NL2029214A - Target re-indentification method and system based on non-supervised pyramid similarity learning - Google Patents

Target re-indentification method and system based on non-supervised pyramid similarity learning Download PDF

Info

Publication number
NL2029214A
NL2029214A NL2029214A NL2029214A NL2029214A NL 2029214 A NL2029214 A NL 2029214A NL 2029214 A NL2029214 A NL 2029214A NL 2029214 A NL2029214 A NL 2029214A NL 2029214 A NL2029214 A NL 2029214A
Authority
NL
Netherlands
Prior art keywords
target
pyramid
scene domain
identification
unsupervised
Prior art date
Application number
NL2029214A
Other languages
Dutch (nl)
Other versions
NL2029214B1 (en
Inventor
Liu Hanping
Tang Yanke
Chen Huijie
Zhang Junye
Dong Wenhui
Gao Ying
Qu Peishu
Original Assignee
Univ Dezhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Dezhou filed Critical Univ Dezhou
Publication of NL2029214A publication Critical patent/NL2029214A/en
Application granted granted Critical
Publication of NL2029214B1 publication Critical patent/NL2029214B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Databases & Information Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Image Analysis (AREA)

Abstract

The invention belongs to target re-identification; and provides a target re-identification method and system based on non-supervised pyramid similarity learning. The target re-identification method includes: obtaining a sample image to be queried and a target scene domain image; outputting a target image matched with the sample image to be queried in the target scene domain by a target re-identification model; wherein, a training and updating process of the target re-identification model is: performing non-supervised multi-scale horizontal pyramid similarity learning on a source scene domain and the target scene domain image; automatically labeling a target scene domain sample image according to a similarity and screening out a training sample to train and update an initial model to obtain the target re-identification model. Through continuous iterative training and updating; the model is increasingly adaptive to sample data in the target scene domain; and the accuracy of pedestrian target re-identification is improved.

