NL2027073B1 - Automatic urban three-dimensional skyline contour generation and diagnosis method based on occlusion rate - Google Patents

Automatic urban three-dimensional skyline contour generation and diagnosis method based on occlusion rate Download PDF

Info

Publication number
NL2027073B1
NL2027073B1 NL2027073A NL2027073A NL2027073B1 NL 2027073 B1 NL2027073 B1 NL 2027073B1 NL 2027073 A NL2027073 A NL 2027073A NL 2027073 A NL2027073 A NL 2027073A NL 2027073 B1 NL2027073 B1 NL 2027073B1
Authority
NL
Netherlands
Prior art keywords
urban
dimensional
skyline
contour
status
Prior art date
Application number
NL2027073A
Other languages
Dutch (nl)
Inventor
Shi Beixiang
Zheng Yi
Zhang Fangyuan
Yin Shunyao
Ye Shengzhi
Yang Junyan
Shi Yi
Original Assignee
Univ Southeast
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southeast filed Critical Univ Southeast
Application granted granted Critical
Publication of NL2027073B1 publication Critical patent/NL2027073B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/176Urban or other man-made structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

The present invention discloses an automatic urban three-dimensional skyline contour generation and diagnosis method based on an occlusion rate. A three-dimensional skyline contour design plan model is constructed by using a Supermap GIS city model platform and an augmented reality technology and an augmented reality device on a basis of a three-dimensional building form of urban status in quo and terrain elevation data and by inputting an urban design plan vector model, and a skyline contour orthophoto map of the design plan and a skyline contour orthophoto map of the urban status in quo are automatically generated. Then, after rasterization is performed on the orthophoto map, occlusion rates of the skyline contour of the status in quo and a generated skyline contour against background mountains are calculated. Drawings and virtual images of an automatically generated urban three-dimensional skyline contour plan are output by using a plotting device and a virtualimage holographic interactive device. The present invention provides an objective and efficient urban skyline diagnosis and evaluation method for planning managers and implementers through real-time three-dimensional skyline contour simulation and automatic background mountain occlusion rate diagnosis.

