NL2027355B1 - Control method for optimizing combustion and reducing nitrogen oxide emissions of internal combustion engine - Google Patents

Control method for optimizing combustion and reducing nitrogen oxide emissions of internal combustion engine Download PDF

Info

Publication number
NL2027355B1
NL2027355B1 NL2027355A NL2027355A NL2027355B1 NL 2027355 B1 NL2027355 B1 NL 2027355B1 NL 2027355 A NL2027355 A NL 2027355A NL 2027355 A NL2027355 A NL 2027355A NL 2027355 B1 NL2027355 B1 NL 2027355B1
Authority
NL
Netherlands
Prior art keywords
relay
stroke
cylinder
state during
intake
Prior art date
Application number
NL2027355A
Other languages
Dutch (nl)
Other versions
NL2027355A (en
Inventor
Cai Yuqing
Zheng Zunqing
Wang Hu
Yao Mingfa
Original Assignee
Univ Tianjin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tianjin filed Critical Univ Tianjin
Publication of NL2027355A publication Critical patent/NL2027355A/en
Application granted granted Critical
Publication of NL2027355B1 publication Critical patent/NL2027355B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • F02B51/04Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines involving electricity or magnetism

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The present disclosure provides a control method for optimizing combustion and reducing nitrogen oxide emissions of an internal combustion engine, including: step 1, installing an air-ionized energy 5 saving and emission reduction apparatus for an internal combustion engine; step 2, determining, by an electronic control unit (ECU), a working status of the engine based on signals from an air flow sensor on an original intake pipe, a crankshaft position sensor on a crankshaft, and a cylinder pressure sensor in a combustion chamber of the engine; and 10 step 3, controlling, by the ECU, an air ionization degree and electric field coverage for different working statuses. This method can reduce nitrogen oxide emissions.

