NL2030243B1 - Computer-implemented method for designing an optical unit for a luminaire, and associated production method - Google Patents

Computer-implemented method for designing an optical unit for a luminaire, and associated production method Download PDF

Info

Publication number
NL2030243B1
NL2030243B1 NL2030243A NL2030243A NL2030243B1 NL 2030243 B1 NL2030243 B1 NL 2030243B1 NL 2030243 A NL2030243 A NL 2030243A NL 2030243 A NL2030243 A NL 2030243A NL 2030243 B1 NL2030243 B1 NL 2030243B1
Authority
NL
Netherlands
Prior art keywords
optical
optical matrix
models
matrix models
light distribution
Prior art date
Application number
NL2030243A
Other languages
Dutch (nl)
Inventor
Kerff Benoit
Bawin Paul
Smets Paul
Caprara Roxane
Original Assignee
Schreder Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schreder Sa filed Critical Schreder Sa
Priority to NL2030243A priority Critical patent/NL2030243B1/en
Priority to PCT/EP2022/087611 priority patent/WO2023118506A1/en
Application granted granted Critical
Publication of NL2030243B1 publication Critical patent/NL2030243B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • F21S8/085Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light
    • F21S8/086Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light with lighting device attached sideways of the standard, e.g. for roads and highways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/06Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/002Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with provision for interchangeability, i.e. component parts being especially adapted to be replaced by another part with the same or a different function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/005Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with keying means, i.e. for enabling the assembling of component parts in distinctive positions, e.g. for preventing wrong mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/16Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting
    • F21V17/164Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by deformation of parts; Snap action mounting the parts being subjected to bending, e.g. snap joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

computer-implemented method for designing an optical unit for at least one luminaire, said optical unit comprising one or more optical matrices, an optical matrix comprising one or more optical elements, the method comprising the steps of receiving data related to a desired light distribution for the optical unit, providing a database comprising a plurality of optical matrix models, each optical matrix model being associated with an optical matrix and comprising at least one light distribution of that optical matrix for at least one predetermined orientation, and an 10 indication of further possible orientations, using the database and the received data, determining at least one set of one or more optical matrix models amongst the plurality of optical matrix models for designing the optical unit.

