnummer van 32, en het gebruiken van een bacth_borm-functie en een leaky relu-functie om een uitvoerresultaat in een volgende convolutielaag in te voeren; (5) het gebruiken van een Resnetresidunetwerkstructuur als een ruggengraatnetwerk, het toevoegen van de residustructuur met een initiële invoer na convolutie van de convolutielaag met een convolutiekernnummer van 32, en het gebruiken van een meerderedieptefunctie om de diepte van het model te besturen; (6) het verdelen van de originele invoer in twee takken, het uitvoeren van een convolutiehandeling voor elk om een aantal kanalen te halveren, het uitvoeren van een bottlenecknetwerkvermenigvuldigingshandeling in een invoertak- 1, en het gebruiken van de concatenatiefunctie om uitvoer in een uitvoertak-1 en de uitvoertak-2 te verdelen om zo karakteristieke afmetingen van invoer- en uitvoerafbeeldingen van een kruisfase lokaal netwerk gelijk te maken; (7) het uitvoeren van omhoogbemonsterigsprocessen van deconvolutie en het ontpoolen van hoogniveukarakteristieken afbeelding, en het gebruiken van een directe optelwerkwijze voor karakteristiekenfusie; en het gebruiken van zelfaangepaste karakteristiekenpooling om beschadigde informatiepaden tussen elk kandidaatgebied en alle karakteristiekenlagen tee herstellen, en aggregeren van elk kandidaatgebied op elke karakteristiekenlaag om arbitraire distributie te voorkomen; en (8) het invoeren van de karakteristiekenafbeelding op een spp-laag, het uitvoeren na het doorgeven van een convolutielaag van Ixl, het uitvoeren van omlaagbemonstering door drie parallelle Maxpools, het optellen van een resultaat met initiële karakteristieken daarvan en uitvoeren van een resultaat.S13 - image with specifications of 3 x 640 x 640, making 4 copies of them and using a divide operation to divide the copied images into 4 parts of 3 x 320 x 320; (3) using a concatenation function to connect the 4 parts in an image depth direction to acquire an output image with specifications of 12 x 320 x 320; (4) generating an image with specifications of 32 x 320 x 320 by a convolution layer with a convolution kernel number of 32, and using a bacth_borm function and a leaky relu function to input an output result into a subsequent convolution layer; (5) using a Resnet residue network structure as a backbone network, adding the residue structure with an initial input after convolution of the convolution layer with a convolution kernel number of 32, and using a multiple depth function to control the depth of the model; (6) dividing the original input into two branches, performing a convolution operation for each to halve a number of channels, performing a bottleneck network multiplication operation in an input branch-1, and using the concatenation function to convert output into an output branch- 1 and divide the output branch-2 so as to equalize characteristic sizes of input and output images of a cross-phase local network; (7) performing upsampling processes of deconvolution and depooling of high-level features mapping, and using a direct addition method for feature fusion; and using self-adapted feature pooling to repair damaged information paths between each candidate region and all feature layers, and aggregating each candidate region on each feature layer to avoid arbitrary distribution; and (8) inputting the characteristics map on an spp layer, outputting after passing a convolution layer of Ix1, performing downsampling through three parallel Maxpools, summing a result with initial characteristics thereof, and outputting a result. 7. Computer-geïmplementeerde Al-werkwijze volgens conclusie 1, met het kenmerk dat de datatraining en verkrijging van optimale gewichtsparameters de volgende stappen in volgorde omvat: (1) het invoeren van voorverwerkte EL- afbeeldingen van het halfgeleiderpaneel voor iteratietrainingen; (2) het berekenen van verliesfunctiewaarde, een terugroep- (positieve types gevonden/alle positieve types dieThe computer-implemented AI method according to claim 1, characterized in that the data training and obtaining optimal weight parameters comprises the following steps in sequence: (1) inputting pre-processed EL images of the semiconductor panel for iteration training; (2) calculating loss function value, a callback (positive types found/all positive types found “14 - gevonden zouden moeten worden) waarde en een map- (Gemiddelde Doorsnee Precisie (“Mean Average Precision”)) waarde in elke iteratie en het tekenen van een statistisch gebrokenlijn-diagram; en (3) het verwerven van een gewichtsdocument van optimale parameters, het uitvoeren van dekking en het opslaan van de optimale parameters na elke iteratie en het verwerven van een optimaleparmetersetdocument dat gebruikt wordt voor Al-detectie van paneelafbeeldingen.“14 - should be found) value and a map (Mean Average Precision)) value in each iteration and drawing a statistical broken line graph; and (3) acquiring a weight document of optimal parameters, performing coverage and storing the optimal parameters after each iteration, and acquiring an optimal parameter set document used for Al detection of panel images. 8. Computer-geimplementeerde Al-werkwijze volgens conclusie 1, met het kenmerk dat de Al-detectie van paneelafbeeldingen het volgende omvat: het invoeren van niet-voorverwerkte EL -afbeeldingen van het halfgeleiderpaneel, die direct genomen zijn door een nabij-infraroodcamera, en het verwerven van defectherkenningsresultaten die types en positie-informatie van de defecten bevatten.The computer-implemented Al method according to claim 1, characterized in that the Al detection of panel images comprises: inputting non-pre-processed EL images of the semiconductor panel taken directly by a near-infrared camera, and acquiring defect recognition results containing types and position information of the defects.
NL2030315A 2021-09-27 2021-12-28 Computer-implemented ai method for detecting surface defects of electroluminescent semiconductor panel NL2030315B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111137952.4A CN113822870A (en) 2021-09-27 2021-09-27 AI detection method for surface defects of electroluminescent semiconductor plate