Description

TARGET RE-INDENTIFICATION METHOD AND SYSTEM BASED ON NON-SUPERVISED PYRAMID SIMILARITY LEARNING Field of the Invention The present invention belongs to a field of target re-identification, and particularly relates to a target re-identification method and system based on non-supervised pyramid similarity learning.
Background of the Invention The statements in this section merely provide background information related to the present invention, and do not necessarily constitute prior art.
The purpose of target re-identification is to compare and match a pedestrian target image that needs to be searched with pedestrian images obtained from different cameras, and to find whether the target pedestrian appears in different camera surveillance scenes.
This technology plays an important role in intelligent monitoring and public safety.
In a complex monitoring environment (such as changes in lighting, target blocked by other things, different monitoring perspectives, etc.), and this issue has always been challenging.
Recently, a target re-identification method based on the deep learning framework has achieved a better performance.
This type of method can be divided into supervised deep target re-identification methods and non-supervised deep target re-identification methods.
The supervised deep target re-identification method has a high identification accuracy rate, but this method needs to label a large number of pedestrian targets in a monitoring scene, which will consume a lot of manpower and material resources.
For different application scenarios, the method does not have adaptability, and the data needs to be relabeled.
The non-supervised deep target re-identification method does not need to label the data in the monitoring scene.
The difficulty is how to effectively learn the pedestrian target model.
Among these methods, the deep re-identification method based on non-supervised cross-domain learning has a better performance.
The deep re-identification method based on non-supervised cross-domain learning uses the labeled source scene domain data to train the deep learning framework to obtain an original model, and uses the unlabeled data to train the original model in the target scene domain, so that the model can self-adapt to the data of the target scene domain and obtain an accurate target model.
Due to a difference between the source scene .-
domain and the target scene domain, how to obtain a good adaptive model is a key problem to be solved in this kind of method. At present, methods to solve this problem include: learning the target model of invanant features and adaptively updating through the alignment of attributes and labels, and generating an image consistent with the labeled image style of the source scene in the target domain through a countermeasure network as a training sample for adaptation, or learning the inconsistency of similarity in different cameras, etc. These methods are still inferior in performance to the corresponding supervisory methods, and there are still problems in building models and migration algorithms. Most of them use the overall feature model, and when the target is blocked or the monitoring perspective 1s changed, the performance will be greatly reduced.
In summary, the inventor found that the target model constructed by the current target re-identification method is inaccurate, and the target model is not suitable for unlabeled sample characteristics.
Summary of the Invention In order to solve the above problems, the present invention provides a target re-identification method and system based on non-supervised pyramid similarity learning, which classifies and labels feature blocks with different scales through non-supervised clustering, and screens out effective data samples to train and update the initial model, and through continuous iterative training and updating, the model is more and more adaptive to sample data in the target scene domain, and the accuracy of pedestrian target re-identification can be improved.
In order to achieve the above purpose, the present invention adopts the following technical scheme: A first aspect of the present invention provides a target re-identification method based on non-supervised pyramid similarity learning.
A target re-identification method based on non-supervised pyramid similarity learning, includes: obtaining a sample image to be queried and a target scene domain image; outputting a target image matched with the sample image to be queried in the target scene domain by a target re-identification model; wherein, a training and updating process of the target re-identification model is: performing non-supervised multi-scale horizontal pyramid similarity learning on a source scene domain and the target scene domain image; 22 automatically labeling a target scene domain sample image according to a similarity and screening out a training sample to train and update an initial model to obtain the target re-identification model.
A second aspect of the present invention provides a target re-identification system based on non-supervised pyramid similarity learning.
A target re-identification system based on non-supervised pyramid similarity learning, includes: an image obtaining module, obtaining a sample image to be queried and a target scene domain image; a target re-identification module, outputting a target image matched with the sample image to be queried in the target scene domain by a target re-identification model; wherein, a training and updating process of the target re-identification model is: performing non-supervised multi-scale horizontal pyramid similarity learning on a source scene domain and the target scene domain image; automatically labeling a target scene domain sample image according to a similarity and screening out a training sample to train and update an initial model to obtain the target re-identification model.
A third aspect of the present invention provides a computer-readable storage medium.
A computer-readable storage medium, which stores a computer program, when the computer program is executed by a processor, the steps in the target re-identification method based on non-supervised pyramid similarity learning as described above are realized.
A fourth aspect of the present invention provides a computer-readable storage medium.
A computing device, which includes a memory, a processor, and a computer program that stored in the memory and operable on the processor, wherein the processor executes the computer program for implementing steps of the target re-identification method based on non-supervised pyramid similarity learning as described above.