Description

AUTOMATIC URBAN THREE-DIMENSIONAL SKYLINE CONTOUR GENERATION AND DIAGNOSIS METHOD BASED ON OCCLUSION RATE
TECHNICAL FIELD The present invention belongs to the technical field of skyline contour research and design of urban design, and in particular, to an automatic urban three-dimensional skyline contour generation and diagnosis method based on an occlusion rate.
BACKGROUND An urban skyline contour 1s an overall or partial image formed by high-rise buildings and background mountains in a city, which directly reflects an urban planning and construction result. During qualified urban space construction, the urban skyline contour not only attracts great attention as an important urban visual aesthetic landscape, but also is increasingly valued and widely discussed by urban planners and managers as a spatial representation of urban economic and social development. Currently, research on observation and evaluation of an urban three-dimensional skyline contour becomes a key issue in high-quality urban space construction. However, more scientific exploration and more in-depth practical researches are still required for specific observation and evaluation methods. With reference to relevant literature and case studies, an existing urban skyline contour observation and evaluation method is as follows:
1. Observation and evaluation method through photographing and plotting In traditional urban planning research and designing, an urban skyline contour is usually extracted through photographic image processing or auxiliary plotting, and the skyline contour is evaluated and optimized based on a subjective aesthetic perspective. This process often requires a lot of manual measurement work, which has low research accuracy, and is mostly based on subjective perception and traditional aesthetics, resulting in a lack of objective and precise quantitative indicators in skyline diagnosis and evaluation. Specifically, research through photographing or plotting mainly relies on individual researchers who, as observers, select special photographing locations and acquire image data through a digital single lens reflex camera equipped with a long focal length lens. Then a skyline and a building elevation are drawn by using relevant image processing software, and the skyline is analyzed according to the elevation. In this method, an observation point is not fixed, a photographing angle is not specified, and a shooting parameter is not specified. A result of skyline extraction by using this method is unlikely to be objective, fair, and repeatable.
In addition, there are more related studies using photos published on media such as the Internet and magazines for evaluation. For example, scholars such as Cao Yingchun and Zhang Yukun select the most recognized and most popular skyline photos from media photos for research. A final quantitative evaluation result of the skyline varies from person to person and from photo to photo.
2. Machine recognition and segmentation method based on two-dimensional pictures With the advancement of digital technologies, increasing researchers observe and evaluate urban skyline contours based on digital image recognition and segmentation technologies such as edge detection and machine learning. For example, some foreign scholars detect, from top to bottom by using a regional growth algorithm based on brightness gradient, brightness values of pixels in each column in a panoramic photo of a city captured by a camera, compare the brightness value with a threshold value to extract pixel points of the skyline, and perform evaluation. Scholars such as Saurer train classifiers for features such as colors and textures by using a support vector machine (SVM) algorithm, to segment sky and terrain.
However, this observation and evaluation method based on two-dimensional images can neither express a relationship between complex physical objects in a three-dimensional real world, nor dynamically obtain skylines at different observation angles. In addition, the evaluation method still mainly depends on subjective aesthetic evaluation, lacking scientificity and repeatability.
3. Observation and evaluation method by using three-dimensional models In addition, more researchers begin to use a three-dimensional simulation technology to perform protective evaluation on urban skylines. A plan model is evaluated through refined three-dimensional modeling of city-level topography, landforms, buildings, mountains, and rivers, loading of massive three-dimensional model data by using a three-dimensional engine, and overlay of planning model data from a specific direction based on parameters such as an observation point, an observation direction, and an observation pitch angle, so as to perform protective evaluation on an actual skyline contour. For example, Lv Yani uses a skyline tool of an ArcGIS platform developed by ESRI to import a three-dimensional model, calculate virtual blocking points on a selected field of view and connect the points to form a line, and project the points onto a cylinder to expand the points into a two-dimensional plane to display the skyline contour, thereby performing in-depth evaluation.
Although this method can be used to relatively conveniently generate and observe urban skyline contours, the method still lacks a set of scientific, objective, and repeatable diagnosis methods in evaluation of the skyline contours. In general, the current urban skyline contour generation and evaluation methods still have the following disadvantages: First of all, current urban skyline contour analysis considers only an overall front image of a city, and does not give sufficient consideration to visual hierarchy of the skyline and observational differences between actual environmental perspectives, etc. Secondly, there is a lack of objective evaluation and diagnosis for a skyline contour after the skyline contour is generated. The analysis excessively relies on subjective perception and aesthetic evaluation of researchers, and lacks a set of scientific, objective, and repeatable diagnosis methods. Finally, planning and designing personnel and managers cannot edit and view a new skyline contour in real time after a skyline plan is generated, and there 15 a lack of interactive detection and control of an actual urban construction space. Currently, in people-oriented high-quality urban spatial planning and development, a method is urgently needed to quickly obtain a real-time skyline contour generation method and a standardized diagnosis method based on different observation points, to assist urban planners and managers in performing effect simulation and scientific evaluation on the skyline contour design plan. Therefore, in order to resolve the problems and the disadvantages of the existing technical methods to assist urban planners and managers in managing and controlling skyline contour planning, design, and construction, the present invention provides an automatic urban three-dimensional skyline contour generation and diagnosis method based on calculation of an background mountain occlusion rate, which provides an objective and efficient urban skyline diagnosis and evaluation method for relevant personnel.