Description

COMPUTER-IMPLEMENTED METHOD FOR DESIGNING AN OPTICAL UNIT FOR A
LUMINAIRE, AND ASSOCIATED PRODUCTION METHOD
FIELD OF INVENTION
The present invention relates to a computer-implemented method for designing an optical unit for a laminaire, a computer program and system therefor, as well as an associated production method for producing said optical unit.
BACKGROUND
Methods to design optical unit are readily available and typically comprise the filling out of an extensive list of parameters, optical and geometrical parameters for example. in order to determine the best suited theoretical design of the optical unit for a given lighting site. The list of parameters is usually provided manually by a user of a computer-implemented method using a database of all existing luminaires/optical units. These parameters reflect the optical considerations and the installation possibilities of the lighting site. The user can then iteratively play with the parameters to find out which existing optical unit would best fit his needs. Obtaining such an optical unit design is a time-consuming operation and the computer-implemented method is typically not user- friendly for the non-initiated user. Also, depending on the lighting site, none of the existing optical units may be suitable for the intended use, leading to the expensive design of a complete new optical unit.
SUMMARY
The object of embodiments of the invention is to provide a computer-implemented method allowing for a cost-effective design and a modulable optical unit for a luminaire.
According to an aspect of the invention, there is provided a computer-implemented method for designing an optical unit for a luminaire. The optical unit comprises one or more optical matrices.
An optical matrix comprises one or more optical elements. The method comprises the steps of: - receiving data related to a desired light distribution for the optical unit, - providing a database comprising a plurality of optical matrix models, each optical matrix model being associated with an optical matrix and comprising at least one light distribution of that optical matrix for at least one predetermined orientation, and an indication of further possible orientations, - using the database and the received data, determining at least one set of one or more optical matrix models amongst the plurality of optical matrix models for designing the optical unit.
By using a database of optical matrix models, the design of an optical unit for the desired light distribution can be determined at the level of the optical matrices, which improves the overall modularity of the optical unit. The use of a database of optical matrix models taking into account the orientations of the optical matrices increases the number of potential light distributions to be obtained with existing optical matrices, offering thus more possibilities of design. In this way, costs associated with designing an optical unit can be reduced by reusing existing optical matrices but rearranged as new sets. This allows optical matrices to be used for a wider range of applications. Alternatively, for a given application, the cheapest luminaire with an adequate set of one or more optical matrices may be determined. When using the database and the received data, at least one set of one or more optical matrix models amongst the plurality of matrix models may be determined which may meet or approach the desired light distribution.
The optical matrices may be regarded as the building blocks available for building the optical properties of an optical unit. An optical matrix may comprise one or more optical elements and may be regarded as a physical sub-element of an optical unit.
According to a preferred embodiment, determining at least one set of one or more optical matrix models. comprises selecting for each set one or more optical matrix models, and determining for each selected optical matrix model how many optical matrix models need to be included in said set. In this way, sets of different optical matrix models may be determined. By mixing different optical matrix models, a large variety of light distributions can be achieved, increasing thus the modularity of the design.
According to a preferred embodiment, determining at least one set of one or more optical matrix models comprises: - determining a plurality of sets of one or more optical matrix models from the plurality of optical matrix models of the database, - simulating the optical behavior of said plurality of sets of one or more optical matrix models, - selecting at least one set which simulated behavior meets the data related to the desired light distribution with a predetermined tolerance.
In this way, the method performs calculations for multiple sets of optical matrix models in parallel, avoiding the burden of an iterative process, increasing thus the user-friendliness of the design. By simulating the optical behavior is meant producing a computer model of the optical behavior.
When the simulated behavior meets the data related to the desired light distribution with a predetermined tolerance, it means that the computer model calculated approaches a model associated with the desired light distribution on at least one criteria with said predetermined tolerance.
According to a preferred embodiment, the method further comprises receiving a number of optical elements to be used in the optical unit. The number of optical elements to be used in the optical unit is a physical constraint, which may be related among others to a type of luminaire, or a size of a luminaire housing. It is noted that the number of optical elements to be used in the optical unit may be the same as the number of light sources, for instance Leds, used in the the luminaire or may be different in cases where multiple sources, for instances Leds of different colors or color temperatures, are arranged under an optical element.
According to a preferred embodiment, determining a plurality of sets of optical matrix models from the plurality of optical matrix models of the database comprises determining all possible sets of one or more optical matrix models matching the received number of optical elements in the optical unit. In this way, the user may limit the possible sets of optical matrix models to meet the physical constraints of the number of optical elements to be used.
According to a preferred embodiment, selecting at least one set of optical matrix models meeting the data related to the desired light distribution with a predetermined tolerance comprises: - ranking the possible sets of one or more optical matrix models according to a flux associated with each set and derived from each simulation, - selecting among the ranked sets the set of one or more optical matrix models with the lowest flux.
By flux associated with a set is meant the minimum light flux necessary to match the data related to the desired light distribution using that set of one or more optical matrix models. In this way, the most efficient set of optical matrix models can be retrieved, to further improve the reduction of costs when designing a luminaire for a given application. Additionally using the flux as criteria for optimization helps reducing the number of solutions presented to a user to improve his experience.
It is noted that a flux is measured in lumen, while a light distribution is measured in candela lumen. In practice an optical matrix model comprises a light distribution associated with an optical matrix and one orientation of that optical matrix. When simulating the behavior of a set of one or more optical matrix models, a theoretical light distribution for that set may be obtained based on the database of optical matrix models, from which a minimum light flux for that set may be derived in order to match the received data related to the desired light distribution. For instance for a set of asingle optical matrix, the light distribution of that set is equivalent to the light distribution of the single optical matrix. When the data related to the desired light distribution is for instance an illuminance of a lighting norm (in candela per square meters) and at least one installation characteristic of a lighting site (related to physical dimension in meters for instance), a minimum flux (in lumen) necessary with the light distribution (in candela/lumen) of that single optical to match this data can be derived.
According to a preferred embodiment, the method further comprises, using the database and the received data, determining orientations of the one or more optical matrix models of the at least one set of one or more optical matrix models. In this way, a set of optical matrix models with each its respective orientation can be determined, to further increase the modularity of the design.
According to a preferred embodiment, determining orientations of one or more optical matrix model of the least one set comprises determining a rotation around a first axis and/or a tilt around a second axis different form the first axis of each optical matrix model. Alternatively, determining the orientations of the matrix models of the least one set may comprise determining the relative positions of the matrix models with respect to each other. In this way, the orientation of each optical matrix model may be taken into account when designing the optical unit.
According to a preferred embodiment, receiving data related to a desired light distribution for the optical unit comprises receiving any one or more of the following: at least one luminaire installation characteristic, a lighting regulation, a desired light distribution. A lighting site may be characterized by installation characteristics and/or lighting norms. A lighting norm may contain normative values for illuminance, uniformity, glaring index among oters. From these parameters, a desired light distribution may be derived. The desired light distribution may represent the desired light distribution on the ground in the vicinity of the luminaire and/or the desired 3D light distribution of the luminaire around the luminaire. A desired light distribution can be a theoretical value originated from photometry studies or it can be the measured light distribution of an existing luminaire to be used as reference
According to a preferred embodiment, the luminaire installation characteristic comprises any one or more of the following: a pathway width, an interval distance between two neighboring luminaire base supports, a pathway surface material, pathway surface optical properties, a height of a luminaire head of the at least one luminaire, a number of lanes of the pathway, one or more circulation directions of the pathway, a lateral distance between the pathway and the at least one luminaire base support, a lateral dimension of a hard shoulder of the pathway, an arrangement pattern of a group of luminaires including the at least one luminaire along the pathway, a bracket length of the luminaire head of the at least one luminaire, an inclination of the luminaire head of the at least one luminaire, a presence of a base support for a luminaire, a location of the base support respective to the one or more circulation directions, a proximity with a neighboring building, characteristics of the neighboring building, a number of luminaire heads per base support, a presence of a conflict zone in the lighting site, a type of the pathway. 5
According to a preferred embodiment, receiving data related to a desired light distribution for the optical unit further comprises receiving at least one additional parameter from any of the following: a luminaire family, an installation budget, a power consumption per kilometer, a number of luminaires to be installed, a maximum wattage of the at least one luminaire to be installed, an aesthetical consideration, a type of light source, a glaring index, a luminaire managing option, a number of parts of a luminaire design, a lighting uniformity, a lighting intensity, an average illuminance, a total cost of ownership, a lifetime, a method of installation, an operating temperature, a recycling factor, a certificate, a commercial brand, an electrical connection type, a secondary functionality of the luminaire, a dimension of the optical unit. a type of accessory.
According to a preferred embodiment, for determining at least one set of one or more optical matrix models, sequentially the following steps are performed: - Selecting from the database one or more optical matrix models containing the received number of optical elements to be used, simulating the optical behavior of the selected one or more optical matrix models, - If the results of at least one simulation of the selected one or more optical matrix models meet the data related to the desired light distribution with optionally a predetermined tolerance, selecting the optical matrix model associated with that simulation for designing the optical unit, - Otherwise, selecting from the selected database one or more sets of identical optical matrix models, wherein the received number of optical elements is a multiple of the number of optical elements of the optical matrix model of each set, simulating the optical behavior of the selected one or more sets of identical matrix models, - If the results of at least one simulation of the selected one or more sets meet the data related to the desired light distribution with optionally a predetermined tolerance, selecting that set of identical optical matrix models for designing the optical unit.