Publications (2)

Publication Number Publication Date
NL2030315A NL2030315A (en) 2022-04-29
NL2030315B1 true NL2030315B1 (en) 2023-01-13

Family

ID=78921352

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030315A NL2030315B1 (en) 2021-09-27 2021-12-28 Computer-implemented ai method for detecting surface defects of electroluminescent semiconductor panel

Country Status (2)

Country Link
CN (1) CN113822870A (en)
NL (1) NL2030315B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235759B (en) * 2022-02-25 2022-06-14 季华实验室 Defect detection method, device, equipment and computer readable storage medium
CN117058064A (en) * 2022-04-29 2023-11-14 上海微电子装备(集团)股份有限公司 Method, device, electronic equipment and storage medium for setting and optimizing detection formula
CN117664909B (en) * 2024-01-30 2024-04-16 上海优珏新型装饰材料有限公司 Thermal cycle plate nondestructive testing method based on near infrared spectrum

Also Published As

Publication number Publication date
NL2030315A (en) 2022-04-29
CN113822870A (en) 2021-12-21

Similar Documents

Publication Publication Date Title
NL2030315B1 (en) Computer-implemented ai method for detecting surface defects of electroluminescent semiconductor panel
CN108961235B (en) Defective insulator identification method based on YOLOv3 network and particle filter algorithm
Akram et al. CNN based automatic detection of photovoltaic cell defects in electroluminescence images
CN110097053B (en) Improved fast-RCNN-based electric power equipment appearance defect detection method
CN111161218A (en) High-resolution remote sensing image change detection method based on twin convolutional neural network
CN111507990A (en) Tunnel surface defect segmentation method based on deep learning
CN113781466B (en) Solar panel defect identification method based on multi-scale attention-dense network
CN112613350A (en) High-resolution optical remote sensing image airplane target detection method based on deep neural network
CN114973032A (en) Photovoltaic panel hot spot detection method and device based on deep convolutional neural network
CN113256601A (en) Pavement disease detection method and system
CN111311515B (en) Depth image rapid iterative restoration method for automatic detection of error region
CN116206112A (en) Remote sensing image semantic segmentation method based on multi-scale feature fusion and SAM
Acharya et al. Deep neural network based approach for detection of defective solar cell
CN114612803A (en) Transmission line insulator defect detection method for improving CenterNet
CN112381794B (en) Printing defect detection method based on deep convolution generation network
CN113506281A (en) Bridge crack detection method based on deep learning framework
CN111325724B (en) Tunnel crack region detection method and device
CN116958073A (en) Small sample steel defect detection method based on attention feature pyramid mechanism
US20230298152A1 (en) Method for analyzing minor defect based on progressive segmentation network
CN115223114A (en) End-to-end vehicle attitude estimation method based on bidirectional fusion feature pyramid
CN116051530A (en) Semi-supervised photovoltaic cell surface anomaly detection method based on image restoration
WO2023110285A1 (en) Method and system of defect detection for inspection sample based on machine learning model
CN116188391A (en) Method and device for detecting broken gate defect, electronic equipment and storage medium
CN115713659A (en) Photovoltaic panel defect identification and classification method based on deep learning
Yousif et al. Fault detection from PV images using hybrid deep learning model