SUMMARY Purpose of invention: In order to resolve the problems and the disadvantages of the existing technical methods to assist urban planners and managers in managing and controlling skyline contour planning, design construction, the present invention provides an automatic urban three-dimensional skyline contour generation and diagnosis method based on calculation of an occlusion rate, which provides an objective and efficient urban skyline diagnosis and evaluation method for planning managers and implementers. Technical solutions: The present invention provides an automatic urban three-dimensional skyline contour generation and diagnosis method based on an occlusion rate, specifically including the following steps: (1) collecting basic three-dimensional spatial shape data of urban status in quo; (2) constructing a three-dimensional shape base model of the urban status in quo, and generating a three-dimensional skyline contour orthophoto map of the urban status in quo; (3) generating a three-dimensional skyline contour design plan model, and generating a corresponding skyline orthophoto map; (4) calculating occlusion rates of a skyline contour of the status in quo and a generated skyline contour against background mountains; and (5) outputting drawings and virtual images of an automatically generated urban three- dimensional skyline contour plan and performing interaction.
Further, step 1 includes the following steps: (11) performing an on-site survey on a target range, and performing high-resolution scanning on an urban three-dimensional building shape by using a ground three-dimensional laser scanner in which a GPS coordinate recording module is built, to obtain urban three-dimensional shape vector data with latitude and longitude coordinates within the target range; and (12) measuring terrain within the target range by using a quadrotor unmanned aerial vehicle equipped with a mobile measurement system, to obtain terrain vector DEM data of the urban status in quo with latitude and longitude coordinates.
Further, step 2 includes the following steps: (21) data format regularization and coordinate unification: performing data format regularization on the urban spatial vector data obtained in step (1), to uniformly convert the data into a data set of a ".udb" format, uniformly converting coordinates of all data into a WGS84 coordinate system, and storing the regularized and converted data in a mobile hard disk with a capacity of more than 1 TB according to a category; (22) construction of the three-dimensional shape base model of the urban status in quo: hierarchically inputting, based on a vector data interface provided by SuperMap GIS, the basic urban data, obtained in step (1), after the regularization and coordinate unification to a computer according to the category, and positioning urban three-dimensional building shape data on a terrain surface in a SuperMap GIS platform, to construct the three-dimensional shape base model of the urban status in quo; and (23) selection of observation points to generate the three-dimensional skyline contour orthophoto map of the status in quo: setting up a number of observation points at a human eye height in the three-dimensional shape base model of the status in quo, and determining sight directions and viewing angles of the observation points, to generate the three-dimensional skyline contour orthophoto map of the urban status in quo. 5 Further, step 3 includes the following steps: (31) standardization of an urban design plan vector model: inputting an urban design plan vector model within a target range, converting a data format thereof to a ".udb" data set, and converting coordinates thereof to a WGS84 coordinate system; (32) construction of the three-dimensional skyline contour design plan model: importing the urban design plan vector model into a platform based on a vector data interface provided by SuperMap GIS, replacing the model on a corresponding plot in the three-dimensional shape base model of the status in quo, and storing an updated model as the three-dimensional skyline contour design plan model; and (33) generation of a skyline contour design plan orthophoto map: automatically generating the skyline contour design plan orthophoto map based on positions, the sight directions, and the viewing angles of the observation points that are set in step (23) and according to the three-dimensional skyline contour design plan model.
Further, step 4 includes the following steps: (41) rasterization of the three-dimensional skyline contour orthophoto map of the urban status in quo: recognizing the three-dimensional skyline contour orthophoto map of the status in quo in a SuperMap GIS digital platform, and performing rasterization on a range covered by a three- dimensional skyline contour and a range covered by background mountains; (42) performing rasterization on the automatically generated urban three-dimensional skyline contour orthophoto map according to the step in (41);and (43) calculation of occlusion rates of urban three-dimensional skyline contours of the urban status 1n quo and the design plan: respectively calculating an occlusion rate for the urban three- dimensional skyline contour of the status in quo and the urban three-dimensional skyline contour generated by the plan, and displaying calculation results in the Supermap GIS platform in real time.
