NL2028599B1 - Device for simulation operation of single-port thoracoscope - Google Patents

Device for simulation operation of single-port thoracoscope Download PDF

Info

Publication number
NL2028599B1
NL2028599B1 NL2028599A NL2028599A NL2028599B1 NL 2028599 B1 NL2028599 B1 NL 2028599B1 NL 2028599 A NL2028599 A NL 2028599A NL 2028599 A NL2028599 A NL 2028599A NL 2028599 B1 NL2028599 B1 NL 2028599B1
Authority
NL
Netherlands
Prior art keywords
simulated
pulmonary
thoracic cavity
bronchi
console
Prior art date
Application number
NL2028599A
Other languages
Dutch (nl)
Inventor
Yang Rusong
Guan Xiang
Shi Ye
Liu Zhengcheng
Shi Xuan
Cao Hui
Original Assignee
Nanjing Brain Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Brain Hospital filed Critical Nanjing Brain Hospital
Priority to NL2028599A priority Critical patent/NL2028599B1/en
Application granted granted Critical
Publication of NL2028599B1 publication Critical patent/NL2028599B1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Instructional Devices (AREA)

Abstract

The present disclosure belongs to the field of simulation operation technologies, and particularly relates to a device for simulation operation of a single-port thoracoscope, including a console that plays a supporting role and a simulated thoracic cavity, Where a simulated mediastinum, a simulated pulmonary artery, a simulated pulmonary vein and simulated pulmonary bronchi are disposed in the simulated thoracic cavity. Blood vessels and bronchi in simulated internal organs are labeled, and each branch is intemally provided With a light sensor. Before an operation, the light intensity in the blood vessels and the bronchi in the operation range is set in advance on the console. As an image seen via a camera during the operation is a two-dimensional image, a model can convert the two-dimensional pulmonary segment image into a three-dimensional model in direct sight, and simulate the real spatial visual effect during the operation.