Description

CONTROL METHOD FOR OPTIMIZING COMBUSTION AND
REDUCING NITROGEN OXIDE EMISSIONS OF INTERNAL
COMBUSTION ENGINE
TECHNICAL FIELD
The present disclosure relates to a control method for optimizing and reducing nitrogen oxide emissions, and in particular, to a control method for optimizing combustion and reducing nitrogen oxide emissions of an internal combustion engine.
BACKGROUND
The internal combustion engines always need to deal with thermal efficiency and emissions. The formation of nitrogen oxides is mainly determined by temperature, oxygen atom concentration, and action time.
According to studies, when the ambient temperature reaches 1500K or higher, the number of nitrogen oxides produced will increase by 6 to 8 times for every 100K increase. According to the Zeldovich mechanism, high temperature and oxygen atom concentration during combustion are the main factors affecting the formation of nitrogen oxides. Lowering the highest combustion temperature and reducing the number of oxygen atoms in high temperature zones can reduce nitrogen oxide emissions.
Currently, the methods for improving the thermal efficiency of an internal combustion engine mainly focus on the research of new combustion theories and fuels, and the research on reducing emissions mainly focuses on the after-treatment of exhaust gas.
Nitrogen oxides are harmful emissions that are difficult to deal with.
At present, post-processors such as a three-way catalyst and a selective reduction catalyst are mainly used.
The selective catalytic reduction (SCR) technology has the following characteristics: The NOx removal efficiency is high. According to the relevant literature records and project monitoring data, the general NOx removal efficiency of the SCR method can be maintained at 70% to 90%.
The secondary pollution is small. The basic principle of the SCR method is to use a reducing agent to reduce NOx to non-toxic and non-polluting
N2 and H20, and the entire process produces few secondary pollutants.
The SCR technology is relatively mature and widely used. This technology has been widely used in the after-treatment of automobile engines. The investment cost and the operating cost are high.
The three-way catalyst is the most important external purification apparatus installed in an exhaust system of a car. It can convert harmful gases such as CO, HC and NOx from car exhaust into harmless carbon dioxide, water, and nitrogen through oxidation and reduction. When the high-temperature automobile exhaust gas passes through the three-way catalyst, the purification agent in the three-way catalyst enhances the activity of the three gases CO, HC and NOx, and promotes some oxidation-reduction chemical reactions. In this case, CO is oxidized to colourless and non-toxic carbon dioxide at high temperature; HC compounds are oxidized to water (H20) and carbon dioxide at high temperature; and NOx is reduced to nitrogen and oxygen. The three harmful gases become harmless gases, so that automobile exhaust can be purified. However, the three-way catalyst is expensive and has a high requirement for the excess air coefficient range, which is not conducive to the development of advanced combustion technology for modern internal combustion engines.
Air ionization is rarely studied now. The patent CN102695870A is about the research on the application of ionized air in internal combustion engines. This patent designs an ionization apparatus that can generate more negative ions, thereby promoting combustion. This patent focuses on the design of an ionizer, and aims to promote combustion and avoid the generation of ozone, but does not design a structural apparatus that achieves stratification of different gas molecules through an electric field.
SUMMARY
The present disclosure aims to overcome the shortcomings of the prior art and provide a control method for optimizing combustion and reducing nitrogen oxide emissions of an internal combustion engine, to reduce the emission of nitrogen oxides.
To achieve the above objective, the present disclosure adopts the following technical solutions:
A control method for optimizing combustion and reducing nitrogen oxide emissions of an internal combustion engine of the present disclosure includes the following steps: step 1: installing an air-ionized energy saving and emission reduction apparatus for an internal combustion engine, where the air-ionized energy saving and emission reduction apparatus for an internal combustion engine includes an ionizer installed on an intake manifold of the internal combustion engine, and a nozzle of the ionizer is inserted into an intake pipe and arranged at an angle of 45 degrees with an axis of the intake manifold; a power connection hole is provided on a bottom wall of a piston of each cylinder along a direction perpendicular to the piston top land of each cylinder of the engine; on a cylinder head of each cylinder of the engine, with a spark plug of each cylinder as a centre, a first electrode plate groove, a second electrode plate groove, and a third electrode plate groove are coaxially arranged on a top wall of the cylinder head from inside to outside; a first annular electrode plate is fixed in the first electrode plate groove, a second annular electrode plate is fixed in the second electrode plate groove, and a third annular electrode plate is fixed in the third electrode plate groove; an ionizer is installed on the intake manifold of each cylinder; DC stabilized power supplies in the same quantity as the engine cylinders and four relay switches corresponding to each engine cylinder are fixed under a car dashboard; the DC stabilized power supply is provided with several pairs of positive and negative ports; three of four relays provided for each cylinder are used to control the electrode plate in the cylinder to be connected or disconnected, and the remaining one relay is used to control the ionizer on the intake manifold of the cylinder to be connected or disconnected; a specific connection circuit of the four relays and a DC stabilized power supply that correspond to each cylinder is as follows:
output terminals A of a first relay, a second relay, a third relay, and a fourth relay for controlling one cylinder are each connected to a negative port of the DC power supply through a first wire; an output terminal B of the first relay is connected to a negative port of the ionizer through a second wire; output terminals B of the second relay, the third relay, and the fourth relay are each connected to one end of a third wire, and the other ends of the three third wires are routed into an engine compartment through a wire hole inside the car to be respectively connected to a port of the first electrode plate, a port of the second electrode plate, and a port of the third electrode plate; input terminals C of the first relay, the second relay, the third relay, and the fourth relay are each connected to a relay pin of an electronic control unit (ECU) through a fourth wire, and input terminals D of the first relay, the second relay, the third relay, and the fourth relay are each connected to a relay pin of the ECU through a fifth wire;
one end of a sixth wire is connected to a first positive port of the DC power supply, and the other end is routed into the engine compartment through the wire hole inside the car to be connected to a positive port of the ionizer;