In this way, an iterative process may be chosen for designing the luminaire, starting with the most standard option and progressively increasing the modularity of the design. A progressive design allows an easy interaction with a non-specialist user, increasing the user-friendliness. By starting with a standard optical matrix, costs may also be mitigated. It is noted that the orientations of identical optical matrix models of a set do not need necessarily to be the same.
According to a preferred embodiment. selecting one or more sets of identical optical matrix models comprises iterativelyy selecting sets of identical optical matrix models containing per optical matrix model a lower number of optical elements than during the previous iteration. In this way, the design may progressively become more complex, using progressively larger sets of smaller optical matrix models.
According to a preferred embodiment, the method further comprises the following steps: - Otherwise, optionally, selecting one or more accessories, simulating the optical behavior of a set of identical optical matrix models including the one or more accessories, - Optionally, if the results of the simulation meet the data related to the desired light distribution with optionally a predetermined tolerance, selecting that set of identical optical matrix models and accessories, - Otherwise, optionally proceeding according to the steps of any of the above embodiments, in particular according to the steps of the previous embodiments.
In this way, accessories may first be added to obtain the desired light distribution before considering mixing optical matrices in a more complex manner. Accessories may be regarded as mechanical part added to an optical element to modify the light distribution associated with that optical element. In an embodiment, one or more other accessories may be provided to the optical matrix, such as reflectors, backlights, prisms, collimators, diffusors, anti-reflection coatings and the like. For example, there may be associated a backlight element with some optical elements or with each optical element of the plurality of optical matrix. Those one or more accessories may be formed integrally with the optical matrix. In other embodiments, those one or more accessories may be mounted to/on/around the optical matrix via e.g. releasable fastening elements. It is noted that accessories may further be oriented/tilted as an additional step.
According to a preferred embodiment, the database further comprises associated with each matrix molding model a number of molding inserts available for producing by molding the optical matrix associated with that optical matrix model, and wherein determining at least one set of one or more optical matrix models amongst the plurality of optical matrix models for designing the optical unit further comprises excluding sets of one or more optical matrix models incompatible with the available molding inserts. By storing in the database the available molding inserts, the molding constraints may be taken into account during the design of the optical unit. In this way, cost constraints may be taken into account right at the beginning of the design of the optical unit.
Indeed creating (additional) molding inserts may be very costly. In this way, the design may take into account the available molding inserts for practically molding the optical unit, reducing costs associated with producing new molding inserts.
The skilled person will understand that the hereinabove described technical considerations and advantages for embodiments of a method for designing an optical unit also apply to the below described corresponding computer program embodiments, mutatis mutandis.
According to a second aspect of the invention, there is provided a computer program. The computer program comprises instructions which, when the program is executed by a computer, cause the computer to carry out the method for designing an optical unit as hereinabove described.
The skilled person will understand that the hereinabove described technical considerations and advantages for embodiments of a method for designing an optical unit and for computer program embodiments also apply to the below described corresponding computer-controlled system embodiments, mutatis mutandis.
According to a preferred embodiment, there is provided a computer-controlled system for implementing the computer-implemented method of any of the above claims, the system comprising: - data input means adapted to receive data related to a desired light distribution for the optical unit from a user, - a memory configured to store a database comprising a plurality of optical matrix models, - adisplay, - a processor coupled the data input means, the memory and the display, configured for performing the steps of any of the above claims, and outputting the at least one set of optical matrix models to the user via the display.
According to another aspect of the invention, there is provided a method for producing an optical unit according to any of the above embodiments, further comprising generating or collecting at least one set of one or more optical matrices corresponding with the determined at least one set of one or more optical matrix models. To produce the optical unit, a user may use the results of the computer-implemented method of the above embodiments to obtain the at least one set of one or more optical matrix models and subsequently generate or collect at least one set of one or more optical matrices corresponding with the determined at least one set of one or more optical matrix models. Alternatively, the production method may be (partially) performed by a machine.
According to a preferred embodiment, generating or collecting at least one set of one or more optical matrices comprises collecting one or more optical matrices associated with the determined at least one set of optical matrix models from a stock of available optical matrices, the method further comprising forming the optical unit with the collected optical matrices. In this way, a flexible hardware solution for obtaining the designed optical unit may be obtained. Optionally the method may further comprise collecting one or more accessories.
According to a preferred embodiment. the method further comprises collecting a frame for holding the collected one or more optical matrices from a stock of available frames and wherein forming the optical unit with the collected one or more optical matrices comprises connecting together the collected one or more optical matrices and the collected frame. The use of a frame and optical matrices improves the modularity of the design of the optical unit since a frame may be used for multiple types of designs. Optionally the method may further comprise connecting one or more accessories.
According to a preferred embodiment, connecting together the collected one or more optical matrices and the collected frame comprises placing the collected one or more optical matrices on the collected frame according to determined orientations of the one or more optical matrix models.
According to a preferred embodiment, connecting the collected one or more optical matrices on the collected frame further comprises attaching the collected optical matrices on said frame by any one of the following methods: welding, gluing, snap-fitting.
According to a preferred embodiment, generating/collecting at least one set of one or more optical matrices comprises generating by molding the optical unit using the molding inserts associated with the determined at least one set of one or more optical matrix models. In this way, new optical units may be created reusing existing molding inserts in a cost-effective manner. A large variety of optical units may thus be produced at low cost. Optionally the method may comprise a step integrating molding parts for molding accessories in the molding system.
According to a preferred embodiment, generating/collecting at least one set of one or more optical matrices further comprises selecting at least one frame from a plurality of frames configured to receive the molding inserts associated with the determined at least one set of optical matrix models.
A frame may further be specifically configured to receive specific molding inserts. In this way, errors related to the selection of molding inserts may be avoided.
According to a preferred embodiment, generating/collecting at least one set of one or moreoptical matrices further comprises placing the optical matrix molding inserts in the selected frame according to the determined orientations of the one or more optical matrix models of the at least one set of one or more optical matrix models. A frame may be specifically configured to receive molding inserts oriented with a given direction. In this way, errors related to the orientation of molding inserts may be avoided.
According to a preferred embodiment, the optical elements are lens elements. In the context of the invention, a lens may include any transmissive optical element that focuses or disperses light by means of refraction. It may also include any one of the following: a reflective portion, a backlight portion, a prismatic portion, a collimator portion, a diffusor portion. For example, a lens may have a lens portion with a concave or convex surface facing a light source, or more generally a lens portion with a flat or curved surface facing the light source, and optionally a collimator portion integrally formed with said lens portion, said collimator portion being configured for collimating light transmitted through said lens portion. Also, a lens may be provided with a reflective portion or surface, referred to as a backlight element in the context of the invention, or with a diffusive portion.
A lens of the plurality of lenses may comprise a lens portion having an outer surface and an inner surface facing the associated light source. The outer surface may be a convex surface and the inner surface may be a concave or planar surface. Also. a lens may comprise multiple lens portions adjoined in a discontinuous manner, wherein each lens portion may have a convex outer surface and a concave inner surface.
Hence, lenses that can be used in combination with the light shielding structure are not limited to rotation-symmetric lenses such as hemispherical lenses, or to ellipsoidal lenses having a major symmetry plane and a minor symmetry plane, although such rotation-symmetric lenses could be used. Alternatively, lenses with no symmetry plane or symmetry axis could be envisaged.
According to a preferred embodiment, an optical matrix is any one or a combination of the following: an individual optical element, a row of identical optical elements, a row of different optical elements, an array of identical optical elements, an array of different optical elements.
BRIEF DESCRIPTION OF THE FIGURES
This and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing a currently preferred embodiment. Like numbers refer to like features throughout the drawings.
Figures 1A and 1B illustrate schematically a luminaire head with an optical unit which may be designed using the exemplary method according to an embodiment.
Figures 2A-2E illustrate examples of optical matrices for use in an exemplary method according to an embodiment.
Figures 3A and 3B illustrate different installations configurations for a luminaire and their effect on the associated light distributions of the luminaire.
Figure 4 illustrates the steps of an exemplary method according to an embodiment.
Figure 5 illustrates the steps of an exemplary method according to another embodiment.
Figure 6 illustrates a computer-controlled system for implementing the computer-implemented method of the embodiments of Figures 4 and 5.
Figure 7 shows possible results obtained with an exemplary method according to an embodiment, for a family of luminaires.
Figures 8A and SB show exploded perspective views of a molding system for molding an optical unit according to an exemplary production method according to an embodiment. Figure 8C shows a side view of the molding system of Figures 8A and 8B.
Figure 9 illustrates an embodiment where an optical unit is obtained by molding using a set of molding inserts, as illustrated in Figures 8A-8C, determined according to an exemplary method according to an embodiment.
Figure 10 illustrates an embodiment where an optical unit is obtained by assembling a set of optical matrices mold separately, the set being determined according to an exemplary method according to an embodiment.
DESCRIPTION OF EMBODIMENTS
Figures 1A and 1B illustrate schematically a luminaire head with an optical unit which may be designed using the exemplary method according to an embodiment.
Figure 1A shows a luminaire 10 comprising a luminaire head 30 on a pole 20. Inside the luminaire head 30, there is provided an optical unit 40 positioned over light sources, preferably LED lights, to provide a predetermined light distribution. The optical characteristics of the optical unit influence the light distribution created by the light sources.
In Figure 1B, the optical unit 40 may be a lens plate comprising a plurality of optical elements 60, in particular optical lenses, arranged in a plurality of rows 51-54 of optical elements 60 and a frame