Compared with the prior art, the beneficial effects of the present invention are: The multi-scale pyramid feature block of the present invention is simple and universal, which can fully describe sample feature from whole to parts, and fully mine identifying information of the sample. The present invention integrates the multi-scale pyramid similarity learning into non-supervised deep convolutional neural network, and constructs a multi-scale feature deep model to learn characteristics of unlabeled samples. The model comprehensively learns the similarity between different samples and feature blocks with different scales, and has the characteristics of stability and robustness.
The present invention designs a distance measurement function for measuring the similarity between the source scene domain and the target scene domain and the similarity between samples of the target scene domain in migration learning. On this basis, each scale feature block uses DBSCAN clustering to realize automatic sample labeling and screening. The samples screened by the method are more conducive to the migration and adaptation of the model, so as to obtain better IO performance. Brief Description of the Drawings The accompanying drawings of the specification constituting a part of the present invention are used to provide a further understanding of the present invention. The exemplary embodiments of the present invention and the description thereof are used to explain the present invention, and do not constitute an improper limitation of the present invention. FIG. 1 is a flowchart of a target re-identification method based on non-supervised pyramid similarity learning of an embodiment of the present invention; FIG. 2 is a frame diagram of a deep convolutional neural network of an initial model of an embodiment of the present invention FIG. 3 is a block flowchart of multi-scale pyramid feature of an embodiment of the present invention; FIG. 4 is a framework diagram of adaptive migration learning of an embodiment of the present invention; FIG. 5 is a graph of an identification accuracy of Rank-1 corresponding to different scales of an embodiment of the present invention; FIG. 6 is a graph of an identification accuracy of Rank-1 corresponding to different parameters B € [0,1] of an embodiment of the present invention; FIG. 7 is a graph of an identification accuracy of Rank-1 corresponding to different parameters p according to an embodiment of the present invention. -4-
Detailed Description of the Embodiments The present invention will be further described below in conjunction with the drawings and embodiments.
It should be pointed out that the following detailed descriptions are all illustrative and are intended to provide further descriptions of the present invention. Unless otherwise specified, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the technical field to which the present invention belongs.
It should be noted that the terms used here are only for describing specific embodiments, and are not intended to limit the exemplary embodiments according to the present invention. As used herein, unless the context clearly indicates otherwise, the singular form is also intended to include the plural form. In addition, it also should be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates the presence of features, steps, operations, devices, components and / or combinations thereof. Embodiment 1 As shown in FIG. 1, the target re-identification method based on non-supervised pyramid similarity learning of the embodiment includes: Step 1: obtaining a sample image to be queried and a target scene domain image; Step 2: outputting a target image matched with the sample image to be queried in the target scene domain by a target re-identification model, wherein, a training and updating process of the target re-identification model is: performing non-supervised multi-scale horizontal pyramid similarity learning on a source scene domain and the target scene domain image; automatically labeling a target scene domain sample image according to a similarity and screening out a training sample to train and update an initial model to obtain the target re-identification model. A labeled and screened sample is used to continue training the model. After several iterations of training, the updated model will be more suitable for a target scene area, so as to obtain a higher target re-identification accuracy rate. In a specific implementation, the initial model is to provide experience for the early learning of 25 unlabeled samples of the target scene domain, and to improve the accuracy of initial learning. The initial model is obtained by a deep convolutional neural network constructed by training labeled samples in the source scene domain.
A specific embodiment of the initial model of the embodiment is shown in FIG. 2, and the initial model is a modified ResNet-50 deep convolutional neural network.
It should be noted here that in other embodiments, the initial model also can be implemented by other existing deep convolutional neural network models, which will not be described in detail here.
The following takes the modified ResNet-50 deep convolutional neural network as an example to illustrate: The specific transformation is: A first four layers of ResNet-50 are kept, a uniform pooling layer and two fully connected layers FC1 and FC2 are added. An output dimension of FCI is 2048, and an output dimension of FC2 is a number of actual entities.
A loss function is designed as a combination of a cross entropy loss function and a triple loss function. The triple loss function is used in the first full connection layer and the cross entropy loss function is used in the second full connection layer. The combination of the two loss functions will give full play to the advantages of two methods of classification and verification.
The triple loss function adopts batch-hard triple loss, and each small batch is constructed by randomly sampling K sample instances of P target entities, which is defined as follows: begi = a Baa [m + max [6-6], — min JE lb HZ Eon 3 (1) Wherein, fa is the feature of the selected sample; fp is the feature of the sample consistent with the label of fa , f is the feature of the sample inconsistent with the label of fa, and m is the edge parameter.
The cross entropy loss function is defined as: Lee = EL Sas lee (Ya 95) 2) -6-
Wherein, Vad : are the actual label and the predicted label respectively, and ey is the cross-entropy loss of the sample.