one end of a seventh wire is connected to a second positive port of the DC power supply, and the other end is routed into the engine compartment through the wire hole inside the car to be inserted to the power connection hole;
step 2: determining, by the ECU, a working status of the engine based on signals from an air flow sensor on the original intake pipe, a crankshaft position sensor on a crankshaft, and a cylinder pressure sensor in a combustion chamber of the engine;
step 3: for different working statuses, performing the following control methods of each relay in different strokes:
in a low-load state, a small air ionization degree and electric field coverage in the cylinder are used, and specific relay control policies are as follows:
first relay: at the beginning of an intake stroke, the ECU sends a connection instruction to the first relay; at the end of the intake stroke, the
ECU sends a disconnection instruction to the first relay; the first relay is in a connected state during the intake stroke, and is in a disconnected state during compression, work, and exhaust strokes; second relay: at the beginning of the compression stroke, the ECU sends a connection instruction to the second relay; at the end of the power stroke, the ECU sends a disconnection instruction to the second relay; the second relay is in a connected state during the compression and power strokes, and is in a disconnected state during the intake and exhaust strokes: the third relay and the fourth relay are always in a disconnected state; in a medium-load state, a medium air ionization degree and electric field coverage in the cylinder are used, and specific relay control policies are as follows: first relay: at the beginning of the intake stroke, the ECU sends a connection instruction to the first relay; at the end of the intake stroke, the
ECU sends a disconnection instruction to the first relay; the first relay is in a connected state during the intake stroke, and is in a disconnected state during compression, work, and exhaust strokes; second relay: at the beginning of the compression stroke, the ECU sends a connection instruction to the second relay; at the end of the power stroke, the ECU sends a disconnection instruction to the second relay; the second relay is in a connected state during the compression and power strokes, and is in a disconnected state during the intake and exhaust strokes; third relay: at the beginning of the power stroke, the ECU sends a connection instruction to the third relay; at the end of the power stroke, the ECU sends a disconnection instruction to the third relay; the third relay is in a connected state during the power stroke, and is in a disconnected state during the intake, compression, and exhaust strokes; the fourth relay is always in a disconnected state;
in a heavy-load state, a large air ionization degree and electric field coverage in the cylinder are used, and specific relay control policies are as follows: first relay: at the beginning of the intake stroke, the ECU sends a connection instruction to the first relay; at the end of the intake stroke, the
ECU sends a disconnection instruction to the first relay; the first relay is in a connected state during the intake stroke, and is in a disconnected state during the compression, work, and exhaust strokes; second relay: at the beginning of the compression stroke, the ECU sends a connection instruction to the second relay; at the end of the power stroke, the ECU sends a disconnection instruction to the second relay; the second relay is in a connected state during the compression and power strokes, and is in a disconnected state during the intake and exhaust strokes; third relay: at the beginning of the power stroke, the ECU sends a connection instruction to the third relay; at the end of the power stroke, the ECU sends a disconnection instruction to the third relay; the third relay is in a connected state during the power stroke, and is in a disconnected state during the intake, compression, and exhaust strokes; fourth relay: as a near wall temperature is high under a heavy load, at the beginning of the power stroke, the ECU sends a connection instruction to the fourth relay; at the end of the exhaust stroke, the ECU sends a disconnection instruction to the fourth relay; the fourth relay is in a connected state during the work and exhaust strokes, and is in a disconnected state during the intake and compression strokes.
Compared with the prior art, the present disclosure has the following advantages: (1) An air ionization method is used to stimulate active oxygen radicals and promote combustion. (2) An electric field is used to control the gas flow in a cylinder, change the local oxygen concentration, reduce the oxygen concentration in a high-temperature combustion zone, and lower the maximum combustion temperature, thereby reducing nitrogen oxide emissions. This method is different from the mainstream after-treatment method. (3) The ionization intensity and electric field suitable for the current engine working state can be selected based on sensor signals of the engine.
BRIEF DESCRIPTION OF DRAWINGS
To describe the technical solutions in embodiments of this application or in the prior art more clearly, the following briefly describes the accompanying drawings used in the present disclosure, and further describes the technical solutions of this application in detail with reference to specific examples.
FIG. 1 is a structural diagram of an apparatus used for a control method for optimizing combustion and reducing nitrogen oxide emissions of an internal combustion engine according to the present disclosure.
FIG. 2 is a control flowchart of a method according to the present disclosure.
FIG. 3 is a structural diagram of a groove of a cylinder head electrode plate in the apparatus shown in FIG. 1.
DETAILED DESCRIPTION
To make a person skilled in the art understand the technical solutions in the embodiments of the present disclosure better, the following describes the solutions with reference to specific examples.
A control method for optimizing combustion and reducing nitrogen oxide emissions of an internal combustion engine according to the present disclosure includes the following steps.
Step 1: As shown in FIG. 1, install an air-ionized energy saving and emission reduction apparatus for an internal combustion engine. The air- ionized energy saving and emission reduction apparatus for an internal combustion engine includes an ionizer 7 installed on an intake manifold of the internal combustion engine. A nozzle of the ionizer 7 is inserted into an intake pipe and arranged at an angle of 45 degrees with an axis of the intake manifold. The ionizer is of an existing structure similar to a spark plug. It will release a large number of electrons at the nozzle instantaneously, where oxygen captures the electrons and becomes negative oxygen ions.
A journal where a crank pin seat is located is bypassed. As shown in
FIG. 1, a power connection hole 8 is formed on a bottom wall of a piston of each cylinder along a direction perpendicular to the piston top land of each cylinder of the engine. As shown in FIG. 3, on a cylinder head of each cylinder of the engine, with a spark plug 12 of each cylinder as the centre, a first electrode plate groove 14, a second electrode plate groove 15, and a third electrode plate groove 16 are coaxially arranged on a top wall of the cylinder head from inside to outside. A first annular electrode plate 9 is fixed in the first electrode plate groove 14, a second annular electrode plate 10 is fixed in the second electrode plate groove 15, and a third annular electrode plate 11 is fixed in the third electrode plate groove 16. In the figure, 17 is a groove spacing.
