NL2026222A - Method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide - Google Patents

Method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide Download PDF

Info

Publication number
NL2026222A
NL2026222A NL2026222A NL2026222A NL2026222A NL 2026222 A NL2026222 A NL 2026222A NL 2026222 A NL2026222 A NL 2026222A NL 2026222 A NL2026222 A NL 2026222A NL 2026222 A NL2026222 A NL 2026222A
Authority
NL
Netherlands
Prior art keywords
carbon dioxide
reaction kettle
metal carbide
ionic metal
pressure
Prior art date
Application number
NL2026222A
Other languages
Dutch (nl)
Other versions
NL2026222B1 (en
Inventor
Xiong Yu
Fu Xitong
Zhang Liehui
Original Assignee
Univ Southwest Petroleum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southwest Petroleum filed Critical Univ Southwest Petroleum
Publication of NL2026222A publication Critical patent/NL2026222A/en
Application granted granted Critical
Publication of NL2026222B1 publication Critical patent/NL2026222B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

The present invention discloses a method for preparing ultraf1ne nanoparticle used in tight reservoir for drying agent containing ionic metal carbide, including the steps of: (1) adding absolute alcohol and ionic metal carbide into a high temperature/high pressure reaction kettle; (2) injecting carbon dioxide from an injection port of the reaction kettle, and 10 allowing the temperature and pressure of the reaction kettle to reach and/or exceed supercritical state of carbon dioxide; and (3) emitting materials dissolved in supercritical carbon dioxide through an ultrasonic atomizer, reducing pressure to condense nanoparticles, and collecting the nanoparticles on a collector plate through gravitational sedimentation. Drying agent nanoparticles made by the present invention contemplates the effect of a 15 micropore structure of a water-lock tight gas reservoir, solves a difficulty in injecting a drying agent into micropores, improves capacity of injection of a ionic metal carbide-based drying agent into a water-bearing tight gas reservoir, and provides a new method for preparing an ultrafine ionic metal carbide nanoparticle.