The loss function Lsource used in the source scene domain training is a superposition of formulas (1) and (2).
Lsouree = Luiplet + Lee (3) Taking the Market1501 public database for training as an example, a number of pedestrians in the database is 750, and the output dimension of FC2 is 750. The loss function used in the training process is the cross-entropy loss function and the triplet loss function.
The non-supervised multi-scale pyramid similarity learning is: The non-supervised multi-scale similarity learning is used to mine similarities between the target scene domain sample and the source scene domain sample and between the samples in the target scene domain on multiple scales. The similarity learning between the target scene domain sample and the source scene domain sample is mainly for mining a similarity between the source scene and the target scene domain. The similarity mining is helpful for the migration of the initial model to the target scene domain, especially an initial learning stage. The similarity learning between samples in the target scene domain is mainly to mine the similarity between samples and provide a basis for automatic labeling of samples in the target domain.
The specific scheme of non-supervised multi-scale pyramid similarity learning is as follows: Suppose that the feature map obtained after inputting a sample image Xp of a j-th target scene domain into the initial model is fr According to a set scale parameter o, the feature map is uniformly divided into 2° blocks, and after each block is uniformly pooled, a feature set fe can be obtained. The multi-scale pyramid is embodied in: if ¢ = 0; , a scale parameter set can be set to a set {0,1,:,09} of all positive integers less than o,, then for the feature map fl, a finally obtained multi-scale pyramid feature set is { £0, £ … £) oo } which contains features with different scales from the whole (scale parameter is 0) to 2° local features, it can fully describe the characteristics of the image.
The similarity between the target scene domain sample and the source scene domain sample is -7-
defined as: dst) = 1-0 inst) (4) Wherein, N,(f)) is the nearest neighbor sample of the target scene domain sample feature fl in the source scene domain. The smaller thed (£1), the closer the sample is to the source scene domain. Formula (4) is used to calculate the similarity between corresponding block features in the source scene and the target scene domain, and the similarity between the two different scene domains can be fully analyzed. In order to more accurately realize the similarity learning between samples in the target scene domain, the solution uses context of each sample to describe the corresponding sample, and the context description specifically uses a K-reciprocal vector. The K-reciprocal vector V of a sample fl. is defined as: when the sample fX is the K-reciprocal of the sample fi, Vik = elke and when the two are not K-reciprocal, Vik = 0.
The similarity between samples in the target scene domain is defined as: doth £1) = 1— Ze min (Vi Vj) (5) Ley Max Vik Vj x) Wherein, fi, fl are two sample features in the target scene domain, Vy, V;,x are K-reciprocal vector of samples i and j respectively, and Ny is a total number of samples in the target scene domain. For all sample feature blocks, the similarity corresponding to the corresponding block features can be calculated by using formula (5).
FIG. 3 is a flowchart of an embodiment of multi-scale pyramid feature block. Specifically, the feature map is divided into 2° blocks uniformly according to the scale parametero. The multi-scale feature is reflected in the use of multiple scales to block the feature map. For example, the scale used in FIG. 3 is {0, 1, 2,3}, and the feature map is finally decomposed into {1, 2, 4, 8} blocks, which are uniformly pooled to form multi-scale pyramid features.
In a process of automatic sample labeling of target scene domain and training sample screening: Sample labeling and sample screening are mainly used to train the model. Using accurate labeling and appropriate samples to train the model will help to obtain high identification accuracy.
The automatic labeling and screening scheme of samples is as follows: the non-supervised clustering algorithm DBSCAN is used to cluster block sample sets with different scales and assign -8-
pseudo label.
The distance standard used in DBSCAN clustering is a combination of formula (4) and (5), specifically: df fri) = (1 = Bde fr) + Bs (Fh) + ds(f) (6) Wherein, flo en is a k-th pyramid feature block of the target scene sample, and BE [0,1] are balance parameters.
In order to screen out data samples, all the samples calculated by formula (6) are sorted by distance from small to large, and a scan radius £ of the DBSCAN clustering algorithm is set to a mean value of the first n distances.
Wherein, p is a scale factor and N is a total number of sample pairs in the target scene.
Only samples within the scanning radius will be selected.
In the process of model training and updating: The training and updating of the model is used to realize the migration of the model from the source scene domain to the target scene domain.
The trained and updated model will be more suitable for the target scene domain, thus having good performance.
The loss function used for training in the target scene domain is to calculate all pyramid feature blocks as independent individuals, which are substituted into formula (3) respectively to calculate a cumulative sum: Larger = Zitzo Zizi Zhen Lusiptee (fro ho fai) + Lee (Van 9h) (7) The specific process of adaptive migration learning in the target scene domain is shown in FIG. 4. All samples obtain multi-scale pyramid features according to the process in FIG. 3, and then use DBSCAN non-supervised clustering algorithm for labeling and screening.
Screening of samples: after the distance calculated by a formula (6) is sorted from small to large, the samples within the scanning radius are used for the training of adaptive migration learning, and the rest will be excluded.
The pyramid features of each scale need to be DBSCAN clustered as independent individuals, that is, each sample will obtain labels in multiple scale ranges.
The deep learning framework used in the adaptive migration learning of the target scene domain is basically similar to the initial model in FIG. 2, and the difference is that the sample characteristics of each scale will participate as independent individuals in the training process.