Description

DEVICE FOR SIMULATION OPERATION OF SINGLE-PORT THORACOSCOPE TECHNICAL FIELD
[0001] The present disclosure relates to the field of simulation operation technologies of thoracic surgery single-port thoracoscopes, and in particular, to a device for simulation operation of a single-port thoracoscope.
BACKGROUD
[0002] In the past ten years, with the popularization of low-dose spiral CT, major changes have occurred to the epidemiology and treatment of lung tumors. There are an increasing number of patients with early-stage lung cancer and elderly patients with lung cancer, and corresponding methods of surgical treatment for lung cancer are also developing rapidly at different levels. The Guidelines for the Diagnosis and Treatment of Primary Lung Cancer (2018 Edition) of Chinese Society of Clinical Oncology (CSCO) show that lobectomy has long been considered by most thoracic surgeons as the standard surgical method for surgical resection of stage I non-small cell lung cancer. At present, minimally invasive surgery has gradually replaced many thoracotomies.
[0003] Existing studies have shown that segmentectomy is one of the representative surgical methods of precision surgery. Its principle is thoroughness and safety of the operation, the basis is precise dissection, and the core is to remove the lesion to the maximum extent while preserving healthy lung tissues as much as possible. If the arteries, bronchi, and intersegment veins in the lung segment are mistakenly diagnosed and preserved, or the preserved lung segment is greatly squeezed and cannot be re-expanded, the preserved lung tissue will not be able to perform normal ventilation functions. The requirements of the ideal segmentectomy are that through the precise segmentectomy, the resection margin of the tumor is ensured, and the lung tissue can be preserved and fully functioned. Therefore, precise lung segment resection relies on accurate three-dimensional reconstruction of lung segment bronchi and blood vessels before the operation, so that the anatomical structure of the lung segment and whether there are variations can be understood, and the lung segment which lung nodules belong to can be accurately determined, to guide the preoperative surgical path planning and precise intraoperative navigation operation.
SUMMARY
[0004] An objective of the present disclosure is to provide a device for simulation operation of a single-port thoracoscope, to solve the problems in the background that in a single-port thoracoscopic surgery, the operable range of a single operation port is more restricted than that of a multi-port thoracoscopic surgery, which easily causes mutual interference between surgical instruments; it is more difficult to stretch lung lobes in the same thoracic cavity; and an instrument and a light source affect a surgeon's judgment on the depth and the distance, so that the technical requirements for a doctor are higher and the surgery is more difficult.
[0005] To achieve the above objective, the present disclosure provides the following technical solutions: a device for simulation operation of a single-port thoracoscope, including:
[0006] a console that plays a supporting role;
[0007] a simulated thoracic cavity mounted on an upper surface of the console, where a simulated mediastinum, a simulated pulmonary artery, a simulated pulmonary vein and simulated pulmonary bronchi are disposed in the simulated thoracic cavity;
[0008] a surgical operation hole formed in an upper surface of the simulated thoracic cavity, where the surgical operation hole passes through the upper surface of the simulated thoracic cavity, and is used to observe the inside of the simulated thoracic cavity and simulate a surgical operation; and
[0009] a simulated surgical instrument that cooperates with the surgical operation hole to perform simulated surgical operations on the simulated thoracic cavity;
[0010] where a simulated pulmonary content is fixedly arranged on the console and located inside the simulated thoracic cavity.
[0011] Preferably, the surgical operation hole has a diameter of 2.5-3 cm.
[0012] Preferably, the simulated pulmonary content includes simulated pulmonary internal organs, a simulated partial heart, and simulated pulmonary lesions.
[0013] Preferably, the simulated pulmonary internal organs include simulated blood vessels, simulated bronchi, and simulated nerves.
[0014] Preferably, the simulated blood vessels, the simulated bronchi and the simulated nerves are all made of elastic lines, and labeled with different colors.
[0015] Preferably, the simulated blood vessels, the simulated bronchi and the simulated nerves are each provided with a light sensor and an illuminating lamp, the light sensor and the illuminating lamp are connected to the console through a circuit line, and the console adjusts the brightness of the illuminating lamps on the simulated blood vessels, the simulated bronchi and the simulated nerves in advance.
[0016] Compared with the prior art, the present disclosure has the following beneficial effects:
[0017] Blood vessels and bronchi in simulated internal organs are labeled, and each branch is internally provided with a light sensor. Before an operation, the light intensity in the blood vessels and the bronchi in the operation range is set in advance on the console. As an image seen via a camera during the operation is a two-dimensional image, a model can convert the two-dimensional pulmonary segment image into a three-dimensional model in direct sight, and simulate the real spatial visual effect during the operation, and can not only play the function of pulmonary segment dissection teaching, but also improve a surgeon's spatial stereo perception before the operation to achieve the training effect.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] FIG. 1 is a schematic structural diagram of the present disclosure.
[0019] In the figure: 1. console, 2. simulated thoracic cavity, 3. surgical operation hole, 4. simulated surgical instrument.
DESCRIPTION OF THE EMBODIMENTS
[0020] The following clearly and completely describes the technical solutions in the embodiments of the present disclosure with reference to accompanying drawings in the embodiments of the present disclosure. Apparently, the described embodiments are merely some rather than all of the embodiments of the present disclosure. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present disclosure without creative efforts shall fall within the protection scope of the present disclosure.
[0021] In the description of the present disclosure, it should be understood that orientations or position relationships indicated by terms "upper", "lower", "front", "rear", "left", "right", "top", "bottom", "inside", "outside", etc. are orientation or position relationships as shown in the drawings, and these terms are just used to facilitate description of the present disclosure and simplify the description, but not to indicate or imply that the mentioned device or elements must have a specific orientation and must be established and operated in a specific orientation, and thus, these terms cannot be understood as a limitation to the present disclosure.
[0022] Embodiment
[0023] Referring to FIG. 1, the present disclosure provides a technical solution: a device for simulation operation of a single-port thoracoscope, including:
[0024] a console 1 that plays a supporting role;
[0025] a simulated thoracic cavity 2 mounted on an upper surface of the console 1, where a simulated mediastinum, a simulated pulmonary artery, a simulated pulmonary vein and simulated pulmonary bronchi are disposed in the simulated thoracic cavity 2;
[0026] a surgical operation hole 3 formed in an upper surface of the simulated thoracic cavity 2, where the surgical operation hole 3 passes through the upper surface of the simulated thoracic cavity 2, and is used to observe the inside of the simulated thoracic cavity 2 and simulate a surgical operation; and
[0027] a simulated surgical instrument 4 that cooperates with the surgical operation hole 3 to perform simulated surgical operations on the simulated thoracic cavity 2;
[0028] where a simulated pulmonary content is fixedly arranged on the console 1 and located inside the simulated thoracic cavity 2.
[0029] Working principle: Lamps in the simulated blood vessels, the simulated bronchi and the simulated nerves within the operation scope are turned on. Because blood vessels and the bronchi in the lung are complex, light sensors and illuminating lamps can play a guiding role.