Further, step 5 includes the following steps: (51) production of drawings and documents of the generated plan: generating a skyline contour design plan view for a final generated urban three-dimensional skyline contour according to an aerial view, a front view, left and right side views, and an oblique view and based on an actual urban observation point, and forming a ".pdf" technical document for indicators such as an urban three- dimensional skyline contour occlusion rate in the urban design plan; and (52) outputting of the drawings and the documents of the generated plan: printing the generated skyline contour design plan view and indicator text technical documents through a high-resolution laser plotter and generating corresponding drawings and documents; (53) digital display and interaction of the generated plan: importing the three-dimensional skyline contour design plan model generated in step (32) into a holographic sand table imaging device by linking the SuperMap GIS digital platform and the holographic sand table imaging device, enabling planning and designing personnel and local supervisors to edit and view the generated three-dimensional skyline contour in real time, and observing construction status of the generated skyline contour 1n an actual urban space by editing background parameters or linking a monitoring sensor to actual construction progress In real time.
Beneficial effects: Compared to the prior art, the present invention has the following beneficial effects:
1. The invention overcomes the disadvantages of traditional urban skyline contour design and evaluation of excessively relying on subjective and aesthetic judgement of professionals, and provides an objective and efficient urban skyline diagnosis and evaluation method for planning managers and implementers through real-time three-dimensional skyline contour simulation and automatic background mountain occlusion rate diagnosis.
2. Real-time simulation and hierarchy: In the present invention, real-time calculation is performed on spatial shape models of the status in quo and the urban design plan through a computer, so that real-time simulation and observation of the urban three-dimensional skyline contour under a plurality of viewing angles can be implemented, assisting urban planners and managers in real-time comparison and diagnosis of the skyline contours of the design plan and of the status in quo, greatly improving the research and management efficiency of urban spatial shapes. In addition, the present invention can perform skyline simulation based on any observation point to assist relevant personnel in simulating perception and diagnosis of urban skyline contour design effects, overcoming a limitation that traditional skyline research aims at only on a front elevation of the urban skyline contour.
3. Objectivity and scientificity of diagnosis: The technical solution of the present invention is a three-dimensional skyline contour generation and diagnosis method based on occlusion rates of buildings of status in quo and of an urban design plan against the background mountains, focusing on a core issue in the research of urban skylines: a spatial relationship between urban building spatial shapes and background mountains, providing efficient, scientific, and objective numerical diagnosis methods for urban planning researchers and managers, and overcoming a limitation that a traditional research is always based on subjective perception and aesthetic diagnosis.
4. Interactivity In the present invention, the generated image and the numerical calculation results of the urban three-dimensional skyline contour can be interactively displayed through the augmented reality device, assisting the urban planners and managers in instantly invoking and viewing generation status of the skyline contour, and the design plan is diagnosed and edited based on the comparison between the status in quo and the design plan.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 1s a flowchart of the present invention; FIG. 2 is an urban three-dimensional skyline contour orthophoto map; and FIG. 3 1s a rasterized pattern spot of an urban three-dimensional skyline contour.
DETAILED DESCRIPTION OF THE EMBODIMENTS The present invention is further described below with reference to the accompanying drawings and specific city implementation cases. It should be understood that these implementation cases are merely used for describing the present invention rather than limiting the scope of the present invention.
After reading the present invention, any equivalent modification made by a person skilled in the art shall fall within the scope defined by the appended claims of this application.
The present invention provides an automatic urban three-dimensional skyline contour generation and diagnosis method based on an occlusion rate, consisting of the following steps: First, a three- dimensional skyline contour design plan model is constructed by using a Supermap GIS city model platform and an augmented reality technology and an augmented reality device on a basis of a three- dimensional building form of urban status in quo and terrain elevation data and by inputting an urban design plan vector model, and a skyline contour orthophoto map of the design plan and a skyline contour orthophoto map of the urban status in quo are automatically generated. Then, after rasterization 1s performed on the orthophoto map, the Supermap GIS platform automatically calculates occlusion rates of the skyline contour of the status in quo and a generated skyline contour against background mountains according to a grid map. Then drawings and virtual images of an automatically generated urban three-dimensional skyline contour plan are output by using a plotting device and a virtual-image holographic interactive device. As shown in FIG. 1, the method specifically includes the following steps.
Step 1: Collect basic three-dimensional spatial shape data of urban status in quo.
1.1 Acquisition of three-dimensional building shape data of status in quo: A planner performs an on-site survey on an urban central region, and performs high-resolution scanning on a three- dimensional building shape in the central region by using a ground three-dimensional laser scanner in which a GPS coordinate recording module is built, to obtain urban three-dimensional shape vector data with latitude and longitude coordinates within the target range.