70 for holding the optical elements 60 and affixing the optical unit 40 to the rest of the luminaire head 30.
Figures 2A-2E illustrate examples of optical matrices for use in an exemplary method according to an embodiment.
For designing an optical unit, manufacturers may maintain a database comprising a plurality of optical matrix models M;, j being an integer higher than one, each optical matrix model M; being associated with an optical matrix 80;, and comprising at least one light distribution of that optical matrix 80; for at least one predetermined orientation, and an indication of further possible orientations. lt is noted that the indication may well contain the information that no other orientations are envisaged. For example, an optical matrix model M; associated with an optical matrix 80; as shown in Figure 2A may comprise a light distribution of that optical matrix 80 for an orientation of zero degrees, and an indication that the optical matrix 801 may also be used in a second orientation, in which for instance the optical matrix is turned by 180 degrees around an axis perpendicular to the plane of the optical matrix 80;. Alternatively a separate optical matrix model
Mj may be created for each orientation of each optical matrix 80.
The optical matrices 80; may be regarded as the building blocks available for building the optical properties of an optical unit 40. An optical matrix 80; may comprise one or more optical elements 60 and may be regarded as a physical sub-element of an optical unit 40. An optical matrix 80; may be any one or a combination of the following: an individual optical element 60 as illustrated in
Figure 2C, a row of identical optical elements 60 as illustrated in Figure 2B, a row of different optical elements 60, an array of identical optical elements 60 as illustrated in Figures 2D and 2E, an array of different optical elements 60 as illustrated in Figure 2A.
Figures 2D and 2E illustrate how an optical matrix 80,4 may have more than one orientation. The frame 70 may be used as a reference point on the optical matrix 80,4 to locate a privileged direction of lighting, illustrated by an arrow in the Figures 2D and 2E. The orientations of an optical matrix 80; may be related to a rotation around a first axis and/or a tilt around a second axis different form the first axis of each optical matrix. The optical matrix 804 of Figure 2E is rotated 180 degrees with respect to the optical unit 40b of Figure 2D around an axis A perpendicular to the plane of the optical matrix 804. In such cases, a model M4 may be stored in the database associated with the optical matrix 804, the model Ma comprising a light distribution of that optical matrix 804 in the orientation of zero degrees as shown in Figure 2D, and an indication that an orientation of 180 degrees is also possible for that optical matrix 804. Alternatively, multiples models for each orientation of each optical matrix may be stored in the database.
Figures 3A and 3B illustrate different installations configurations for a luminaire and their effect on the associated light distributions of the luminaire. As is well known in the art, when designing a luminaire, a desired light distribution may be derived from an installation configuration comprising luminaire installation characteristics related to the lighting site. A luminaire installation characteristic may correspond to an optical characteristic of the environment of the lighting site to be illuminated, and/or to dimensions relevant for the installation of a luminaire. The lighting site corresponds to the location for installing a luminaire 10, comprising at least one luminaire head 30, optionally combined with an associated luminaire head bracket, on a base support 10 of the lighting site, e.g. a luminaire pole.
Figure 3A illustrates how a first light distribution Da may be derived from a first installation configuration ConfigA, corresponding to lighting site with two pedestrian sidewalks and two vehicle lanes with given dimensions, while Figure 3B illustrates how a second light distribution Dg may be derived from a second installation configuration ConfigB, corresponding to lighting site with only two vehicles’ lanes with given dimensions.
The lighting site may correspond to any space to be illuminated with a location for installing at least one luminaire. The lighting site typically comprises a pathway that can be taken by vehicles and/or pedestrians. The pathway may be a pathway on a lighting site suitable for outdoor luminaires. By lighting site for outdoor luminaires, it is meant roads, tunnels, industrial plants, stadiums, airports, harbors, rail stations, campuses, parks, cycle paths, pedestrian paths, or pedestrian zones for example, and outdoor luminaires can be used notably for the lighting of an outdoor area, such as roads and residential areas in the public domain, private parking areas and access roads to private building infrastructures, etc. In other embodiments according to the invention, the pathway may be located indoors, such as in a warehouse or an industry hall.
In the context of a computer-implemented method for designing the optical unit of at least one luminaire, receiving data related to a desired light distribution may thus amount to receiving at least one luminaire installation characteristic and/or a lighting regulation. The at least one laminaire installation characteristic and/or a lighting regulation may be received from a user via input means, for instance via a keyboard, a touchscreen or a mouse, or extracted from other input data.
The installation characteristic may comprise any one or more of the following: a pathway width, an interval distance between two neighboring laminaire base supports, a pathway surface material,
pathway surface optical properties, a height of a luminaire head of the at least one luminaire, a number of lanes of the pathway, one or more circulation directions of the pathway, a lateral distance between the pathway and the at least one luminaire base support, a lateral dimension of a hard shoulder of the pathway, an arrangement pattern of a group of luminaires including the at least one luminaire along the pathway, a bracket length of the luminaire head of the at least one laminaire, an inclination of the laminaire head of the at least one luminaire, a presence of a base support for a luminaire, a location of the base support respective to the one or more circulation directions, a proximity with a neighboring building, characteristics of the neighboring building, a number of luminaire heads per base support, a presence of a conflict zone in the lighting site, a type of the pathway. The conflict zone may be defined as a zone where there is an increased potential for collision between road users, e.g., entry or exit lanes to the highway, crossroads, roundabouts, pedestrian crossings, etc.
A lighting regulation may be a public road lighting standard or recommendations such as EN 13201, EN 13032, IES RP-8, CIE 115, CIE 140 respective to the environment of the lighting site, thereby allowing for an illumination giving a visibility above a predetermined level for users of the lighting site, as well as giving a predetermined illumination safety, e.g., illumination intensity below a blinding intensity, light emitted within a certain arc to avoid glaring angles, illuminance and uniformity among others.
There further may be provided a regulation database which may be a nation-wide database, a region-wide database, a city-wide database, or a local-wide database. In an embodiment, the obtaining of the lighting regulation may be based on the geo-coordinates of the lighting site.
Additionally or alternatively, the obtaining of the lighting regulation may be at least partially based on the extracted installation characteristic, e.g., the number of lanes of the pathway. In an embodiment, the obtaining of the lighting regulation may be followed by a manual correction or confirmation of the lighting regulation associated to the lighting site.
Also, the obtaining of the lighting regulation may be achieved by a manual entry.
In addition, receiving data related to a desired light distribution for the optical unit may further comprise receiving at least one additional parameter from any of the following: a luminaire family, an installation budget, a power consumption per kilometer, a number of luminaires to be installed, a maximum wattage of the at least one luminaire to be installed, an aesthetical consideration, a type of light source, a glaring index, a luminaire managing option, a number of parts of a luminaire design, a lighting uniformity, a lighting intensity, an average illuminance, a total cost of ownership, a lifetime, a method of installation, an operating temperature, a recycling factor, a certificate, a commercial brand, an electrical connection type, a secondary functionality of the luminaire, a dimension of the optical unit, a type of accessory.
Figure 4 illustrates the steps of an exemplary method according to an embodiment.
A computer-implemented method for designing an optical unit for a luminaire of an embodiment may comprise: - step 401 for receiving data related to a desired light distribution for the optical unit, - step 402 providing a database comprising a plurality of optical matrix models, each optical matrix model being associated with an optical matrix and comprising at least one light distribution of that optical matrix for at least one predetermined orientation, and an indication of further possible orientations - and step 403 for using the database and the received data, determining at least one set of one or more optical matrix models amongst the plurality of optical matrix models for designing the optical unit.
According to an embodiment, determining at least one set of one or more optical matrix models, comprises selecting for each set one or more optical matrix models, and determining for each optical matrix model how many optical matrix models need to be included in said set.
The method may further comprise receiving a number of optical elements to be used in the optical unit. A user may input the number of light sources to be used in the luminaire 10 and thus the number of optical elements 60 to be used in the optical unit 40. This physical constraints may be related to an additional parameter from any of the following : a luminaire family, an installation budget, a power consumption per kilometer, a number of luminaires to be installed, a maximum wattage of the at least one luminaire to be installed, an aesthetical consideration, a type of light source, a glaring index, a luminaire managing option, a number of parts of a luminaire design, a lighting uniformity, a lighting intensity, an average illuminance, a total cost of ownership, a lifetime, a method of installation, an operating temperature, a recycling factor, a certificate, a commercial brand, an electrical connection type, a secondary functionality of the luminaire, a dimension of the optical unit, a type of accessory.
According to an embodiment, step 403 may comprise the following steps: - Selecting from the database one or more optical matrix models containing the received number of optical elements to be used, simulating the optical behavior of the selected one or more optical matrix models,
- If the results of at least one simulation of the selected one or more optical matrix models meet the data related to the desired light distribution with optionally a predetermined tolerance, selecting the optical matrix model associated with that simulation for designing the optical unit, - Otherwise, selecting from the selected database one or more sets of identical optical matrix models, wherein the received number of optical elements is a multiple of the number of optical elements of the optical matric model of each set, simulating the optical behavior of the selected one or more sets of identical matrix models, - Ifthe results of at least one simulation of the selected one or more sets meet the desired light distribution with optionally a predetermined tolerance, selecting that set of identical optical matrix models for designing the optical unit.
It is noted that the orientations of identical optical matrix models of a set do not need necessarily to be the same.
Incase the results of the above simulation still do not meet the data related to the desired light distribution, step 403 may then comprise: - optionally, selecting one or more accessories, simulating the optical behavior of a set of identical optical matrix models including the one or more accessories, - optionally, if the results of the simulation meet the data related to the desired light distribution with optionally a predetermined tolerance, selecting that set of identical optical matrix models and accessories,
In case the results of the above simulation still do not meet the data related to the desired light distribution, steps 403 may then further operate according to Figure 5 illustrating the steps of an exemplary method according to another embodiment.