Claims (6)

CONCLUSIESCONCLUSIONS 1. Een inrichting voor het simuleren van de werking van een thoracoscoop met één poort, dat bestaat uit: 5 een console (1) die een ondersteunende rol speelt; een gesimuleerde borstholte (2) gemonteerd op een bovenoppervlak van de console (1), waarbij een gesimuleerd mediastinum, een gesimuleerde longslagader, een gesimuleerde longader en gesimuleerde longbronchién zijn aangebracht in de gesimuleerde borstholte; een chirurgisch operatiegat (3), dat gevormd is in een bovenoppervlak van de gesimuleerde borstholte (2), waarbij het chirurgische operatiegat (3) door het bovenoppervlak van de gesimuleerde borstholte (2) gaat, en wordt gebruikt om de binnenkant te observeren van de gesimuleerde borstholte (2} en een chirurgische operatie te simuleren; en een gesimuleerd chirurgisch instrument (4) dat samenwerkt met het chirurgische operatiegat (3) om gesimuleerde chirurgische operaties uit te voeren op de gesimuleerde thoracale holte (2); waarbij een gesimuleerde pulmonale inhoud vast op de console (1) is aangebracht en zich binnen de gesimuleerde borstholte (2) bevindt.A device for simulating the operation of a single port thoracoscope, comprising: a console (1) playing a supporting role; a simulated thoracic cavity (2) mounted on an upper surface of the console (1), wherein a simulated mediastinum, a simulated pulmonary artery, a simulated pulmonary vein and simulated pulmonary bronchi are disposed in the simulated thoracic cavity; a surgical operation hole (3) formed in an upper surface of the simulated thoracic cavity (2), the surgical operation hole (3) passing through the upper surface of the simulated thoracic cavity (2), and is used to observe the inside of the simulated thoracic cavity (2} and a surgical operation; and a simulated surgical instrument (4) cooperating with the surgical operating hole (3) to perform simulated surgical operations on the simulated thoracic cavity (2); wherein a simulated pulmonary contents mounted on the console (1) and located within the simulated chest cavity (2). 2. De inrichting voor het simuleren van de werking van een thoracoscoop met één poort volgens conclusie 1, waarbij het chirurgische operatiegat (3) een diameter heeft van 2,5-3 em.The device for simulating the operation of a single port thoracoscope according to claim 1, wherein the surgical operation hole (3) has a diameter of 2.5-3 µm. 3. De inrichting voor het simuleren van de werking van een thoracoscoop met één poort volgens conclusie 1, waarbij de gesimuleerde pulmonale inhoud bestaat uit gesimuleerde pulmonale inwendige organen, een gesimuleerd gedeeltelijk hart en gesimuleerde pulmonale laesies.The apparatus for simulating the operation of a single port thoracoscope according to claim 1, wherein the simulated pulmonary contents consists of simulated pulmonary internal organs, a simulated partial heart and simulated pulmonary lesions. 4. De inrichting voor het simuleren van de werking van een thoracoscoop met één poort volgens conclusie 3, waarbij de gesimuleerde pulmonale inhoud bestaat uit gesimuleerde pulmonale inwendige organen, een gesimuleerd gedeeltelijk hart en gesimuleerde pulmonale laesies.The apparatus for simulating the operation of a single port thoracoscope according to claim 3, wherein the simulated pulmonary contents consists of simulated pulmonary internal organs, a simulated partial heart and simulated pulmonary lesions. 5. De inrichting voor het simuleren van de werking van een thoracoscoop met één poort volgens conclusie 4, waarbij de gesimuleerde bloedvaten, de gesimuleerde bronchiën en de gesimuleerde zenuwen allemaal zijn gemaakt van elastische lijnen, en gelabeld zijn met verschillende kleuren.The device for simulating the operation of a single port thoracoscope according to claim 4, wherein the simulated blood vessels, the simulated bronchi and the simulated nerves are all made of elastic lines, and labeled with different colors. 6. De inrichting voor het simuleren van de werking van een thoracoscoop met één poort volgens conclusie 4, waarbij de gesimuleerde bloedvaten, de gesimuleerde bronchiën en de gesimuleerde zenuwen elk zijn voorzien van een lichtsensor en een verlichtingslamp; de lichtsensor en de verlichtingslamp zijn verbonden naar de console (1) via een circuitlijn; en de console (1) de helderheid van de verlichtende lampen op de gesimuleerde bloedvaten, de gesimuleerde bronchiën en de gesimuleerde zenuwen van tevoren aanpast.The apparatus for simulating the operation of a single port thoracoscope according to claim 4, wherein the simulated blood vessels, the simulated bronchi and the simulated nerves each comprise a light sensor and an illumination lamp; the light sensor and the lighting lamp are connected to the console (1) through a circuit line; and the console (1) pre-adjusts the brightness of the illuminating lamps on the simulated blood vessels, the simulated bronchi and the simulated nerves.
NL2028599A 2021-07-01 2021-07-01 Device for simulation operation of single-port thoracoscope NL2028599B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2028599A NL2028599B1 (en) 2021-07-01 2021-07-01 Device for simulation operation of single-port thoracoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2028599A NL2028599B1 (en) 2021-07-01 2021-07-01 Device for simulation operation of single-port thoracoscope