1.2 Acquisition of terrain vector data of status in quo: The planner measures and scans terrain in the central region block by block by using a quadrotor unmanned aerial vehicle equipped with a mobile measurement system, and performs data splicing, to finally obtain terrain vector DEM data of the urban status in quo with latitude and longitude coordinates.
Step 2: Construct a three-dimensional shape base model of the status in quo, and generate a three- dimensional skyline contour orthophoto map of the status in quo.
2.1 Data format regularization and coordinate unification: In a high-performance computer, data format regularization is performed on the urban spatial vector data obtained in step (1), to uniformly convert the data into a data set of a ".udb" format, coordinates of all data are uniformly converted into a WGS84 geographical coordinate system, and the regularized and converted data 1s stored in a mobile hard disk with a capacity of more than 1 TB according to a category.
2.2 Construction of the three-dimensional shape base model of the status in quo: the basic urban data, obtained in step 1, after the regularization and coordinate unification is hierarchically inputted to a high-performance computer according to the category based on a vector data interface provided by SuperMap GIS, and a base center of gravity of each building vector graphic is positioned on a terrain surface by using a "surface-based location" command in a SuperMap GIS platform, to construct the three-dimensional shape base model of the status in quo.
2.3 Selection of observation points to generate the three-dimensional skyline contour orthophoto map of the status in quo: A number of observation points are set up at a human eye height (a height of 1.7 m from the ground) in the three-dimensional shape base model of the status in quo, and sight directions and viewing angles of the observation points are determined, to automatically generate the three-dimensional skyline contour orthophoto map of the urban status in quo in the Supermap GIS platform.
Step 3: Generate a three-dimensional skyline contour design plan model, and generate a skyline contour design plan orthophoto map.
3.1 Standardization of an urban design plan vector model: An urban design plan vector model within a target range is input, a data format thereof is converted to a ".udb" data set, and coordinates thereof are converted to a WGS84 coordinate system.
3.2 Construction of the three-dimensional skyline contour design plan model: The three- dimensional building shape data of the urban design plan is imported into a platform based on a vector data interface provided by SuperMap GIS, the urban design plan is placed or replaced on a corresponding plot in the three-dimensional shape base model of the status in quo, and finally an updated model is stored as the three-dimensional skyline contour design plan model.
3.3. Generation of a skyline contour design plan orthophoto map: The skyline contour design plan orthophoto map is automatically generated based on positions, the sight directions, and the viewing angles of the observation points that are set in step 2.3 and according to the three-dimensional skyline contour design plan model, which is shown in FIG. 2.
Step 4: Calculate occlusion rates of the three-dimensional skyline contour of the status in quo and the three-dimensional skyline contour of the design plan against background mountains.
4.1 Rasterization of the three-dimensional skyline contour orthophoto map of the status in quo: The three-dimensional skyline contour orthophoto map of the status in quo is recognized in a SuperMap GIS digital platform, and rasterization is performed on a range covered by a three- dimensional skyline contour and a range covered by background mountains. A grid size is 0.1 km~0.1 km, and the image is converted into a coverage pattern spot with a unit size of 0.01 km? through rasterization, which is shown in FIG. 3.
4.2 Rasterization of the urban three-dimensional skyline contour orthophoto map: The image is converted into a coverage pattern spot with a unit size of 0.01 km}? through rasterization of the automatically generated urban three-dimensional skyline contour orthophoto map according to the stepin4.l.
4.3 Calculation of occlusion rates of urban three-dimensional skyline contours of the status in quo and the design plan: an occlusion rate 1s respectively calculated for the urban three-dimensional skyline contour of the status in quo and the urban three-dimensional skyline contour generated by the plan, and a formula is as follows: Ta Sa = Bo In the formula, Sa is the occlusion rate, Ta is a three-dimensional skyline contour pattern spot coverage area, and Btotal is a total background mountain coverage area including the three- dimensional skyline contour pattern spot coverage area. Step 5: Output drawings and virtual images of an automatically generated urban three- dimensional skyline contour plan and perform interaction.
5.1 Production of drawings and documents of the generated plan: A skyline contour design plan view is generated for a final generated urban three-dimensional skyline contour according to an aerial view, a front view, left and right side views, and an oblique view and based on an actual urban observation point, and a ". pdf" technical document is formed for indicators such as an urban three- dimensional skyline contour occlusion rate in the urban design plan.
5.2 Outputting of the drawings and the documents of the generated plan: The generated skyline contour design plan view and indicator text technical documents are printed through a high-resolution laser plotter and corresponding drawings and documents are generated.
5.3. Digital display and interaction of the generated plan: The three-dimensional skyline contour design plan model generated in step 3.2 is input into a holographic sand table imaging device by linking the SuperMap GIS digital platform and the holographic sand table imaging device, enabling planning and designing personnel and local supervisors to edit and view the generated three- dimensional skyline contour in real time, and construction status of the generated skyline contour in an actual urban space may be further observed by editing background parameters or linking a monitoring sensor to actual construction progress in real time.