Preferably, a radial spacing between outer edges of two adjacent annular electrode plates is 5 mm to 10 mm, so that a gap between the electrode plates can be covered by the electric field, and the processing of the electrode plate grooves does not affect the reliability of the cylinder head.
An ionizer 7 is installed on the intake manifold of each cylinder. DC stabilized power supplies 1 in the same quantity as the engine cylinders and four relay switches corresponding to each engine cylinder are fixed under a car dashboard (a quantity of relay switches is four times that of cylinders). The DC stabilized power supply 1 is provided with several pairs of positive and negative ports. Three of the four relays provided for each cylinder are used to control the electrode plate in the cylinder to be connected or disconnected, and the remaining one relay is used to control the ionizer 7 on the intake manifold of the cylinder to be connected or disconnected.
A specific connection circuit of the four relays and a DC stabilized power supply 1 that correspond to each cylinder is as follows:
Output terminals A of a first relay 3, a second relay 4, a third relay 5, and a fourth relay 6 for controlling one cylinder are each connected to a negative port of the DC stabilized power supply 1 through a first wire.
An output terminal B of the first relay 3 is connected to a negative port of the ionizer 7 through a second wire. Output terminals B of the second relay 4, the third relay 5, and the fourth relay 6 are each connected to one end of a third wire, and the other ends of the three third wires are routed into an engine compartment through a wire hole inside the car to be respectively connected to a port of the first electrode plate 9, a port of the second electrode plate 10, and a port of the third electrode plate 11. Input terminals C of the first relay 3, the second relay 4, the third relay 5, and the fourth relay 6 are each connected to a relay pin of an electronic control unit (ECU) through a fourth wire, input terminals D of the first relay 3, the second relay 4, the third relay 5, and the fourth relay 6 are each connected to a relay pin of the ECU through a fifth wire, and the relays do not affect each other.
One end of a sixth wire is connected to a first positive port of the DC power supply 1, and the other end is routed into the engine compartment through the wire hole inside the car to be connected to a positive port of the ionizer 7.
One end of a seventh wire is connected to a second positive port of the DC power supply 1, and the other end is routed into the engine compartment through the wire hole inside the car to be inserted to the power connection hole 8.
Step 2: The ECU determines a working status of the engine based on signals from an air flow sensor on the original intake pipe, a crankshaft position sensor on a crankshaft, and a cylinder pressure sensor in a combustion chamber of the engine.
Step 3: For different working statuses, perform the following control methods of each relay in different strokes:
In a low-load state, a small air ionization degree and electric field coverage in the cylinder are used, and specific relay control policies are as follows:
First relay 3: At the beginning of an intake stroke, the ECU sends a connection instruction to the first relay 3; at the end of the intake stroke, the ECU sends a disconnection instruction to the first relay 3. The first relay 3 is in a connected state during the intake stroke, and is in a disconnected state during compression, work, and exhaust strokes.
Second relay 4: At the beginning of the compression stroke, the ECU sends a connection instruction to the second relay 4; at the end of the power stroke, the ECU sends a disconnection instruction to the second relay 4. The second relay is in a connected state during the compression and power strokes, and is in a disconnected state during the intake and exhaust strokes.
As a near wall temperature is relatively low under a low load, the third relay 5 and the fourth relay 6 are always in a disconnected state.
In a medium-load state, a medium air ionization degree and electric field coverage in the cylinder are used, and specific relay control policies are as follows:
First relay 3: At the beginning of the intake stroke, the ECU sends a connection instruction to the first relay 3; at the end of the intake stroke, the ECU sends a disconnection instruction to the first relay 3. The first relay is in a connected state during the intake stroke, and is in a disconnected state during the compression, work, and exhaust strokes.
Second relay 4: At the beginning of the compression stroke, the ECU sends a connection instruction to the second relay 4; at the end of the power stroke, the ECU sends a disconnection instruction to the second relay 4. The second relay is in a connected state during the compression and power strokes and is in a disconnected state during the intake and exhaust strokes.
Third relay 5: As a near wall temperature is higher under a medium load than under a low load, the ECU sends a connection instruction to the third relay 5 at the beginning of the power stroke; the ECU sends a disconnection instruction to the third relay 5 at the end of the power stroke. The third relay 5 is in a connected state during the power stroke, and is in a disconnected state during the intake, compression, and exhaust strokes.
Fourth relay 6: The fourth relay 6 is always in a disconnected state.
In a heavy-load state, a large air ionization degree and electric field coverage in the cylinder are used, and specific relay control policies are as follows:
First relay 3: At the beginning of an intake stroke, the ECU sends a connection instruction to the first relay 3; at the end of the intake stroke, the ECU sends a disconnection instruction to the first relay 3. The first relay 3 is in a connected state during the intake stroke, and is in a disconnected state during the compression, work, and exhaust strokes.
Second relay 4: At the beginning of the compression stroke, the ECU sends a connection instruction to the second relay 4; at the end of the power stroke, the ECU sends a disconnection instruction to the second relay 4. The second relay is in a connected state during the compression and power strokes, and is in a disconnected state during the intake and exhaust strokes.
Third relay 5: As a near wall temperature is high under a heavy load, at the beginning of the power stroke, the ECU sends a connection instruction to the third relay 5; at the end of the power stroke, the ECU sends a disconnection instruction to the third relay 5. The third relay 5 is in a connected state during the power stroke, and is in a disconnected state during the intake, compression, and exhaust strokes.
Fourth relay 6: As a near wall temperature is high under a heavy load, at the beginning of the power stroke, the ECU sends a connection instruction to the fourth relay 6; at the end of the exhaust stroke, the ECU sends a disconnection instruction to the fourth relay 6. The fourth relay 6 is in a connected state during the work and exhaust strokes, and is in a disconnected state during the intake and compression strokes.