Therefore, the loss function is formula (7), which is the cumulative sum of the loss functions on all scales.
The training and updating of the model adopt the multiple iterative training method.
Each iteration -9-
re-labels and obtains the sample characteristics, the samples are re-labeled and screened out, and as a number of iterations increases, the target re-identification model gradually adapts to target scene domain samples, so as to obtain an accurate identification rate. During target re identification, the matched target image can be obtained by inputting the query sample image into the model, so as to achieve the query purpose.
It is further illustrated by the following simulation: The key parameter selection in the target re-identification method of the embodiment is simulated and calculated, including the scale parameter o, the parameter B integrating the source scene similarity and the target scene domain sample similarity in the distance standard calculation, and the scale parameter p required to calculate e. A source scene domain image library used in the simulation is DukeMTMC-RelD and the target scene domain image library is market] 501. Both of them are common libraries for public target re-identification. The simulation results can provide reference for the application of relevant technicians in specific cases.
FIG. 5 shows an identification accuracy of the scheme rank-1 of the embodiment under different scale parameters o. It can be seen that different recognition rates will be obtained according to different scale parameters. The simulation results show that when o= 2, that is, when a corresponding parameter set is o= {0,1,2}, the highest identification accuracy will be achieved.
FIG. 6 shows an identification accuracy of Rank-1 corresponding to different parameters B. It can be seen from the calculation of distance standard in formula (6) that the role of B is a weight proportion of two similarities in similarity learning. The simulation result shows that when B = 0.1, that is, the proportion of source scene similarity is 0.1, and when the target scene domain sample similarity is 0.9, the highest identification accuracy Rank-1 will be obtained.
FIG. 7 shows an identification accuracy of Rank-1 corresponding to different parameters p. In the embodiment, the scanning radius € is set as the average of the first pN distances, wherein n is a number of sample pairs. Due to the large number of N, the specific setting of p will have a great impact on the identification accuracy. The simulation results show that when p is set to 1.7 x 1073, the identification accuracy is the highest.
Embodiment 2 The target re-identification system based on non-supervised pyramid similarity learning of the present embodiment includes: -10-
an image obtaining module, for obtaining a sample image to be queried and a target scene domain image; a target re-identification module, for outputting a target image matched with the sample image to be queried in the target scene domain by a target re-identification model; wherein, a training and updating process of the target re-identification model is: performing non-supervised multi-scale horizontal pyramid similarity learning on a source scene domain and the target scene domain image; automatically labeling a target scene domain sample image according to a similarity and screening out a training sample to train and update an initial model to obtain the target re-identification model.
Each module of the target re-identification system based on non-supervised pyramid similarity learning in the embodiment corresponds to the steps in the target re-identification method based on non-supervised pyramid similarity learning in the first embodiment one by one. The specific implementation process is described in the first embodiment and will not be described here.
Embodiment 3 The embodiment provides a computer-readable storage medium, which stores a computer program, when the computer program is executed by a processor, the steps in the target re-identification method based on non-supervised pyramid similarity learning as described in the first embodiment above are realized.
Embodiment 4 The embodiment provides a computing device, which includes a memory, 4 processor, and a computer program that stored in the memory and operable on the processor, wherein the processor executes the computer program for implementing steps of the target re-identification method based on non-supervised pyramid similarity learning as described in the first embodiment.
Those skilled in the art should understand that the embodiments of the present invention can be provided as a method, a system, or a computer program product. Therefore, the present invention may adopt the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
-11-
The present invention is described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present invention. It should be understood that each process and/or block in the flowchart and/or block diagram, and the combination of processes and/or blocks in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that instructions executed by the processor of the computer or other programmable data processing equipment are caused to generate means for implementing the functions specified in one or more IO processes in the flowchart and/or one block or more in the block diagram. These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device. The device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram. These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, thus, the instructions executed on the computer or other programmable devices provide steps for implementing the functions specified in one or more processes in the flowchart and/or one block or more in the block diagram. Those of ordinary skill in the art can understand that all or part of the processes in the above-mentioned embodiment methods can be implemented by instructing relevant hardware through a computer program. The program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments. Wherein, the storage medium may be a magnetic disk, an optical disc, a read-only memory (ROM), or a random access memory (RAM), etc. The foregoing descriptions are only preferred embodiments of the present invention and are not used to limit the present invention. For those skilled in the art, the present invention can have various modifications and changes. Any modification, equivalent replacement, improvement, etc.
12.
made within the spirit and principle of the present invention should be included in the protection scope of the present invention. -13-