Claims (6)

CONCLUSIESCONCLUSIONS 1. Een automatische productie van driedimensionale stedelijke skylinecontour en diagnosemethode op basis van een occlusiesnelheid, bestaande uit de volgende stappen: (1) het verzamelen van basisgegevens van ruimtelijke vorm van de stedelijke status 1n quo; (2) het bouwen van een basismodel in driedimensionale vorm van de stedelijke status in quo en het genereren van een driedimensionale orthofotokaart met skylinecontour van de stedelijke status in quo; (3) het genereren van een driedimensionaal ontwerpmodel van de skylinecontour en het genereren van een bijbehorende orthofotokaart van de skyline; (4) het berekenen van occlusiesnelheden van een skylinecontour van de status in quo en een gegenereerde skylinecontour tegen bergen op de achtergrond; en (5) het produceren van tekeningen en virtuele beelden van een automatisch gegenereerd driedimensionaal plan van een stedelijke skylinecontour en het uitvoeren van interactie.1. An automatic production of three-dimensional urban skyline contour and diagnosis method based on an occlusion rate, consisting of the following steps: (1) collecting basic data of spatial shape of the urban status 1n quo; (2) building a base model in three-dimensional form of the urban status in quo and generating a three-dimensional orthophoto map with skyline contour of the urban status in quo; (3) generating a three-dimensional design model of the skyline contour and generating an associated orthophoto map of the skyline; (4) calculating occlusion rates of a skyline contour of the status in quo and a generated skyline contour against background mountains; and (5) producing drawings and virtual images of an automatically generated three-dimensional plan of an urban skyline contour and performing interaction. 2. De automatische productie van een driedimensionale stedelijke skylinecontour en diagnosemethode op basis van een occlusiesnelheid volgens conclusie 1, waarbij stap 1 de volgende stappen omvat: (11) het uitvoeren van een onderzoek ter plaatse op een streefbereik en het uitvoeren van een hoge-resolutiescan op een stedelijke driedimensionale bouwvorm met behulp van een driedimensionale grondlaserscanner waarin een opnamemodule voor gps-coördinaten is ingebouwd, om vectorgegevens van een stedelijke driedimensionale vorm te verkrijgen met breedte- en lengtecoördinaten binnen het streefbereik; en (12) het meten van terrein binnen het streefbereik met behulp van een quadcopter onbemand luchtvaartuig uitgerust met een mobiel meetsysteem om vector DEM-gegevens van het terrein van de stedelijke status in quo met breedte- en lengtecoördinaten te verkrijgen.The automatic production of a three-dimensional urban skyline contour and diagnosis method based on an occlusion rate according to claim 1, wherein step 1 comprises the steps of: (11) conducting a site survey at a target range and performing a high-resolution scan on an urban three-dimensional building shape using a three-dimensional ground laser scanner incorporating a GPS coordinate recording module, to obtain vector data of an urban three-dimensional shape with latitude and longitude coordinates within the target range; and (12) measuring terrain within the target range using a quadcopter unmanned aerial vehicle equipped with a mobile measurement system to obtain vector DEM data of the terrain of the urban status in quo with latitude and longitude coordinates. 3. De automatische productie van een driedimensionale stedelijke skylinecontour en diagnosemethode op basis van een occlusiesnelheid volgens conclusie 1, waarbij stap 2 de volgende stappen omvat: (21) de regularisatie van gegevensformaat en het samenvoegen van coördinaten: het uitvoeren van regularisatie van gegevensformaat op de stedelijke ruimtelijke vectorgegevens verkregen in stap (1), om de gegevens uniform te converteren in een gegevensset van een “.udb”-formaat, waarbij coördinaten van alle gegevens uniform worden geconverteerd in een WGS84-coördinaatsysteem en de geregulariseerde en geconverteerde gegevens worden opgeslagen op een mobiele harde schijf met een geheugen van meer dan 1 TB volgens een categorie; (22) de bouw van het basismodel met driedimensionale vorm van de stedelijke status in quo: het hiërarchisch invoeren, op basis van een vectorgegevensinterface verstrekt door SuperMap GIS, van de stedelijke basisgegevens, verkregen in stap (1), na de regularisatie en het samenvoegen van coördinaten naar een computer volgens de categorie en het positioneren van gegevens betreffende de stedelijke driedimensionale bouwvorm op een terreinoppervlak op een SuperMap GIS-platform, om het basismodel met driedimensionale vorm van de stedelijke status in quo te bouwen; en (23) de selectie van waarnemingspunten om de driedimensionale orthofotokaart van de skylinecontour van de status in quo te genereren: het opzetten van een aantal waarnemingspunten op menselijke ooghoogte in het basismodel met driedimensionale vorm van de status in quo en het bepalen van zichtrichtingen en kijkhoeken van de waarnemingspunten, om de driedimensionale orthofotokaart van de skylinecontour van de stedelijke status in quo te genereren.The automatic production of a three-dimensional urban skyline contour and diagnosis method based on an occlusion rate according to claim 1, wherein step 2 comprises the steps of: (21) the regularization of data format and merging of coordinates: performing data format regularization on the urban spatial vector data obtained in step (1), to uniformly convert the data into a data set of a “.udb” format, where coordinates of all data are uniformly converted in a WGS84 coordinate system, and the regularized and converted data is stored in a mobile hard drive with a memory greater than 1 TB according to a category; (22) construction of the basic three-dimensional model of the urban status in quo: the hierarchical entry, based on a vector data interface provided by SuperMap GIS, of the basic urban data obtained in step (1), after regularization and merging from coordinates to a computer according to the category and positioning data concerning the urban three-dimensional building shape on a terrain surface on a SuperMap GIS platform, to build the basic three-dimensional shape model of the urban status in quo; and (23) the selection of plots to generate the three-dimensional orthophoto map of the skyline contour of the status in quo: setting up a number of plots at human eye level in the base model with three-dimensional shape of the status in quo and determining viewing directions and viewing angles of the observation points, to generate the three-dimensional orthophoto map of the skyline contour of the urban status in quo. 4. De automatische productie van de driedimensionale stedelijke skylinecontour en diagnosemethode op basis van een occlusiesnelheid volgens conclusie 1, waarbij stap 3 de volgende stappen omvat: (31) de standaardisatie van een vectormodel van een stedelijk ontwerpplan: het invoeren van een vectormodel van een stedelijk ontwerpplan binnen een streefbereik, het converteren van een gegevensformaat ervan naar een “ udb”-gegevensset, en het converteren van coördinaten ervan naar een WGS84-coördinaatsysteem; (32) de bouw van het driedimensionaal ontwerpmodel van de skylinecontour: het importeren van het vectormodel van een stedelijk ontwerpplan in een platform op basis van een vectorgegevensinterface verstrekt door SuperMap GIS, het vervangen van het model op een overeenkomstig perceel in het basismodel met driedimensionale vorm van de status in quo en het opslaan van een bijgewerkt