Claims (2)

ConclusiesConclusions 1. Een controlemethode voor de optimalisering van de verbranding en het verminderen van de stikstofoxide uitstoot van een interne verbrandingsmotor met hierin de volgende stappen: stap 1: de installatie van een lucht-ioniserend energiebesparend en uitstootverminderend apparaat voor een interne verbrandingsmotor, waarbij het lucht-ioniserend energiebesparend en uitstootverminderend apparaat voor een interne verbrandingsmotor is samengesteld uit een lucht-ionisator geïnstalleerd op een inlaatspruitstuk van de interne verbrandingsmotor en een sproeier van de ionisator is ingevoerd in een inlaatpijp en gemonteerd in een hoek van 45 graden ten overstaan van de as van het inlaatspruitstuk; een opening voor een verbinding met de voeding is voorzien in de onderwand van de zuiger van elke cilinder in een richting loodrecht op de bovenste rand van de zuiger van elke cilinder van de motor; op de cilinderkop van elke cilinder van de motor worden van binnen naar buiten een eerste elektrodeplaatgroef, een tweede elektrodeplaatgroef en een derde elektrodeplaatgroef coaxiaal geplaatst op een bovenwand van de cilinderkop; met een bougie van elke cilinder als middelpunt; een eerste ringelektrodeplaat wordt bevestigd aan de eerste elektrodeplaatgroef, een tweede ringelektrodeplaat wordt bevestigd aan de tweede elektrodeplaatgroef en een derde ringelektrodeplaat worde bevestigd aan de derde elektrodeplaatgroef; een ionisator wordt gemonteerd op het inlaatspruitstuk van elke cilinder; een DC-gestabiliseerde voeding voedt in eenzelfde hoeveelheid als de motorcilinder en vier relaisschakelaars overeenkomstig elke motorcilinder worden het dashboard van een wagen gemonteerd; de DC- gestabiliseerde voeding is voorzien van meerdere paren positieve en negatieve polen; drie van de vier relais die voor elke cilinder zijn voorzien, worden gebruikt om de elektrodeplaat in de cilinder te sturen als verbonden of niet verbonden en het laatste relais wordt gebruikt om de ionisator van het inlaatspruitstuk van de cilinder te sturen als verbonden of niet verbonden; een specifiek aanlsuitingscircuit van de vier relais en een DC- gestabiliseerde voeding voor elke cilinder in de volgende configuratie:1. A control method for optimizing combustion and reducing nitrogen oxide emissions from an internal combustion engine, including the following steps: step 1: the installation of an air-ionizing energy-saving and emission-reducing device for an internal combustion engine, in which the air ionizing energy saving and emission reducing device for an internal combustion engine is composed of an air ionizer installed on an intake manifold of the internal combustion engine and a nozzle of the ionizer is introduced into an intake pipe and mounted at an angle of 45 degrees to the axis of the intake manifold; an opening for connection to the power supply is provided in the lower wall of the piston of each cylinder in a direction perpendicular to the upper edge of the piston of each cylinder of the engine; on the cylinder head of each cylinder of the engine, a first electrode plate groove, a second electrode plate groove and a third electrode plate groove are coaxially placed on an upper wall of the cylinder head from the inside out; with a spark plug of each cylinder as the center; a first ring electrode plate is attached to the first electrode plate groove, a second ring electrode plate is attached to the second electrode plate groove and a third ring electrode plate is attached to the third electrode plate groove; an ionizer is mounted on the intake manifold of each cylinder; a DC stabilized power supply supplies the same amount as the engine cylinder and four relay switches corresponding to each engine cylinder are mounted on the dashboard of a car; the DC stabilized power supply has multiple pairs of positive and negative poles; three of the four relays provided for each cylinder are used to control the electrode plate in the cylinder as connected or disconnected and the last relay is used to control the cylinder intake manifold ionizer as connected or disconnected; a dedicated connection circuit for the four relays and a DC stabilized power supply for each cylinder in the following configuration: uitgaande polen 1 van een eerste relais, een tweede relais, een derde relais en een vierde relais voor de sturing van een cilinder zijn allemaal verbonden aan een negatieve poort van de DC-voeding via een eerste draad;output poles 1 of a first relay, a second relay, a third relay and a fourth cylinder control relay are all connected to a negative port of the DC supply via a first wire; een uitgaande pool B van het eerste relais is verbonden met een negatieve pool van de ionisator via een tweede draad; de uitgaande polen B van het tweede relais, het derde relais en het vierde relais worden elk verbonden met het ene uiteinde van een derde draad en de andere uiteinden van de derde draad worden door een motorcompartiment geleid via een draadgat in de wagen om respectievelijk te worden verbonden op een pool van de eerste elektrodeplaat, een pool van de tweede elektrodeplaat en een pool van de derde elektrodeplaat; de ingaande polen C van het eerste relais, het tweede relais, het derde relais en het vierde relais worden elk verbonden met de relaispin van een elektronische stuureenheid (electronic control unit - ECU) via een vierde draad en de ingaande polen D van het eerste relais, het tweede relais, het derde relais en het vierde relais wordt elk verbonden met een relaispin van de ECU via een vijfde draad; een uiteinde van de zesde draad is verbonden met een eerste positieve pool van de DC-voeding en het andere uiteinde wordt in het