Claims (10)

Conclusies: I. Een werkwijze voor heridentificatie van een deol op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren, bevattende: het verkrijgen van een op te vragen voorbeeldafbeelding en een doelscénedomeinatbeelding; het uitvoeren van een doelbeeld dat overeenkomt met de op te vragen voorbeeldafbeelding in het doelscènedomein door een doelheridentificatiemodel; waarbij een training- en bijwerkingsproces van het doelheridentificatiemodel is: het uitvoeren van niet-gesuperviseerd multischaal horizontaal piramidegelijkvormigheidsleren op een bronscènedomein en het doelscénedomeinbeeld, het automatisch labelen van een voorbeeldafbeelding van een doelscènedomein volgens een gelijkenis en het uitsorteren een trainingsvoorbeeld om een initieel model te trainen en bij te werken om het heridentificatiemodel van het doel te verkrijgen.Conclusions: I. A method for re-identifying a deol based on unsupervised pyramid similarity learning, comprising: obtaining a retrievable sample image and a target scene domain image; outputting a target image corresponding to the retrievable sample image in the target scene domain by a target re-identification model; wherein a training and updating process of the target re-identification model is: performing unsupervised multiscale horizontal pyramid similarity learning on a source scene domain and the target scene domain image, automatically labeling a sample image of a target scene domain by a similarity and sorting out a training sample to train an initial model and update to obtain the target re-identification model. 2. Werkwijze voor heridentificatie van een doel op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren volgens conclusie 1, waarbij het initiële model wordt verkregen door het trainen van een diep convolutioneel neuraal netwerk dat is geconstrueerd door gelabelde voorbeelden in het bronscènedomein.The method of target re-identification based on unsupervised pyramid similarity learning according to claim 1, wherein the initial model is obtained by training a deep convolutional neural network constructed by labeled examples in the source scene domain. 3 Werkwijze voor heridentificatie van een doel op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren volgens conclusie 1 of 2, waarin in de werkwijzestap van niet-gesuperviseerd leren van horizontale piramideovereenkomsten op meerdere schalen, een kenmerkkaart van een niet-geïdentificeerd voorbeeld in het doelscènedomein uit een doelgebied wordt geëxtraheerd en het de kenmerkkaart in horizontale blokken met verschillende schalen wordt verdeeld, en het mijnen van identificerende informatie van het niet-geïdentificeerde voorbeeld door kenmerken van globaal tot verschillende delen.The method for re-identifying a target based on unsupervised pyramid similarity learning according to claim 1 or 2, wherein in the method step of unsupervised learning of multi-scale horizontal pyramid similarities, a feature map of an unidentified example in the target scene domain is extracted from extracting a target area and dividing the feature map into horizontal blocks of different scales, and mining identifying information from the unidentified example by features from global to different parts. 4. Werkwijze voor heridentificatie van een doel op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren volgens conclusie 1, 2 of 3, waarin in de werkwijzestap van niet-gesuperviseerd leren van horizontale piramideovereenkomsten op meerdere schalen een -14-The method of target re-identification based on unsupervised pyramid similarity learning according to claim 1, 2 or 3, wherein in the method step of unsupervised learning of multi-scale horizontal pyramid similarities a -14- overeenkomst tussen een voorbeeld van een doelscenedomein en een voorbeeld van een bronscènedomein kan worden uitgedrukt als een verschil tussen 1 en een natuurlijke logaritmeterm, en de natuurlijke logaritmeterm een natuurlijke logaritme is na een afstand tussen het kenmerk van het voorbeeld in het doelscenedomein en de dichtstbijzijnde buurvoorbeeld in het bronscènedomein negatief is. 5 Werkwijze voor heridentificatie van een doel op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren volgens een der voorgaande conclusies, waarin in de werkwijzestap van niet-gesuperviseerd leren van horizontale piramideovereenkomsten op meerdere schalen een overeenkomst tussen voorbeelden in het doelscènedomein een verschil is tussen 1 en een verhouding K, en de verhouding een verhouding is van een optelsom van de kleinste van aangrenzende voorbeeldvectoren van twee willekeurige voorbeelden K tot de grootste van de aangrenzende voorbeeldvectoren van twee willekeurige voorbeelden K.similarity between a target scene domain example and a source scene domain example can be expressed as a difference between 1 and a natural logarithm term, and the natural logarithm term is a natural logarithm after a distance between the characteristic of the example in the target scene domain and the nearest neighbor example in the source scene domain is negative. A target re-identification method based on unsupervised pyramid similarity learning according to any preceding claim, wherein in the method step of unsupervised multi-scale pyramid matching horizontal pyramid matching, a match between examples in the target scene domain is a difference