Description

METHOD OF PREPARING ULTRAFINE NANOPARTICAL USED IN TIGHT RESERVOIR FOR DRYING AGENT CONTAINING IONIC METAL CARBIDE
TECHNICAL FIELD The present invention relates to the technical field of ultrafine nanopartical preparation, and in particular to a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide.
BACKGROUND Tight gas reservoir resources are enormous in China, with geological reserves of approximately 22.88 * 10? m*. As an important mainstay of sustainable growth of natural gas in China, tight gas reservoir resources will be a successor for conventional oil and gas resources and one of the leading roles in securing a supply of oil and gas resources to China. However, a tight gas reservoir usually has high original water saturation and causes water-lock damage very easily, leading to low gas phase permeability and high mining costs. Experiments have found that permeability of dry tight gas reservoir core is at least 10 times that of original water-cut core. Therefore, provided that a drying agent is injected into a tight gas reservoir and chemically reacts with formation water to produce gases and heat and thus deplete the water, the water saturation of the tight gas reservoir will be minimized and the water-lock damage to the tight gas reservoir will be relieved to improve the gas seepage capacity. Currently, China Patent No. CN107459981A (DRYING AGENT FOR REDUCING TIGHT RESERVOIR WATER BLOCKING EFFECT) provides a drying agent composed of aluminum carbide (Al4Cs) and sodium acetylide (C2HNa) for drying tight reservoir. However, the tight gas reservoir has small pores and throats, main body of reservoir space thereof is a nanoscale pore-throat system, and pore size distribution ranges from 40 to 700 nm. Therefore, it is necessary to use extremely small Al4C3 and CoHNa nanoparticals to inject into tight reservoir pores, however, under present conditions, ionic metal carbide drying agent AlsCs has a micron-grade particle size, which cannot be effectively injected into nano-pores of the tight reservoir due to excessively large particle size; moreover, drying agent nanoparticals cannot be made by the prior art. Therefore, it is particularly necessary to develop a method for preparing drying agent nanoparticals.
SUMMARY
Particles of ionic metal carbides (as a main drying agent) and drying agents remain micron-sized and cannot be injected into tight reservoir micropores effectively.
To solve the defect in the prior art, the present invention provides a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide.
The method can achieve the following objectives: to obtain nano-sized ionic metal carbides and nano-sized drying agents; to solve a current problem that drying agents cannot be injected into tight reservoir micropores; to improve capacity of injection of a ionic metal carbide-based drying agent into a water-bearing tight gas reservoir; and to expand a broader application scope of ionic metal carbides.
To achieve the above purpose, the present invention provides a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide, where the method includes the following steps of: (1) Adding absolute alcohol and ionic metal carbide into a high temperature/high pressure reaction kettle; (2) After sealing the reaction kettle tightly, injecting carbon dioxide from an injection port of the reaction kettle, and closing the injection port of the reaction kettle until the temperature and pressure of the reaction kettle reach and/or exceed supercritical state of carbon dioxide; (3) Opening an outlet connecting to an ultrasonic atomizer of the reaction kettle, emitting materials dissolved in supercritical carbon dioxide through the ultrasonic atomizer, and reducing pressure to condense nanoparticals; settling and collecting nanoparticals on a collector plate arranged below through gravitational differentiation.
Further, a mass ratio of the absolute alcohol to the ionic metal carbide in step (1) is 1:30. Further, step (1) further includes a drying agent accelerator used in combination with the ionic metal carbide, and a molar ratio of the drying agent accelerator to the ionic metal carbide is (1-2):(1-2). Further, the 1onic metal carbide is aluminum carbide, calcium carbide, lithium carbide, or sodium acetylide.
Further, the drying agent accelerator in step (1) is sodium ethoxide.
Further, step (2) specifically includes the following steps: injecting carbon dioxide from the injection port of the reaction kettle, pressurizing the carbon dioxide with a booster pump, allowing the pressure of the carbon dioxide injected to exceed a critical pressure of the carbon dioxide of 7 MPa, stopping carbon dioxide injection until boosting to 15 MPa, and closing the injection port of the reaction kettle; turning on a heater of the reaction kettle while injecting carbon dioxide, and adjusting the temperature above the critical pressure of the carbon dioxide, i.e, up to 60°C; starting stirring with a balancing rotor placed in the reaction kettle to make materials mutually soluble with supercritical carbon dioxide better until the pressure and temperature meet desirable requirements. Further, step (3) specifically includes the following steps: heating to 90°C, opening the outlet of the reaction kettle, where the ultrasonic atomizer emits nanoparticals condensed from the supercritical carbon dioxide; settling the nanoparticals on a particle collector plate; closing the outlet and stopping emitting when the pressure decreases to the critical pressure of the carbon dioxide (7 MPa) in the reaction kettle. The present invention adopts the above technical solution, and includes the following beneficial effects: drying agent nanoparticals made by the present invention contemplates the effect of a micropore structure of a water-lock tight gas reservoir, solves a difficulty in injecting a drying agent into micropores, improves capacity of injection of a ionic metal carbide-based drying agent into a water-bearing tight gas reservoir, and further provides a new method for preparing an ultrafine ionic metal carbide nanopartical.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically illustrates equipment used in the method of the present invention; FIG. 2 illustrates a characterization test for final nanoparticals obtained by the present invention using scanning electron microscopy (SEM); FIG. 3 illustrates a characterization test for nanoparticals obtained by the present invention using transmission electron microscopy (TEM); FIG. 4 shows an energy dispersive spectrum (EDS) of nanoparticals obtained by the present invention; FIG. 5 illustrates a characterization test for nanoparticals obtained by the present invention using X-ray diffraction (XRD).
DETAILED DESCRIPTION
The present invention will be described in detail below with reference to the examples.
Example 1: The present invention provides a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide. For example, the ionic metal carbide is aluminum carbide, and the method includes the following steps: (1) Adding absolute alcohol and aluminum carbide into a high temperature/high pressure reaction kettle; (2) After sealing the reaction kettle tightly, injecting carbon dioxide from an injection port of the reaction kettle, and closing the injection port of the reaction kettle until the temperature and pressure of the reaction kettle reach and/or exceed supercritical state of carbon dioxide; (3) Opening an outlet connecting to an ultrasonic atomizer of the reaction kettle, emitting the aluminum carbide dissolved in supercritical carbon dioxide through the ultrasonic atomizer, and reducing pressure to condense aluminum carbide nanoparticals; settling and collecting aluminum carbide nanoparticals on a collector plate arranged below through gravitational differentiation.