The method of Figure 5 may comprise: - step 501: providing a database as in step 402 - step 502: receiving data related to a desired light distribution as in step 401. - step 503: determining a plurality of sets of one or more optical matrix models from the plurality of optical matrix models of the database, - step 504: simulating the optical behavior of said plurality of sets of one or more optical matrix models, - and step 505: selecting at least one set of one or more optical matrix models meeting the data related to the desired light distribution, optionally with a predetermined tolerance.
It is noted that steps 501 and 502, respectively 401, 402 may be performed in any order, depending on user preferences.
It is further noted that if none of the results of step 504 meet the data related to the desired light distribution with optionally a predetermined tolerance, the method may provide a request to update the database triggering the addition of at least one new optical matrix model, derived from the closest set.
Step 501 may comprise accessing a locally stored database or one or more databases available on servers of luminaire producers, to obtain optical matrix models of optical matrices from one or more producers. A model of an optical matrix may contain all optical characteristics of that optical matrix necessary for simulating the optical behavior of that optical matrix in terms of light distribution in any installation configuration.
Step 502 may further comprise receiving the number of optical elements to be used in the optical anit. The number of optical elements to be used in the optical unit may be a physical constraint and may be related among others to a type of luminaire, or a size of a luminaire housing. In this way, the user may limit the possible sets of one or more optical matrix models to meet other physical constraints of the optical unit design. Step 502 may then comprise determining all possible sets of one or more optical matrix models matching the received number of optical elements in the optical unit.
Step 504 may further comprise: - ranking the possible sets of one or more optical matrix models according to a flux associated with each set and derived from each simulation, - selecting among the ranked sets the set of one or more optical matrix models with the lowest flux.
By simulated flux of a set is meant the minimum light flux necessary to obtain the desired light distribution using that set of optical matrix models. In this way, the most efficient set of optical matrix models can be retrieved. In an embodiment, the flux may be used as criteria for optimization to help reduce the number of solutions presented to a user to improve his experience.
In an embodiment, the method may further comprise, using the database and the received data, determining orientations of the one or more optical matrix models of the at least one set of one or more optical matrix models. In particular determining orientations of the matrix models of the least one set may comprise determining a rotation around a first axis and/or a tilt around a second axis different form the first axis of each optical matrix model.
Figure 6 illustrates a computer-controlled system for implementing the computer-implemented methods of the embodiments of the present invention, in particular as illustrate din Figures 4 and 5.
The system 600 may comprise data input means 601 adapted to receive data related to a desired light distribution for the optical unit, a memory 602 configured to store a database comprising a plurality of optical matrix models, a display 604, and a processor 603 coupled the data input means 601, the memory 602 and the display 604. The processor 603 is contigured for performing the steps of the computer- implemented method of the previous embodiments and outputting the at least one set of one or more optical matrix models Mj amongst the plurality of optical matrix models Mj for designing the optical unit 40 to a user via the display 604.
Figure 7 shows possible results obtained with an exemplary method according to an embodiment, for a family of luminaires. Using the computer-implemented method of the previous embodiments it is for instance possible to design multiple optical units 40,-40p for a family of luminaires A-D to be installed for a large project covering a plurality of different lighting sites, like for instance a highway with tunnels, bridges, four lanes’ sections, tollgates etc. The optical units 404-40p are modular combinations of one or more optical matrices 80,-80F depending on the lighting site associated which each sort of luminaire. The computer-implemented method may enable to reuse existing optical matrices like optical matrix 80a of optical unit 40a in combination with other existing optical matrices 805-80, to build up a whole range of lighting solutions depending on the needs of the project.
According to another aspect, Figures 8A-8C deal with molding consideration which may be taken into account in the computer-implemented method according to another embodiment. According to an embodiment, the database of Figures 4-6 may further comprise, associated with each optical matrix model, a number of molding inserts available for producing by molding the optical matrix associated with a respective optical matrix model. Step 403 of the computer-implemented method for designing an optical unit of Figure 4 may then further comprise excluding sets of one or more optical matrix models incompatible with the available molding inserts. For example, should the computer-implemented method determine that a set of a given number, x, of identical optical matrix models would meet the data related to the desired light distribution, but the database contains the information that there not enough molding inserts available, i.e. less available molding inserts than the given number x, associated with that optical matrix model, then that set would be excluded from the final solution proposed by the computer-implemented method. In this way the investment in new molding inserts may be reduced to the strict minimum when for instance no solution could be retrieved using existing molding inserts.
According to an aspect of the invention, a first method for producing an optical unit may be provided comprising the method of any of the previous embodiments. After determining using the exemplary computer-controlled method a determined at least one set of optical matrix models, a production method may comprise generating/collecting at least one set of one or more optical matrices by molding the optical unit using molding inserts associated with the determined at least one set of one or more optical matrix models.
Figures 8A and 8B show exploded perspective views of a molding system for molding an optical unit with four rows of five optical elements (similar to the optical matrix disclosed in Figures 2D and 2E). Figure 8C shows a side view of the molding system of Figures 8A and 8B. The molding system may comprise a plurality of molding inserts 90 and 95 comprising a plurality of female molding inserts 90 (only one, element 90: associated with a theoretical optical matrix 80: is represented), a plurality of male molding inserts 95 (only one, element 95: associated with the theoretical optical matrix 802 is represented), a first frame 100 for receiving the plurality of female molding inserts 90 and a second frame 105 for receiving the plurality of female molding inserts 90.
In the example shown, the male and female molding inserts 90; and 95; would, if taken in isolation, form together a mold to produce by molding an optical matrix 80; using known molding techniques. In the example an optical matrix 80: comprising a row of five identical optical lenses/lenses has been represented. Yet a different number/arrangement of optical elements may be envisaged by a skilled person without departing from the concept behind the invention. By arranging a plurality of male and female molding inserts associated with a plurality of optical matrices inside the respective frames 100 and 105, an optical unit composed of a set of optical matrices may be produced by molding. The optical unit produced in this manner (not represented) may then be an integral element in which material is molded in between the male/female molding inserts 90 and 95 and the frames 1001 and 105 to form a single optical unit plate. The frame 100 and the molding inserts 90 may represent a female side of a mold, while the frame 105 and the molding inserts 95 may represent a male side of a mold. Between the female and male sides of such a mold, molding material may be injected to obtain by molding an optical unit.
Figure 8D shows an enlarged view of a frame 105 for receiving a plurality of male molding inserts 95, like for instance the molding insert 95.. The frames 100, respectively 105, may be specific to a set of molding inserts 90, respectively 95, and a stock of available frames may be at the disposition of a user. In an embodiment, a frame 105 may comprise guiding elements 110 and 120 meant to interact with the molding insert 952 when inserted in a given orientation. The guiding elements 110 and 120 may avoid that a user may insert the molding insert 95: in a orientation not intended with respect to the frame 105. The position and number of guiding elements 110, 120 may be specific to a set of molding inserts 95 associated with a set of optical matrices 80, associated in turn with a determined set of one or more optical matrix models M obtained according to the previous exemplary method. The frame 105 may further comprise a recess 130 for inserting a molding insert (not represented) for labelling the final optical unit. Similar considerations concerning guiding elements and labelling options, may apply to the other frame 100 for receiving the female molding inserts 90. The molding inserts 95, or 90, may optionally comprise a labelling area for labelling the associated optical matrix.
Figure 9 illustrates an embodiment where an optical unit is produced by molding using a set of molding inserts determined according to an exemplary method according to an embodiment. The optical unit 40A of Figure 9 may be produced by molding using the molding inserts 90, 95 and frame parts 100 and 105 as illustrated in Figures 8A-8D. In the example of Figure 9, the optical unit 40A may have been produced using a molding system comprising three types of male/female molding inserts 90, 95 (one type for the two male/female molding inserts in the center of the array, two different types of male/female molding inserts on the sides of the array). The frames 100 and 105 may then be configured to guide the molding inserts 90, 95 to insure the correct orientation of the optical elements. Optionally accessories may also be taken into account when molding the optical unit by inserting additional molding parts for molding said accessories.
According to another aspect of the invention, a second method for producing an optical unit may be provided comprising the method of any of the previous embodiments. After determining using a computer-controlled system a determined at least one set of optical matrix models, a production method may comprise collecting a plurality of optical matrices associated with the determined at least one set of optical matrix models from a stock of available optical matrices and forming the optical unit with the collected optical matrices.
Figure 10 illustrates an embodiment where an optical unit 40g is produced by assembling a set of one or more optical matrices 80 mold separately, the set being determined according to an exemplary method according to any of the previous embodiments. In an example, after determining using a computer-controlled system a determined at least one set of optical matrix models M, a production method may comprise collecting at least one set of optical matrices 80» corresponding with the determined at least one set of optical matrix models M: from a stock of available optical matrices 80 and forming the optical unit 40g with the collected optical matrices 80.
In an example, the production method may further comprise collecting a frame 70; for holding the collected optical matrices 80: from a stock of available frames 70. Forming the optical unit 40g with the collected optical matrices 80 may comprise connecting together the collected optical matrices 802 and the collected frame 70s. Connecting together the collected optical matrices 802 and the collected frame 70s may comprise placing the collected optical matrices 802 on the collected frame 70g according to determined orientations of the one or more optical matrix models
Mb. Connecting the collected optical matrices 80; on the collected frame 708 may further comprise attaching the collected optical matrices 802 on said frame 70g by any one of the following methods: welding, gluing, snap-fitting or any other known suitable technique. Alternatively, collected optical matrices 80 may be attached directly a printed circuit board holding the light sources. In another alternative, the collected optical matrices 80 may be attached together by known techniques.
During the production, additional steps may include attaching accessories to the collected optical matrices 80 to the optical matrices and/or the frame.
Whilst the principles of the invention have been set out above in connection with specific embodiments, it is understood that this description is merely made by way of example and not as a limitation of the scope of protection which is determined by the appended claims.