Publications (1)

Publication Number Publication Date
NL2028599B1 true NL2028599B1 (en) 2022-03-11

Family

ID=80679450

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2028599A NL2028599B1 (en) 2021-07-01 2021-07-01 Device for simulation operation of single-port thoracoscope

Country Status (1)

Country Link
NL (1) NL2028599B1 (en)

Similar Documents

Publication Publication Date Title
Jansen-Winkeln et al. Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI)
US11246476B2 (en) Method for visualizing tissue with an ICG dye composition during ablation procedures
CN110177500A (en) The rendering of tissue model dynamic vision
Pacheco et al. The novel use of intraoperative laser-induced fluorescence of indocyanine green tissue angiography for evaluation of the gastric conduit in esophageal reconstructive surgery
US20060073454A1 (en) Method and system for simulation of surgical procedures
Sarfati et al. Robotic da Vinci Xi‐assisted nipple‐sparing mastectomy: first clinical report
Liu et al. Single-port video-assisted thoracoscopic surgery for lung cancer
JP2016530023A (en) System and method for visualizing lungs using light
CN208569972U (en) A kind of cardiovascular interventional operation training simulator
Chen et al. Efficacy of da Vinci robot‐assisted lymph node surgery than conventional axillary lymph node dissection in breast cancer–A comparative study
NL2028599B1 (en) Device for simulation operation of single-port thoracoscope
CN111354253A (en) Single-hole thoracoscope simulation operation device
WO2019114824A1 (en) Method and device for locating target on human body using superficial venous characteristics
Motohashi et al. Endoscopic submucosal dissection (two‐point fixed ESD) for early esophageal cancer
CN109326189A (en) A kind of puncture simulator of laparoscope
Kingston et al. Hysteroscopic training: the butternut pumpkin model
WO2013122495A1 (en) Device and method for assessing regional blood circulation
Perotti et al. Anatomical cadaver study of endolaryngeal vascularization: focus on the glottis, supraglottis, and subglottis from the transoral microsurgical point of view
Simoff et al. Thoracic endoscopy: advances in interventional pulmonology
CN205862668U (en) A kind of true chamber mirror Minimally Invasive Surgery simulation training system
CN108185980A (en) A kind of saturating intestinal wall locator of laser and rectum low level tumor-localizing method
CN205508240U (en) Teaching mode that heart electrograph and monocardiogram lead and connect
LU503217B1 (en) Chest Model Used for the Percutaneous Pulmonary Nodules Puncture under the Guidance of CT Imaging
CN216388413U (en) Laparoscope ultrasonic puncture simulation training device
CN210535154U (en) Training system for laparoscopic surgery simulation