model als het driedimensionaal ontwerpmodel van de skylinecontour; en (33) het genereren van een orthofotokaart van een ontwerpplan van een skylinecontour: het automatisch genereren van de orthofotokaart van een ontwerpplan van een skylinecontour op basis van posities, de zichtrichtingen en de kijkhoeken van de waarnemingspunten die zijn bepaald in stap (23) en volgens het driedimensionaal ontwerpmodel van de skylinecontour.The automatic production of the three-dimensional urban skyline contour and diagnosis method based on an occlusion rate according to claim 1, wherein step 3 comprises the steps of: (31) standardizing a vector model of an urban design plan: entering a vector model of an urban design plan within a target range, convert its data format to a “udb” data set, and convert its coordinates to a WGS84 coordinate system; (32) building the three-dimensional design model of the skyline contour: importing the vector model of an urban design plan into a platform based on a vector data interface provided by SuperMap GIS, replacing the model on a corresponding plot in the base model with three-dimensional shape of the status in quo and saving an updated model as the three-dimensional design model of the skyline contour; and (33) generating an orthophoto map of a skyline contour design plan: automatically generating the orthophoto map of a skyline contour design plan based on positions, the viewing directions and the viewing angles of the observation points determined in step (23) and according to the three-dimensional design model of the skyline contour. 5. De automatische productie van de driedimensionale stedelijke skylinecontour en diagnosemethode op basis van een occlusiesnelheid volgens conclusie 1, waarbij stap 4 de volgende stappen omvat:The automatic production of the three-dimensional urban skyline contour and diagnosis method based on an occlusion rate according to claim 1, wherein step 4 comprises the following steps: (41) de rastering van de driedimensionale orthofotokaart van de skylinecontour van de stedelijke status in quo: het herkennen van de driedimensionale orthofotokaart van de skylinecontour van de status in quo in een digitaal SuperMap GIS-platform en het uitvoeren van rastering op een bereik gedekt door een driedimensionale skylinecontour en een bereik gedekt door bergen op de achtergrond: (42) het uitvoeren van rastering op de automatisch geproduceerde driedimensionale orthofotokaart van de stedelijke skylinecontour volgens de stap in (41); en (43) het berekenen van occlusiesnelheden van driedimensionale stedelijke skylinecontouren van de status In quo en het ontwerpplan: het respectievelijk berekenen van een occlusiesnelheid voor de driedimensionale stedelijke skylinecontour van de status in quo en de driedimensionale stedelijke skylinecontour gegenereerd door het plan en het in real time weergeven van de berekeningsresultaten in het Supermap GIS-platform.(41) the rasterization of the three-dimensional orthophoto map of the skyline contour of the urban status in quo: recognizing the three-dimensional orthophoto map of the skyline contour of the status in quo in a SuperMap digital GIS platform and performing rasterization on a range covered by a three-dimensional skyline contour and a range covered by mountains in the background: (42) performing rasterization on the automatically produced three-dimensional orthophoto map of the urban skyline contour according to the step in (41); and (43) calculating occlusion rates of three-dimensional urban skyline contours of the status In quo and the design plan: respectively calculating an occlusion rate for the three-dimensional urban skyline contour of the status in quo and the three-dimensional urban skyline contour generated by the plan and the real time display of the calculation results in the Supermap GIS platform. 6. De automatische productie van de driedimensionale stedelijke skylinecontour en diagnosemethode op basis van een occlusiesnelheid volgens conclusie 1, waarbij stap 5 de volgende stappen omvat: (51) de productie van tekeningen en documenten van het gegenereerde plan: het genereren van de weergave van een ontwerpplan voor skylinecontour voor een uitemdelijk gegenereerde driedimensionale stedelijke skylinecontour volgens een luchtaanzicht, een vooraanzicht, linker en rechter zijaanzichten en een schuin zicht en op basis van een werkelijk stedelijk waarnemingspunt en het vormen van een “pdf” technisch document voor indicatoren zoals de occlusiesnelheid van een driedimensionale stedelijke skylinecontour in het stedelijk ontwerpplan; (52) het produceren van de tekeningen en de documenten van het gegenereerde plan: het afdrukken van de weergave van het ontwerpplan van de gegenereerde skylinecontour en technische documenten van de indicatortekst via een laser plotter met hoge resolutie en het genereren van de bijbehorende tekeningen en documenten; en (53) de digitale weergave en interactie van het gegenereerde plan: het importeren van het ontwerpmodel van de driedimensionale skylinecontour gegenereerd in stap (32) naar een holografisch zandtafel beeldvormingsapparaat door het verbinden van het digitale SuperMap GIS-platform met het holografisch zandtafel beeldvormingsapparaat, waardoor het plan- en ontwerppersoneel en lokale toezichthouders de gegenereerde driedimensionale skylinecontour in real time kunnen bewerken en bekijken en het observeren van de bouwstatus van de gegenereerde skylinecontour in een werkelijke stedelijke ruimte door achtergrondparameters te bewerken of een bewakingssensor te koppelen aan de werkelijke voortgang van de bouw 1n real time.The automatic production of the three-dimensional urban skyline contour and diagnosis method based on an occlusion rate according to claim 1, wherein step 5 comprises the steps of: (51) producing drawings and documents of the generated plan: generating the representation of a skyline contour design plan for a final generated three-dimensional urban skyline contour according to an aerial view, a front view, left and right side views and an oblique view and based on a real urban observation point and forming a “pdf” technical document for indicators such as the occlusion rate of a three-dimensional urban skyline contour in the urban design plan; (52) producing the drawings and documents of the generated plan: printing the design plan representation of the generated skyline contour and technical documents of the indicator text through a high-resolution laser plotter and generating the corresponding drawings and documents ; and (53) the digital representation and interaction of the generated plan: importing the design model of the three-dimensional skyline contour generated in step (32) to a holographic sand table imaging device by connecting the digital SuperMap GIS platform to the holographic sand table imaging device, allowing the planning and design personnel and local supervisors to edit and view the generated three-dimensional skyline contour in real time and observe the construction status of the generated skyline contour in an actual urban space by editing background parameters or linking a monitoring sensor to the actual progress of the build 1n real time.
NL2027073A 2020-08-31 2020-12-08 Automatic urban three-dimensional skyline contour generation and diagnosis method based on occlusion rate NL2027073B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010894947.7A CN112084916A (en) 2020-08-31 2020-08-31 Automatic generation and diagnosis method for urban three-dimensional skyline contour line based on shielding rate