Claims (27)

CONCLUSIESCONCLUSIONS 1. Een computer geïmplementeerde werkwijze voor het ontwerpen van een optische eenheid voor ten minste één verlichtingsarmatuur, waarbij de optische eenheid één of meer optische matrices omvat, waarbij een optische matrix één of meer optische elementen omvat, waarbij de werkwijze de volgende stappen omvat: - het ontvangen van gegevens gerelateerd aan een gewenste lichtverdeling voor de optische eenheid, - het voorzien van een database omvattende meerdere optische matrixmodellen, waarbij elk optisch matrixmodel geassocieerd is met een optische matrix en ten minste één lichtverdeling van die optische matrix voor ten minste één vooraf bepaalde oriëntatie omvat, en een aanduiding van verdere mogelijke oriëntaties, - gebruikmakend van de database en de ontvangen gegevens, het bepalen van ten minste één set van één of meer optische matrixmodellen van de meerdere optische matrixmodellen voor het ontwerpen van de optische eenheid.A computer-implemented method for designing an optical unit for at least one luminaire, the optical unit comprising one or more optical arrays, wherein an optical array includes one or more optical elements, the method comprising the following steps: - receiving data related to a desired light distribution for the optical unit, - providing a database comprising a plurality of optical matrix models, each optical matrix model being associated with an optical matrix and at least one light distribution of that optical matrix for at least one predetermined orientation, and an indication of further possible orientations, - using the database and the received data, determining at least one set of one or more optical matrix models of the plurality of optical matrix models for designing the optical unit. 2. De werkwijze volgens conclusie 1, waarbij het bepalen van ten minste één set van één of meer optische matrixmodellen, het voor elke set selecteren van één of meer optische matrixmodellen omvat, en het voor elk optisch matrixmodel bepalen hoeveel optische matrixmodellen in de set opgenomen moeten worden.The method of claim 1, wherein determining at least one set of one or more optical matrix models comprises selecting one or more optical matrix models for each set, and determining for each optical matrix model how many optical matrix models included in the set must become. 3. De werkwijze volgens één der voorgaande conclusies, verder omvattende het ontvangen van een aantal in de optische eenheid te gebruiken optische elementen.The method of any one of the preceding claims, further comprising receiving a plurality of optical elements to be used in the optical unit. 4. De werkwijze volgens één der voorgaande conclusies, waarbij het bepalen van ten minste één set van één of meer optische matrixmodellen omvat: - het bepalen van meerdere sets van één of meer optische matrixmodellen van de meerdere optische matrixmodellen van de database, - het simuleren van het optisch gedrag van de meerdere sets van één of meerdere optische matrixmodellen, - het selecteren van ten minste één set waarvan het gesimuleerde gedrag voldoet aan de gegevens gerelateerd aan de gewenste lichtverdeling met een vooraf bepaalde tolerantie.The method according to any one of the preceding claims, wherein determining at least one set of one or more optical matrix models comprises: - determining multiple sets of one or more optical matrix models from the multiple optical matrix models of the database, - simulating of the optical behavior of the multiple sets of one or more optical matrix models, - selecting at least one set whose simulated behavior meets the data related to the desired light distribution with a predetermined tolerance. 5. De werkwijze volgens de voorgaande conclusie 3 en optioneel conclusie 4, waarbij het bepalen van meerdere sets van optische matrixmodellen van de meerdere optische matrixmodellen van de database het bepalen omvat van alle mogelijke sets van optische matrixmodellen die passen bij het ontvangen aantal optische elementen in de optische eenheid.The method of the preceding claim 3 and optionally claim 4, wherein determining multiple sets of optical matrix models from the plurality of optical matrix models of the database comprises determining all possible sets of optical matrix models that match the received number of optical elements in the optical unit. 6. De werkwijze volgens één der voorgaande conclusies 4-5, waarbij het selecteren van ten minste één set van de optische matrixmodellen die voldoen aan de gegevens gerelateerd aan de gewenste lichtverdeling met een vooraf bepaalde tolerantie omvat: - het rangschikken van mogelijke sets van één of meerdere matrixmodellen volgens een flux geassocieerd met elke set en afgeleid van elke simulatie, - het selecteren uit de gerangschikte sets van de set van één of meer optische matrixmodellen met de laagste flux.The method according to any of the preceding claims 4-5, wherein selecting at least one set of the optical matrix models satisfying the data related to the desired light distribution with a predetermined tolerance comprises: - arranging possible sets of one or several matrix models according to a flux associated with each set and derived from each simulation, - selecting from the ranked sets the set of one or more optical matrix models with the lowest flux. 7. De werkwijze volgens één der voorgaande conclusies, verder omvattende, gebruikmakende van de database en de ontvangen gegevens, het bepalen van oriëntaties van de één of meerdere optische matrixmodellen van de ten minste één set van één of meer optische matrixmodellen.The method of any preceding claim, further comprising, using the database and the received data, determining orientations of the one or more optical matrix models of the at least one set of one or more optical matrix models. 8. De werkwijze volgens de voorgaande conclusie, waarbij het bepalen van oriëntaties van de één of meer optische matrixmodellen van de ten minste één set het bepalen omvat van een rotatie rond een eerste as en/of een kanteling rond een tweede as die verschillend is van de eerste as van elk optisch matrixmodel.The method of the preceding claim, wherein determining orientations of the one or more optical matrix models of the at least one set comprises determining a rotation about a first axis and/or a tilt about a second axis that is different from the first axis of any optical matrix model. 9. De werkwijze volgens één der voorgaande conclusies, waarbij het ontvangen van gegevens gerelateerd aan een gewenste lichtverdeling van de optische eenheid het ontvangen van één of meer van de volgende omvat: ten minste één verlichtingsarmatuur-installatiekenmerk, een verlichtingsregeling, een gewenste lichtverdeling.The method of any one of the preceding claims, wherein receiving data related to a desired light distribution from the optical unit comprises receiving one or more of the following: at least one lighting fixture installation characteristic, a lighting control, a desired light distribution. 10. De werkwijze volgens de voorgaande conclusie, waarbij het verlichtingsarmatuur- installatiekenmerk één of meer van de volgende omvat: een padbreedte, een afstandsinterval tussen twee naburige verlichtingsarmatuur-basissteunen, een padoppervlaktemateriaal, padoppervlakte-optische eigenschappen, een hoogte van een verlichtingsarmatuur-kop van de ten minste één verlichtingsarmatuur, een aantal banen van het pad, één of meer circulatierichtingen van het pad, een laterale afstand tussen het pad en de ten minste één verlichtingsarmatuur-basissteun, een laterale afmeting van een harde schouder van het pad, een aangebracht patroon van een groep van verlichtingsarmaturen omvattende de ten minste één verlichtingsarmatuur langs het pad, een beugellengte van de verlichtingsarmatuur-kop van de ten minste één verlichtingsarmatuur, een helling van de verlichtingsarmatuur-kop van de ten minste één verlichtingsarmatuur, een aanwezigheid van een basissteun voor een verlichtingsarmatuur, een locatie van de basissteun ten opzichte van de één of meer circulatie-richtingen, een nabijheid van een naburig gebouw, kenmerken van het naburig gebouw, een aantal van verlichtingsarmatuur-koppen per basissteun, een aanwezigheid van een conflictzone in de verlichtingssite, een type van het pad.The method according to the preceding claim, wherein the luminaire installation feature comprises one or more of the following: a path width, a distance interval between two adjacent luminaire base supports, a path surface material, path surface optical properties, a height of a luminaire head of the at least one lighting fixture, a number of lanes of the path, one or more circulation directions of the path, a lateral distance between the path and the at least one lighting fixture base support, a lateral dimension of a hard shoulder of the path, an applied pattern of a group of lighting fixtures comprising the at least one lighting fixture along the path, a bracket length of the lighting fixture head of the at least one lighting fixture, a slope of the lighting fixture head of the at least one lighting fixture, a presence of a base support for a lighting fixture, a location of the base support relative to the one or more circulation directions, a proximity to a neighboring building, characteristics of the neighboring building, a number of lighting fixture heads per base support, a presence of a conflict zone in the lighting site, a type of path. 11. De werkwijze volgens één der voorgaande conclusies, waarbij het ontvangen van gegevens gerelateerd aan een gewenste lichtverdeling voor de optische eenheid verder het ontvangen van ten minste één bijkomstige parameter uit één van de volgende omvat: een verlichtingsarmatuur-familie, een installatiebudget, een vermogensverbruik per kilometer, een aantal te installeren verlichtingsarmaturen, een maximum wattage van ten minste één te installeren verlichtingsarmatuur, een esthetische overweging, een type lichtbron, een verblindingsindex, een verlichtingsarmatuur-beheeroptie, een aantal delen van een verlichtingsarmatuur-ontwerp, een verlichtingsuniformiteit. een verlichtingsintensiteit, een gemiddelde verlichting, een totale kost van eigenschap, een levensduur, een installatiemethode, een bedrijfstemperatuur, een recyclagefactor, een certificaat, een commercieel merk, een elektrisch aansluitingstype, een secundaire functionaliteit van de verlichtingsarmatuur, een afmeting van de optische eenheid, een type van accessoire.The method of any one of the preceding claims, wherein receiving data related to a desired light distribution for the optical unit further comprises receiving at least one ancillary parameter from one of the following: a lighting fixture family, an installation budget, a power consumption per kilometre, a number of light fixtures to be installed, a maximum wattage of at least one light fixture to be installed, an aesthetic consideration, a type of light source, a glare index, a light fixture management option, a number of parts of a light fixture design, a lighting uniformity. an illumination intensity, an average illumination, a total cost of property, a lifetime, an installation method, an operating temperature, a recycling factor, a certificate, a commercial brand, an electrical connection type, a secondary functionality of the lighting fixture, a size of the optical unit, a type of accessory. 