between 1 and a ratio K, and the ratio is a ratio of a sum of the smaller of adjacent example vectors of any two examples K to the greater of the adjacent example vectors of any two examples K. 6. Werkwijze voor heridentificatie van een doel op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren volgens een der voorgaande conclusies, waarin de werkwijzestap van automatisch labelen en uitsorteren van trainingsvoorbeelden, classificeren en labelen van functieblokken met verschillende schalen door niet-gesuperviseerde clustering en het uitsorteren van effectieve gegevensvoorbeelden bevat.A target re-identification method based on unsupervised pyramid similarity learning according to any preceding claim, wherein the method step of automatically labeling and sorting training samples, classifying and labeling function blocks of different scales by unsupervised clustering and sorting of effective data samples. 7. Werkwijze voor heridentificatie van een doel op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren volgens een der voorgaande conclusies, waarin de werkwijze voor het trainen en bijwerken van het model voor heridentificatie van het doel, het toepassen van meerdere iteratieve trainingsmethoden, het opnieuw labelen en verkrijgen van voorbeeldfuncties voor elke iteratie, het opnieuw labelen en uitsorteren van voorbeelden, en naarmate een aantal iteraties toeneemt, het geleidelijk aanpassen van het doel-identificatiemodel aan de doelscènedomeinvoorbeelden bevat.The method of target re-identification based on unsupervised pyramid similarity learning according to any preceding claim, wherein the method of training and updating the target re-identification model, applying multiple iterative training methods, re-labelling and obtaining sample functions for each iteration, relabeling and sorting samples, and as a number of iterations increases, gradually adapting the target identification model to the target scene includes domain samples. 8. Een systeem voor heridentificatie van een doel op basis van niet-gesuperviseerd piramide-gelijkvormigheidsleren, bevattende: -15-8. A target re-identification system based on unsupervised pyramid similarity learning, containing: -15- een module voor het verkrijgen van een afbeelding voor het verkrijgen van een op te vragen voorbeeldafbeelding en een doelscenedomeinatbeelding; een doelheridenitificatiemodule voor het uitvoeren van een doelbeeld dat overeenkomt met de op te vragen voorbeeldafbeelding in het doelscènedomein door een doelheridentificatiemodel; waarbij een training- en bijwerkingsproces van het doelheridentificatiemodel is: het uitvoeren van niet-gesuperviseerd multischaal horizontaal piramidegelijkvormigheidsleren op een bronscènedomein en het doelscénedomeinbeeld; het automatisch labelen van een voorbeeldafbeelding van een doelscènedomein volgens een gelijkenis en het uitsorteren een trainingsvoorbeeld om een initieel model te trainen en bij te werken om het heridentificatiemodel van het doel te verkrijgen.an image acquisition module for obtaining a sample image to be retrieved and a target scene domain image; a target re-identification module for outputting a target image corresponding to the sample image to be requested in the target scene domain by a target re-identification model; wherein a training and updating process of the target re-identification model is: performing unsupervised multiscale horizontal pyramid similarity learning on a source scene domain and the target scene domain image; automatically labeling a sample image of a target scene domain according to a similarity and sorting out a training sample to train and update an initial model to obtain the target re-identification model. 9. Een computerleesbaar opslagmedium dat een computerprogramma opslaat, dat, wanneer het computerprogramma wordt uitgevoerd door een processor, de stappen in de werkwijze voor heridentificatie van het doel op basis van niet-gesuperviseerd piramidegelijkvormigheidsleren volgens een van de conclusies 1 tot en met 7 uitvoert.A computer-readable storage medium that stores a computer program, which, when the computer program is executed by a processor, performs the steps in the method for reidentifying the target based on unsupervised pyramid similarity learning according to any one of claims 1 to 7. 10. Een computerapparaat, dat een geheugen, een processor en een computerprogramma omvat dat is opgeslagen in het geheugen en werkt op de processor, waarbij de processor het computerprogramma uitvoert voor het implementeren van stappen van de doelheridentificatiemethode op basis van niet-gesuperviseerd piramidegelijkvormigheidsleren volgens een van de conclusies 1 tot en met 7. 16 -A computing device comprising a memory, a processor and a computer program stored in the memory and operating on the processor, the processor executing the computer program for implementing steps of the target reidentification method based on unsupervised pyramid similarity learning according to a of claims 1 to 7. 16 -
NL2029214A 2020-09-22 2021-09-21 Target re-indentification method and system based on non-supervised pyramid similarity learning NL2029214B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011003036.7A CN112132014B (en) 2020-09-22 2020-09-22 Target re-identification method and system based on non-supervised pyramid similarity learning