Publications (1)

Publication Number Publication Date
NL2027073B1 true NL2027073B1 (en) 2022-03-04

Family

ID=73731251

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2027073A NL2027073B1 (en) 2020-08-31 2020-12-08 Automatic urban three-dimensional skyline contour generation and diagnosis method based on occlusion rate

Country Status (2)

Country Link
CN (1) CN112084916A (en)
NL (1) NL2027073B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113379914A (en) * 2021-07-02 2021-09-10 中煤航测遥感集团有限公司 Generation method and device of visual corridor analysis chart and computer equipment
CN113377892B (en) * 2021-07-07 2022-11-01 东南大学 Dynamic visual perception information acquisition method for urban space form evaluation
CN113873532B (en) * 2021-09-02 2024-04-19 中通服咨询设计研究院有限公司 Intelligent park 5G network planning method
CN117152379B (en) * 2023-09-01 2024-05-07 北京数字政通科技股份有限公司 Automatic building method and device for building appearance model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10423729B2 (en) * 2016-03-31 2019-09-24 Southeast University Method for optimal control of open space surrounding building form based on sky view evaluation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196429B (en) * 2013-03-25 2015-03-04 东南大学 Method for quickly obtaining and measuring orthophotoquad of city skyline contour line facade
CN105761310B (en) * 2016-02-03 2019-03-05 东南大学 A kind of sunykatuib analysis and image display method of sky visible range numerical map
CN109544455B (en) * 2018-11-22 2023-05-02 重庆市勘测院 Seamless fusion method for ultralong high-definition live-action long rolls
CN110033203B (en) * 2019-04-23 2023-05-05 重庆市勘测院 Astronomical line evaluation method based on urban live-action long roll and three-dimensional model projection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10423729B2 (en) * 2016-03-31 2019-09-24 Southeast University Method for optimal control of open space surrounding building form based on sky view evaluation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CANER GUNEY ET AL: "Tailoring a geomodel for analyzing an urban skyline", LANDSCAPE AND URBAN PLANNING, ELSEVIER, AMSTERDAM, NL, vol. 105, no. 1, 21 December 2011 (2011-12-21), pages 160 - 173, XP028461313, ISSN: 0169-2046, [retrieved on 20120102], DOI: 10.1016/J.LANDURBPLAN.2011.12.016 *
LIN YUEBIN ET AL: "Bird eye analysis of skyline views from an elevated recreation trail-The case of the Fu Forest Trail, Fuzhou, China", URBAN FORESTRY & URBAN GREENING, ELSEVIER, AMSTERDAM, NL, vol. 47, 18 November 2019 (2019-11-18), XP085979733, ISSN: 1618-8667, [retrieved on 20191118], DOI: 10.1016/J.UFUG.2019.126543 *
YUSOFF NURULHUDA ABDUL HAMID ET AL: "City Skyline Conservation: Sustaining the Premier Image of Kuala Lumpur", PROCEDIA ENVIRONMENTAL SCIENCES, vol. 20, 31 December 2014 (2014-12-31), pages 583 - 592, XP028660303, ISSN: 1878-0296, DOI: 10.1016/J.PROENV.2014.03.071 *

Also Published As

Publication number Publication date
CN112084916A (en) 2020-12-15

Similar Documents

Publication Publication Date Title
NL2027073B1 (en) Automatic urban three-dimensional skyline contour generation and diagnosis method based on occlusion rate
JP4717760B2 (en) Object recognition device and video object positioning device
CN109165272B (en) Geographical information visual analysis system for high-resolution remote sensing image
Hecht et al. Estimation of urban green volume based on single-pulse LiDAR data
CN106846478A (en) Edit and record charting system in water power hydraulic engineering geology three-dimensional live field
CN109685886A (en) A kind of distribution three-dimensional scenic modeling method based on mixed reality technology
CN110322564B (en) Three-dimensional model construction method suitable for VR/AR transformer substation operation environment
CN106296814A (en) Highway maintenance detection and virtual interactive interface method and system
CN109961510A (en) A kind of high cutting-slope geology quick logging method based on three-dimensional point cloud reconfiguration technique
Abdul-Rahman et al. Innovations in 3D geo information systems
Rankohi et al. Image-based modeling approaches for projects status comparison
Dawn et al. Technologies and methods for 3d reconstruction in archaeology
CN202057328U (en) Vehicle-mounted scale-free traffic accident scene quick surveying system based on binocular vision
CN116229001A (en) Urban three-dimensional digital map generation method and system based on spatial entropy
CN104680520B (en) It is a kind of scene three-dimensional information investigate method and system on the spot
KR20160120955A (en) Module for multi diensional vedio information visualization
JP4491293B2 (en) Model forming apparatus and model forming method
CN113362458B (en) Three-dimensional model interpretation method for simulating multi-view imaging, terminal and storage medium
Cowley In with the new, out with the old? Digital workflows and auto-extraction in remote sensing archaeology
Camacho et al. Semi-automatic generation of an lod1 and lod2 3d city model of Tanauan city, batangas using openstreetmap and taal open lidar data in qgis
Pavlovskis et al. Application of multi-criteria decision making for the selection of sensing tools for historical gravestones
Apollonio et al. Bologna Porticoes project: 3D reality-based models for the management of a wide-spread architectural heritage site
Cigola et al. Information and Communication Technology (ICT) for Built Cultural Heritage
JP2020153687A (en) Structure detection device, structure detection method, and structure detection processing program
Tolle et al. Framework for Development of 3D Temple Objects based on Photogrammetry Method