12. De werkwijze volgens de voorgaande conclusie 3, waarbij voor het bepalen van ten minste één set van één of meer optische matrixmodellen, sequentieel de volgende stappen worden uitgevoerd: - het selecteren uit de database van één of meer optische matrixmodellen die de ontvangen aantal te gebruiken optische elementen bevatten, het simuleren van het optisch gedrag van de geselecteerde één of meer optische matrixmodellen, - wanneer het resultaat van ten minste één simulatie van de geselecteerde één of meer optische matrixmodellen voldoet aan de gegevens gerelateerd aan de gewenste lichtverdeling met optioneel een vooraf bepaalde tolerantie, het selecteren van het optische matrixmodel geassocieerd met die simulatie voor het ontwerpen van de optische eenheid, - anders, het selecteren van de geselecteerde database van één of meer sets van identieke optische matrixmodellen, waarbij het ontvangen aantal optische elementen een veelvoud is van het aantal optische elementen van het optische matrixmeodel voor elke set, het simuleren van het optische gedrag van de geselecteerde één of meer sets van identieke matrixmodellen, - wanneer de resultaten van de ten minste één simulatie van de geselecteerde één of meer sets voldoen aan de gewenste lichtverdeling met optioneel een vooraf bepaalde tolerantie, het selecteren van die set van identieke optische matrixmodellen voor het ontwerpen van de optische eenheid.The method according to the preceding claim 3, wherein for determining at least one set of one or more optical matrix models, the following steps are performed sequentially: - selecting from the database one or more optical matrix models that contain the received number of use optical elements, simulating the optical behavior of the selected one or more optical matrix models, - when the result of at least one simulation of the selected one or more optical matrix models satisfies the data related to the desired light distribution with optionally a predetermined given tolerance, selecting the optical matrix model associated with that simulation for designing the optical unit, - otherwise, selecting the selected database from one or more sets of identical optical matrix models, where the number of optical elements received is a multiple of the number of optical elements of the optical matrix model for each set, simulating the optical behavior of the selected one or more sets of identical matrix models, - when the results of the at least one simulation of the selected one or more sets meet the desired light distribution with optionally a predetermined tolerance, selecting that set of identical optical matrix models for designing the optical unit. 13. De werkwijze volgens de voorgaande conclusie, waarbij het selecteren van één of meer sets van identieke optische matrixmodellen het iteratief selecteren van sets van identieke optische matrixmodellen die per optisch matrixmodel een lager aantal van optische elementen omvat dan vorige iteratie.The method according to the preceding claim, wherein selecting one or more sets of identical optical matrix models iteratively selecting sets of identical optical matrix models that contain a lower number of optical elements per optical matrix model than the previous iteration. 14. De werkwijze volgens conclusie 12 of conclusie 13, verder omvattende de volgende stappen: - anders, optioneel, het selecteren van één of meer accessoires, het simuleren van het optisch gedrag van een set van identieke optische matrixmodellen bevattende één of meer accessoires, - optioneel, wanneer de resulaten van de simulatie voldoen aan de gewenste lichtverdeling, het selecteren van die set van identieke optische matrixmodellen en accessoires, - anders, optioneel volgens de stappen van één van de voorgaande conclusies verdergaan, meer bepaald volgens de stappen van conclusies 5 of 6.The method according to claim 12 or claim 13, further comprising the following steps: - otherwise, optionally, selecting one or more accessories, simulating the optical behavior of a set of identical optical matrix models containing one or more accessories, - optionally, if the results of the simulation meet the desired light distribution, selecting that set of identical optical matrix models and accessories, - otherwise, optionally continue according to the steps of any of the preceding claims, in particular according to the steps of claims 5 or 6. 15. De werkwijze volgens één der voorgaande conclusies, waarbij de database verder, geassocieerd met elk optisch matrixmodel. een aantal vorminzetstukken omvat die beschikbaar zijn voor het produceren door het gieten van de optische matrix geassocieerd met dat optische matrixmodel, en waarbij het bepalen van ten minste één set van één of meer optische matrixmodellen uit de meer optische matrixmodellen voor het ontwerpen van de optische eenheid verder het uitsluiten van sets van één of meer optische matrixmodellen omvat die incompatibel zijn met de beschikbare vorminzetstukken.The method of any one of the preceding claims, wherein the database is further associated with each optical array model. includes a plurality of mold inserts available to produce by molding the optical matrix associated with that optical matrix model, and wherein determining at least one set of one or more optical matrix models from the plurality of optical matrix models to design the optical unit further includes excluding sets of one or more optical array models that are incompatible with the available molding inserts. 16. Een computerprogramma omvattende instructies die, wanneer het programma wordt uitgevoerd door een computer, veroorzaken dat de computer één der voorgaande conclusies uitvoert.A computer program comprising instructions which, when the program is executed by a computer, cause the computer to perform any one of the preceding claims. 17. Een computergeregeld systeem voor het implementeren van de computer- geimplementeerde werkwijze volgens één der voorgaande conclusies, het systeem omvattende: - een invoermiddel voor het ontvangen van gegevens gerelateerd aan een gewenste lichtverdeling voor de optische eenheid van een gebruiker, - een geheugen ingericht voor het opslaan van een database omvattende meerdere optische matrixmodellen, - een beeldscherm, - een processor gekoppeld aan het gegevensinvoermiddel, het geheugen en het beeldscherm, waarbij de processor is ingericht voor het uitvoeren van de stappen volgens één der voorgaande conclusies en het uitvoeren van de ten minste één set van één of meer optische matrixmodellen aan de gebruiker via het beeldscherm.A computer-controlled system for implementing the computer-implemented method according to any one of the preceding claims, the system comprising: - an input means for receiving data related to a desired light distribution for a user's optical unit, - a memory arranged for storing a database comprising a plurality of optical matrix models, - a display, - a processor coupled to the data input means, the memory and the display, the processor being adapted to perform the steps according to any one of the preceding claims and to perform the ten at least one set of one or more optical matrix models to the user via the display. 18. Een werkwijze voor het produceren van een optische eenheid omvattende de werkwijze van één der voorgaande conclusies, verder omvattende het generen/verzamelen van ten minste één set van één of meer optische matrices overeenkomstig met de bepaalde ten minste één set van één of meer optische matrixmodellen.A method of producing an optical unit comprising the method of any one of the preceding claims, further comprising generating/collecting at least one set of one or more optical arrays corresponding to the determined at least one set of one or more optical arrays. matrix models. 19. De werkwijze volgens de voorgaande conclusie, waarbij het generen/verzamelen van ten minste één set van één of meer optische matrices het verzamelen van één of meer optische matrices geassocieerd met de bepaalde ten minste één set van één of meer optische matrixmodellen van een stock van beschikbare optische matrices omvat, waarbij de werkwijze verder het vormen van de optische eenheid met de verzamelde optische matrices omvat.The method of the preceding claim, wherein generating/collecting at least one set of one or more optical arrays comprises collecting one or more optical arrays associated with the determined at least one set of one or more optical array models from a stock of available optical arrays, the method further comprising forming the optical unit with the collected optical arrays. 20. De werkwijze volgens voorgaande conclusie, verder omvattende het verzamelen van een frame voor het houden van de verzamelde één of meer optische matrices van een stock van beschikbare frames en waarbij het vormen van de optische eenheid met de verzamelde één of meer optische matrices het aan elkaar verbinden van de verzamelde één of meer optische matrices en het verzamelde frame omvat.The method of the preceding claim, further comprising collecting a frame for holding the collected one or more optical arrays from a stock of available frames and forming the optical unit with the collected one or more optical arrays to interconnecting the collected one or more optical arrays and the collected frame. 21. De werkwijze volgens de voorgaande conclusies 7 en 20, waarbij het aan elkaar verbinden van de verzamelde één of meer optische matrices en het verzamelde frame het plaatsen omvat van de verzamelde één of meer optische matrices op het verzamelde frame volgens de vooraf bepaalde oriëntaties van de één of meer optische matrixmodellen.The method according to the preceding claims 7 and 20, wherein connecting the collected one or more optical arrays and the collected frame together comprises placing the collected one or more optical arrays on the collected frame according to the predetermined orientations of the one or more optical matrix models. 22. De werkwijze volgens de voorgaande conclusie 20 of conclusie 21, waarbij het verbinden van de verzamelde één of meer optische matrices op het verzamelde frame verder het bevestigen van het verzamelde optische matrices op het frame door één van de volgende werkwijzen: lassen, lijmen, snap-fitten.The method of claim 20 or claim 21, wherein bonding the assembled one or more optical arrays to the assembled frame further includes attaching the assembled optical arrays to the frame by one of the following methods: welding, gluing, snap fit. 23. Een werkwijze volgens de voorgaande conclusies 15 en 18, waarbij het generen/verzamelen van ten minste één set van één of meer optische matrices het genereren door gieten van de optische eenheid gebruikmakende van de vorminzetstukken geassocieerd met de bepaalde ten minste één set van de één of meer optische matrixmodellen, omvat.A method according to the preceding claims 15 and 18, wherein generating/collecting at least one set of one or more optical matrices comprises generating by molding the optical unit using the mold inserts associated with the determined at least one set of the one or more optical matrix models. 24. De werkwijze volgens de voorgaande conclusie, waarbij het generen/verzamelen van ten minste één set van één of meer optische matrices verder het selecteren van ten minste één frame van meerdere frames omvat, die ingericht zijn voor het ontvangen van de vorminzetstukken geassocieerd met de bepaalde ten minste één set van één of meer optische matrixmodellen.The method of the preceding claim, wherein generating/collecting at least one set of one or more optical arrays further comprises selecting at least one frame of multiple frames adapted to receive the shape inserts associated with the determined at least one set of one or more optical matrix models. 25. De werkwijze volgens de voorgaande conclusies 7 en 24, waarbij het generen/verzamelen van ten minste één set van één of meer optische matrices verder het plaatsen van de optische matrix vorminzetstukken in het geselecteerde frame volgens de vooraf bepaalde oriëntaties van de ten minste één of meer optische matrixmodellen van ten minste één set van één of meer optische matrixmodellen, omvat.The method according to claims 7 and 24, wherein generating/collecting at least one set of one or more optical arrays further comprises placing the optical array forming inserts in the selected frame according to the predetermined orientations of the at least one or more optical matrix models of at least one set of one or more optical matrix models. 26. De werkwijze volgens één der voorgaande conclusies, waarbij de optische elementen lenselementen zijn.The method of any one of the preceding claims, wherein the optical elements are lens elements. 27. De werkwijze volgens één der voorgaande conclusies, waarbij een optische matrix één of een combinatie van de volgende is: een individueel optisch element, een rij van identieke optische elementen. een tij van verschillende optische elementen, een array van identieke optische elementen, een array van verschillende optische elementen.The method of any one of the preceding claims, wherein an optical array is one or a combination of the following: an individual optical element, a row of identical optical elements. a row of different optical elements, an array of identical optical elements, an array of different optical elements.
NL2030243A 2021-12-22 2021-12-22 Computer-implemented method for designing an optical unit for a luminaire, and associated production method NL2030243B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2030243A NL2030243B1 (en) 2021-12-22 2021-12-22 Computer-implemented method for designing an optical unit for a luminaire, and associated production method
PCT/EP2022/087611 WO2023118506A1 (en) 2021-12-22 2022-12-22 Computer-implemented method for designing an optical unit for a luminaire, and associated production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2030243A NL2030243B1 (en) 2021-12-22 2021-12-22 Computer-implemented method for designing an optical unit for a luminaire, and associated production method