Publications (2)

Publication Number Publication Date
NL2029214A true NL2029214A (en) 2022-05-23
NL2029214B1 NL2029214B1 (en) 2023-03-14

Family

ID=73842376

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2029214A NL2029214B1 (en) 2020-09-22 2021-09-21 Target re-indentification method and system based on non-supervised pyramid similarity learning

Country Status (3)

Country Link
CN (1) CN112132014B (en)
NL (1) NL2029214B1 (en)
WO (1) WO2022062419A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112132014B (en) * 2020-09-22 2022-04-12 德州学院 Target re-identification method and system based on non-supervised pyramid similarity learning
CN112949406A (en) * 2021-02-02 2021-06-11 西北农林科技大学 Sheep individual identity recognition method based on deep learning algorithm
CN112906557B (en) * 2021-02-08 2023-07-14 重庆兆光科技股份有限公司 Multi-granularity feature aggregation target re-identification method and system under multi-view angle
CN114565839A (en) * 2022-02-17 2022-05-31 广州市城市规划勘测设计研究院 Remote sensing image target detection method, device, equipment and computer medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160078359A1 (en) * 2014-09-12 2016-03-17 Xerox Corporation System for domain adaptation with a domain-specific class means classifier
CN107622229B (en) * 2017-08-29 2021-02-02 中山大学 Video vehicle re-identification method and system based on fusion features
CN110414462B (en) * 2019-08-02 2022-02-08 中科人工智能创新技术研究院(青岛)有限公司 Unsupervised cross-domain pedestrian re-identification method and system
CN111259756A (en) * 2020-01-10 2020-06-09 西安培华学院 Pedestrian re-identification method based on local high-frequency features and mixed metric learning
CN111259836A (en) * 2020-01-20 2020-06-09 浙江大学 Video pedestrian re-identification method based on dynamic graph convolution representation
CN111476168B (en) * 2020-04-08 2022-06-21 山东师范大学 Cross-domain pedestrian re-identification method and system based on three stages
CN112132014B (en) * 2020-09-22 2022-04-12 德州学院 Target re-identification method and system based on non-supervised pyramid similarity learning

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG WENHUI ET AL: "Unsupervised Horizontal Pyramid Similarity Learning for Cross-Domain Adaptive Person Re-Identification", IEEE ACCESS, IEEE, USA, vol. 9, 28 June 2021 (2021-06-28), pages 92901 - 92912, XP011863855, DOI: 10.1109/ACCESS.2021.3093083 *
YANG FU ET AL: "Horizontal Pyramid Matching for Person Re-identification", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 14 April 2018 (2018-04-14), XP081196383 *
ZHENG FENG ET AL: "Pyramidal Person Re-IDentification via Multi-Loss Dynamic Training", 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), IEEE, 15 June 2019 (2019-06-15), pages 8506 - 8514, XP033687356, DOI: 10.1109/CVPR.2019.00871 *

Also Published As

Publication number Publication date
NL2029214B1 (en) 2023-03-14
CN112132014B (en) 2022-04-12
WO2022062419A1 (en) 2022-03-31
CN112132014A (en) 2020-12-25

Similar Documents

Publication Publication Date Title
NL2029214B1 (en) Target re-indentification method and system based on non-supervised pyramid similarity learning
Huixian The analysis of plants image recognition based on deep learning and artificial neural network
CN104217225B (en) A kind of sensation target detection and mask method
CN107133569B (en) Monitoring video multi-granularity labeling method based on generalized multi-label learning
CN105719285A (en) Pedestrian detection method based on directional chamfering distance characteristics
CN111369572A (en) Weak supervision semantic segmentation method and device based on image restoration technology
CN104268546A (en) Dynamic scene classification method based on topic model
CN112990282B (en) Classification method and device for fine-granularity small sample images
Lu et al. Fast abnormal event detection
CN113157800A (en) Identification method for discovering dynamic target in air in real time
KR20230171966A (en) Image processing method and device and computer-readable storage medium
CN113158891A (en) Cross-camera pedestrian re-identification method based on global feature matching
CN112183464A (en) Video pedestrian identification method based on deep neural network and graph convolution network
Kumar et al. Background subtraction based on threshold detection using modified K-means algorithm
Shukla et al. Survey on image mining, its techniques and application
Qian et al. A fire monitoring and alarm system based on channel-wise pruned YOLOv3
CN116910571B (en) Open-domain adaptation method and system based on prototype comparison learning
CN110781970A (en) Method, device and equipment for generating classifier and storage medium
CN109784404A (en) A kind of the multi-tag classification prototype system and method for fusion tag information
Nguyen et al. Lane detection and tracking based on fully convolutional networks and probabilistic graphical models
KR102272921B1 (en) Hierarchical object detection method for extended categories
Bin Research on methods and techniques for iot big data cluster analysis
CN106775694A (en) A kind of hierarchy classification method of software merit rating code product
CN110728229A (en) Image processing method, device, equipment and storage medium
CN115579069A (en) Construction method and device of scRNA-Seq cell type annotation database and electronic equipment