motorcompartiment gevoerd doorheen een draadgat in de wagen om te worden verbonden met een positieve pool van de ionisator; een uiteinde van de zevende draad is verbonden met een tweede positieve pool van de DC-voeding en het andere uiteinde wordt in het motorcompartiment gevoerd doorheen een draadgat in de wagen om te worden gevoerd doorheen de opening voor de verbinding met de voeding; stap 2: het bepalen door de ECU van de werkstatus van de motor op basis van signalen afkomstig van een luchtstroomsensor op de originele inlaatbuis; een positiesensor van krukas op een krukas en een cilinderdruksensor in een verbrandingskamer van de motor; stap 3: het voor de verschillende werkstatussen uitvoeren van de volgende controlemethodes voor elk relais in verschillende slagen: in een laag belaste status worden een laag niveau van luchtionisatie en een lage dekking van het elektrisch veld in de cilinder toegepast en zijn de specifieke relaisturingsprocedures de volgende: eerste relais: bij het begin van een inlaatslag stuurt de ECU een verbindingscommando naar het eerste relais; aan het einde van de inlaatslag stuurt de ECU een commando naar het eerste relais om de verbinding te verbreken; het eerste relais is tijdens de inlaatslag in een verbonden status en is in een niet-verbonden status tijdens de compressie-, de werk- en de uitlaatslagen; tweede relais: bij het begin van de compressieslag stuurt de ECU een verbindingscommando naar het tweede relais; op het einde van de vermogensslag stuurt de ECU een commando om de verbinding te verbreken naar het tweede relais; het tweede relais is tijdens de compressieslag in een verbonden status en tijdens de inlaat- en de uitstootslagen in een niet-verbonden status; het derde en vierde relais zijn altijd in een niet-verbonden status; in een gemiddelde belaste status worden een medium niveau van luchtionisatie en een medium dekking van het elektrisch veld in de cilinder toegepast en zijn de specifieke relaisturingsprocedures de volgende: eerste relais: bij het begin van de inlaatslag stuurt de ECU een verbindingscommando naar het eerste relais; aan het einde van de inlaatslag stuurt de ECU een commando naar het eerste relais om de verbinding te verbreken; het eerste relais is tijdens de inlaatslag in een verbonden status en is in een niet-verbonden status tijdens de compressie-, werk- en uitlaatslagen;an output pole B of the first relay is connected to a negative pole of the ionizer via a second wire; the output poles B of the second relay, the third relay and the fourth relay are each connected to one end of a third wire and the other ends of the third wire are led through an engine compartment through a wire hole in the carriage to be respectively connected at a pole of the first electrode plate, a pole of the second electrode plate and a pole of the third electrode plate; the input poles C of the first relay, the second relay, the third relay and the fourth relay are each connected to the relay pin of an electronic control unit (ECU) via a fourth wire and the input poles D of the first relay , the second relay, the third relay and the fourth relay are each connected to a relay pin of the ECU via a fifth wire; one end of the sixth wire is connected to a first positive terminal of the DC power supply and the other end is fed into the engine compartment through a wire hole in the car to be connected to a positive terminal of the ionizer; one end of the seventh wire is connected to a second positive terminal of the DC power supply and the other end is led into the engine compartment through a wire hole in the car to be passed through the opening for connection to the power supply; step 2: the ECU determines the working status of the engine based on signals from an air flow sensor on the original intake pipe; a crankshaft position sensor on a crankshaft and a cylinder pressure sensor in a combustion chamber of the engine; step 3: for the different working states, carrying out the following control methods for each relay in different strokes: in a low load state, a low level of air ionization and a low electric field coverage in the cylinder are applied and the specific relay control procedures are as follows : first relay: at the start of an intake stroke, the ECU sends a connection command to the first relay; at the end of the intake stroke, the ECU sends a command to the first relay to break the connection; the first relay is in a connected state during the intake stroke and is in a disconnected state during the compression, working and exhaust strokes; second relay: at the start of the compression stroke, the ECU sends a connection command to the second relay; at the end of the power stroke the ECU sends a command to break the connection to the second relay; the second relay is in a connected state during the compression stroke and in a disconnected state during the intake and exhaust strokes; the third and fourth relays are always in a disconnected state; in a medium loaded state, a medium level of air ionization and a medium coverage of the electric field in the cylinder are applied and the specific relay control procedures are as follows: first relay: at the start of the intake stroke, the ECU sends a connection command to the first relay; at the end of the intake stroke, the ECU sends a command to the first relay to break the connection; the first relay is in a connected state during the intake stroke and is in a disconnected state during the compression, working and exhaust strokes; tweede relais: bij het begin van de compressieslag stuurt de ECU een verbindingscommando naar het tweede relais; op het einde van de vermogensslag stuurt de ECU een commando om de verbinding te