Publications (1)

Publication Number Publication Date
NL2030243B1 true NL2030243B1 (en) 2023-06-29

Family

ID=81386559

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030243A NL2030243B1 (en) 2021-12-22 2021-12-22 Computer-implemented method for designing an optical unit for a luminaire, and associated production method

Country Status (2)

Country Link
NL (1) NL2030243B1 (en)
WO (1) WO2023118506A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056888A1 (en) 2022-09-15 2024-03-21 Schreder S.A. Control unit for a light system
WO2024110350A1 (en) 2022-11-24 2024-05-30 Schreder S.A. Luminaire head assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257547B1 (en) * 1998-06-03 2001-07-10 Menicon Co., Ltd. Mold assembly for forming ophthalmic lens
WO2011154756A2 (en) * 2010-06-09 2011-12-15 Wemont Kft. Method for constructing a lighting device with discrete light sources and thus obtained lighting device
US20160078519A1 (en) * 2014-09-15 2016-03-17 Adam Green Method for an LED Product Filtering Engine
US20160084481A1 (en) * 2014-09-24 2016-03-24 Hubbell Incorporated Rotatable single piece optical array
EP3686480A1 (en) * 2019-01-24 2020-07-29 Zumtobel Lighting GmbH Light emitting assembly with variable light emission characteristics

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1025429B1 (en) 2017-07-24 2019-02-21 Schreder Sa ADJUSTABLE LIGHT DISTRIBUTION LIGHTING SYSTEM
CN107578739A (en) 2017-09-26 2018-01-12 惠科股份有限公司 Protection circuit and display device
BE1025877B1 (en) 2018-01-05 2019-08-06 Schreder S.A. MOBILE LENS LUMINAIRE
BE1026500B1 (en) 2018-07-31 2020-03-02 Schreder Sa Lighting device with adjustable light distribution
AU2019341528A1 (en) 2018-09-20 2021-05-13 Schreder S.A. Light emitting device with adaptable glare class
NL2022296B1 (en) 2018-12-24 2020-07-21 Schreder Sa Luminaire system with leveraged displacement
NL2022295B1 (en) 2018-12-24 2020-07-21 Schreder Sa Luminaire system with movable support
NL2022297B1 (en) 2018-12-24 2020-07-23 Schreder Sa Luminaire system with movable modules
NL2022298B1 (en) 2018-12-24 2020-07-23 Schreder Sa Luminaire System with improved Support Structure
NL2022300B1 (en) 2018-12-24 2020-07-23 Schreder Sa Luminaire system with improved fastening means
NL2022294B1 (en) 2018-12-24 2020-07-21 Schreder Sa Luminaire system with converted movement
NL2022293B1 (en) 2018-12-24 2020-07-21 Schreder Sa Luminaire system with movable support
NL2022561B1 (en) 2019-02-12 2020-08-27 Schreder Sa Light system with controllable branches of light elements
NL2022633B1 (en) 2019-02-25 2020-09-01 Schreder Sa Light system with anti-parallel leds
NL2023295B1 (en) 2019-06-12 2021-01-21 Schreder Sa Light emitting device with adaptable glare class
NL2024571B1 (en) 2019-12-24 2021-09-06 Schreder Sa System and method for driving and controlling light sources
AU2021238839A1 (en) 2020-03-19 2022-09-01 Schreder S.A. Light emitting device with adaptable glare class
NL2025166B1 (en) 2020-03-19 2021-10-20 Schreder Sa Light emitting device with spacer layer
WO2022023441A1 (en) 2020-07-28 2022-02-03 Schreder S.A. Method for assembling optical modules of a luminaire and optical assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257547B1 (en) * 1998-06-03 2001-07-10 Menicon Co., Ltd. Mold assembly for forming ophthalmic lens
WO2011154756A2 (en) * 2010-06-09 2011-12-15 Wemont Kft. Method for constructing a lighting device with discrete light sources and thus obtained lighting device
US20160078519A1 (en) * 2014-09-15 2016-03-17 Adam Green Method for an LED Product Filtering Engine
US20160084481A1 (en) * 2014-09-24 2016-03-24 Hubbell Incorporated Rotatable single piece optical array
EP3686480A1 (en) * 2019-01-24 2020-07-29 Zumtobel Lighting GmbH Light emitting assembly with variable light emission characteristics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BENDER VITOR C ET AL: "Design methodology for street lighting luminaires based on a photometrical analysis", 2013 BRAZILIAN POWER ELECTRONICS CONFERENCE, IEEE, 27 October 2013 (2013-10-27), pages 1160 - 1165, XP032585517, ISSN: 2175-8603, [retrieved on 20140409], DOI: 10.1109/COBEP.2013.6785261 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024056888A1 (en) 2022-09-15 2024-03-21 Schreder S.A. Control unit for a light system
WO2024110350A1 (en) 2022-11-24 2024-05-30 Schreder S.A. Luminaire head assembly

Also Published As

Publication number Publication date
WO2023118506A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
NL2030243B1 (en) Computer-implemented method for designing an optical unit for a luminaire, and associated production method
KR100928159B1 (en) Light source module and illuminating system that use this
CA2883639C (en) Recessed luminaire
EP2553327B1 (en) Apparatus, method, and system for highly controlled light distribution using multiple light sources
US8356916B2 (en) Method, system and apparatus for highly controlled light distribution from light fixture using multiple light sources (LEDS)
CA2898309C (en) Array-based lighting systems and methods of manufacturing
CN101806411B (en) Light fixture
JP5182927B2 (en) Lighting device
EP2532954A1 (en) Lighting device and lighting apparatus provided with lighting device
US20120026728A1 (en) Led roadway luminaire
JP2010524175A (en) Light-guided LED device
CN105980769A (en) Comfortable distributed LED lighting
CN105960561A (en) Flexible unobstructed beam shaping
EP3040610B1 (en) Led streetlamp
WO2012080889A1 (en) Optical device for a led illumination apparatus shaping an elongated illuminated area
CN103148405A (en) Modular LED luminaire for street lighting and the like
WO2024003045A1 (en) Light assembly comprising a side emitting light element
US20230376642A1 (en) Luminaire Designs Selection Method
US20230220962A1 (en) Luminaire Design Retrofitting Method and Computer-Controlled Method Thereof
ES2872325T3 (en) LED lighting fixture with improved light distribution
CN102853327B (en) The LED street lamp of free from glare
US20170151736A1 (en) Modular method of manufacturing waveguide for lighting system
CN116057315A (en) Side lamp of vehicle
EP4352405A1 (en) System for homogeneous lighting of large environments
CN101963325B (en) Reflector and illumination device