verbreken naar het tweede relais; het tweede relais is tijdens de compressieslag in een verbonden status en tijdens de inlaat- en de uitstootslagen in een niet-verbonden status;second relay: at the start of the compression stroke, the ECU sends a connection command to the second relay; at the end of the power stroke the ECU sends a command to break the connection to the second relay; the second relay is in a connected state during the compression stroke and in a disconnected state during the intake and exhaust strokes; derde relais: bij het begin van de vermogensslag stuurt de ECU een verbindingscommando naar het derde relais; op het einde van de vermogensslag stuurt de ECU een commando om de verbinding te verbreken naar het derde relais; derde relais is tijdens de vermogensslag in een verbonden status en tijdens de inlaat-, compressie- en de uitstootslagen in een niet-verbonden status;third relay: at the start of the power stroke, the ECU sends a connection command to the third relay; at the end of the power stroke the ECU sends a command to break the connection to the third relay; third relay is in a connected state during the power stroke and in a disconnected state during the intake, compression and exhaust strokes; het vierde relais is altijd in een niet-verbonden status; in een zwaar belaste status worden een hoog niveau van luchtionisatie en een hoge dekking van het elektrisch veld in de cilinder toegepast en zijn de specifieke relaisturingsprocedures de volgende: eerste relais: bij het begin van de inlaatslag stuurt de ECU een verbindingscommando naar het eerste relais; aan het einde van de inlaatslag stuurt de ECU een commando naar het eerste relais om de verbinding te verbreken; het eerste relais is tijdens de inlaatslag in een verbonden status en is in een niet-verbonden status tijdens de compressie-, werk- en uitlaatslagen; tweede relais: bij het begin van de compressieslag stuurt de ECU een verbindingscommando naar het tweede relais; op het einde van de vermogensslag stuurt de ECU een commando om de verbinding te verbreken naar het tweede relais; het tweede relais is tijdens de compressieslag in een verbonden status en tijdens de inlaat- en de uitstootslagen in een niet-verbonden status; derde relais: bij het begin van de vermogensslag stuurt de ECU een verbindingscommando naar het derde relais; op het einde van de vermogensslag stuurt de ECU een commando om de verbinding te verbreken naar het derde relais; derde relais is tijdens de vermogensslag in een verbonden status en tijdens de inlaat-, compressie- en de uitstootslagen in een niet-verbonden status; vierde relais: gezien het feit dat een temperatuur in de buurt van de wand tijdens een hoge belasting hoog is stuurt de ECU bij het begin van de vermogensstatus een verbindingscommando naar het vierde relais, op het einde van de uitlaatslag stuurt de ECU een commando om de verbinding te verbreken naar het vierde relais; het vierde relais is tijdens de werk- en de uitlaatslagen in een verbonden status en is in een niet- verbonden status tijdens de inlaat- en de compressieslagen.the fourth relay is always in a disconnected state; in a heavily loaded state, a high level of air ionization and a high coverage of the electric field in the cylinder are applied and the specific relay control procedures are as follows: first relay: at the beginning of the intake stroke, the ECU sends a connection command to the first relay; at the end of the intake stroke, the ECU sends a command to the first relay to break the connection; the first relay is in a connected state during the intake stroke and is in a disconnected state during the compression, working and exhaust strokes; second relay: at the start of the compression stroke, the ECU sends a connection command to the second relay; at the end of the power stroke the ECU sends a command to break the connection to the second relay; the second relay is in a connected state during the compression stroke and in a disconnected state during the intake and exhaust strokes; third relay: at the start of the power stroke, the ECU sends a connection command to the third relay; at the end of the power stroke the ECU sends a command to break the connection to the third relay; third relay is in a connected state during the power stroke and in a disconnected state during the intake, compression and exhaust strokes; fourth relay: considering that a temperature near the wall is high during high load, at the beginning of the power status, the ECU sends a connection command to the fourth relay, at the end of the exhaust stroke, the ECU sends a command to disconnect the connection to the fourth relay; the fourth relay is in a connected state during the working and exhaust strokes and is in a disconnected state during the intake and compression strokes. 2. De controlemethode voor de optimalisering van de verbranding en het verminderen van de stikstofoxide uitstoot van een interne verbrandingsmotor overeenkomstig conclusie 1, waarbij de radiale spatiëring tussen de buitenranden van twee naar elkaar liggende ringelektrodeplaten 5 tot 10 mm is.The control method for optimizing combustion and reducing nitrogen oxide emissions of an internal combustion engine according to claim 1, wherein the radial spacing between the outer edges of two facing ring electrode plates is 5 to 10 mm.
NL2027355A 2020-01-21 2021-01-20 Control method for optimizing combustion and reducing nitrogen oxide emissions of internal combustion engine NL2027355B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010072390.9A CN111255600B (en) 2020-01-21 2020-01-21 Control method for optimizing combustion and reducing nitrogen oxide emission of internal combustion engine

Publications (2)

Publication Number Publication Date
NL2027355A NL2027355A (en) 2021-09-01
NL2027355B1 true NL2027355B1 (en) 2023-12-14

Family

ID=70949178

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2027355A NL2027355B1 (en) 2020-01-21 2021-01-20 Control method for optimizing combustion and reducing nitrogen oxide emissions of internal combustion engine

Country Status (2)

Country Link
CN (1) CN111255600B (en)
NL (1) NL2027355B1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1135400B (en) * 1981-02-11 1986-08-20 Tiziano Cavani ENDOTHERMAL HOLLOW LOADING MOTORS
JP2000161153A (en) * 1998-11-20 2000-06-13 Ikunojo Hyogo Internal combustion engine with engine intake air loaded with high voltage ion electron
US6289868B1 (en) * 2000-02-11 2001-09-18 Michael E. Jayne Plasma ignition for direct injected internal combustion engines
JP2005069223A (en) * 2003-08-04 2005-03-17 Fujiya Kobe Device for reducing fuel consumption in combustion engine
JP5374691B2 (en) * 2008-03-14 2013-12-25 イマジニアリング株式会社 Multiple discharge plasma equipment
BR112012014839A2 (en) * 2009-12-17 2018-03-27 Periso Sa method for treating combustion airflow in a combustion process
CN106939846A (en) * 2017-05-12 2017-07-11 沈阳航空航天大学 A kind of cylinder sleeve component for plasma fortified burning
CN108104945B (en) * 2017-05-16 2021-05-04 大连民族大学 Two-stroke internal combustion engine electrode assembly

Also Published As

Publication number Publication date
NL2027355A (en) 2021-09-01
CN111255600A (en) 2020-06-09
CN111255600B (en) 2021-07-30

Similar Documents

Publication Publication Date Title
EP1632654A1 (en) Exhaust gas purifier
CN108590818A (en) A kind of control method reducing cold start emission based on hybrid vehicle
WO2003042521A3 (en) High compression ratio, hydrogen enhanced gasoline engine system
CN106757121A (en) Vehicle-mounted hydrogen and oxygen generating means
CN110195668B (en) System for improving combustion and emission of diesel engine
CN103184941A (en) Natural gas engine and combustion method thereof
CN205295479U (en) On -vehicle oxyhydrogen generating device
CN111379634A (en) Lean-burn engine and automobile
Leahu et al. The exhaust gas temperature control through an adequate thermal management of the engine
NL2027355B1 (en) Control method for optimizing combustion and reducing nitrogen oxide emissions of internal combustion engine
CN109012177B (en) Nitrogen oxide control system of full-load internal combustion engine and working method thereof
CN111648843A (en) Temperature control mechanism of three-way catalyst of gasoline generating set and control method thereof
CN209576319U (en) A kind of internal combustion engine nitrogen oxides control system efficiently without secondary pollution
CN212130641U (en) Air ionization type energy-saving and emission-reducing device for internal combustion engine
EP2957737B1 (en) Engine exhaust-gas purification device
CN212296578U (en) Tail gas aftertreatment system with waste heat recovery device
CN114312741A (en) Method and system for performing engine thermal management based on P0 shallow mixing architecture
CN111779584B (en) Fuel combustion system and engine combustion control method
JP2014156786A (en) Exhaust emission control device of engine
CN112879169A (en) Method and system for controlling air intake and exhaust treatment of internal combustion engine
CN111852696B (en) Negative ion intelligent fuel-saving and emission-reducing system for automobile fuel engine and operation method thereof
CN215521013U (en) Six post-processing systems in state of intelligent control row of temperature
JP7342816B2 (en) Series hybrid vehicle exhaust treatment system
CN115405445B (en) Front-end intelligent purification device of exhaust gas recirculation system
CN211038867U (en) Diesel engine and air inlet pipe thereof