Further, a mass ratio of the absolute alcohol to the ionic metal carbide in step (1) 1s 1:30.
What the example finally obtains is nano-sized aluminum carbide, which usually serves as a principal component of a drying agent used in tight reservoir, such that the component and other accelerator can be injected into the tight reservoir; because the principal component is nano-sized, it can be injected into tight reservoir micropores better and thus chemically reacts with formation water to produce gases and heat to deplete the water; in this way, the water saturation of the tight gas reservoir will be minimized and the water-lock damage to the tight gas reservoir will be relieved to improve the gas seepage capacity and gas phase permeability and reduce natural gas exploitation costs.
Example 2: The present invention provides a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide. For example, the ionic metal carbide 1s aluminum carbide, sodium ethoxide is used as a drying agent additive and a molar ratio of aluminum carbide to sodium ethoxide is 1:2. The method includes the following steps: (1) Adding absolute alcohol, aluminum carbide, and sodium ethoxide into a high
5 temperature/high pressure reaction kettle, where the aluminum carbide may be micron-sized; (2) After sealing the reaction kettle tightly, injecting carbon dioxide from an injection port of the reaction kettle, and closing the injection port of the reaction kettle until the temperature and pressure of the reaction kettle reach and/or exceed supercritical state of carbon dioxide; (3) Opening an outlet connecting to an ultrasonic atomizer of the reaction kettle, emitting materials dissolved in supercritical carbon dioxide through the ultrasonic atomizer, and reducing pressure to condense nanoparticals; settling and collecting nanoparticals on a collector plate arranged below through gravitational differentiation.
Specifically, a mass ratio of the absolute alcohol to the ionic metal carbide in step (1) is 1:30.
Specifically, step (2) includes the following steps: injecting carbon dioxide from the injection port of the reaction kettle, pressurizing the carbon dioxide with a booster pump, allowing the pressure of the carbon dioxide injected to exceed a critical pressure of the carbon dioxide of 7 MPa, stopping carbon dioxide injection until boosting to 15 MPa, and closing the injection port of the reaction kettle; turning on a heater of the reaction kettle while injecting carbon dioxide, and adjusting the temperature above the critical pressure of CO; (e.g., 60°C); starting stirring with a balancing rotor placed in the reaction kettle to make the ionic metal carbide mutually soluble with supercritical carbon dioxide better until the pressure and temperature meet desirable requirements.
Specifically, step (3) includes the following steps: opening the outlet of the reaction kettle; at the outlet, instantaneously emitting ultrafine particles condensed during depressurization after dissolving aluminum carbide in supercritical carbon dioxide through the ultrasonic atomizer connected via a high pressure resistant pipeline; instantaneously evaporating excess ethanol in a high temperature oven, allowing oven temperature to rise to 90°C, emitting particles condensed from the supercritical carbon dioxide from the ultrasonic atomizer, and settling the particles on a particle collector plate; closing the outlet and stopping emitting after the pressure in the reaction kettle declines to the critical pressure of the carbon dioxide (7 MPa).
In the present invention, a nano-sized drying agent is made from principal component aluminum carbide and accelerator using the method of the present invention; the particles collected are characterized by SEM, TEM, EDS, and XRD. FIG. 1 illustrates equipment used in the method of the present invention; FIG. 2 illustrates a characterization test for final nanoparticals obtained by the present invention using SEM; FIG. 3 illustrates a characterization test for nanoparticals obtained by the present invention using TEM; FIG. 4 shows an energy dispersive spectrum of nanoparticals obtained by the present invention; FIG. 5 illustrates a characterization test for nanoparticals obtained by the present invention using XRD. The ultrafine particles obtained are determined as a nano-sized drying agent; the material is composed of aluminum, carbon, sodium, and oxygen, and the principal component 1s Al4C3.
Example 3: The present invention provides a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide. For example, the ionic metal carbide is calcium carbide, sodium ethoxide is used as a drying agent additive and a molar ratio of calcium carbide to sodium ethoxide is 1:1. The method includes the following steps: (1) Adding absolute alcohol, calcium carbide, and sodium ethoxide into a high temperature/high pressure reaction kettle, where, the calcium carbide may be micron-sized, (2) After sealing the reaction kettle tightly, injecting carbon dioxide from an injection port of the reaction kettle, and closing the injection port of the reaction kettle until the temperature and pressure of the reaction kettle reach and/or exceed supercritical state of carbon dioxide; (3) Opening an outlet connecting to an ultrasonic atomizer of the reaction kettle, emitting materials dissolved in supercritical carbon dioxide through the ultrasonic atomizer, and reducing pressure to condense nanoparticals; settling and collecting nanoparticals on a collector plate arranged below through gravitational differentiation.
Specifically, a mass ratio of the absolute alcohol to the ionic metal carbide in step (1) is 1:30.
Specifically, step (2) includes the following steps: injecting carbon dioxide from the injection port of the reaction kettle, pressurizing the carbon dioxide with a booster pump, allowing the pressure of the carbon dioxide injected to exceed a critical pressure of the carbon dioxide of 7 MPa, stopping carbon dioxide injection until boosting to 15 MPa, and closing the injection port of the reaction kettle; turning on a heater of the reaction kettle while injecting carbon dioxide, and adjusting the temperature above the critical pressure of CO: (e.g., 60°C); starting stirring with a balancing rotor placed in the reaction kettle to make the ionic metal carbide mutually soluble with supercritical carbon dioxide better until the pressure and temperature meet desirable requirements.
Specifically, step (3) includes the following steps: opening the outlet of the reaction kettle; at the outlet, instantaneously emitting ultrafine particles condensed during depressurization after dissolving aluminum carbide in supercritical carbon dioxide from the ultrasonic atomizer connected via a high pressure resistant pipeline; instantaneously evaporating excess ethanol in a high temperature oven, allowing oven temperature to rise to 90°C, emitting particles condensed from the supercritical carbon dioxide from the ultrasonic atomizer, and settling the particles on a particle collector plate; closing the outlet and stopping emitting after the pressure in the reaction kettle declines to the critical pressure of the carbon dioxide (7 MPa).
Example 4: The present invention provides a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide. For example, the ionic metal carbide is lithium carbide, sodium ethoxide is used as a drying agent additive and a molar ratio of lithium carbide to sodium ethoxide is 2:1. The method includes the following steps: (1) Adding absolute alcohol, lithium carbide, and sodium ethoxide into a high temperature/high pressure reaction kettle, where the calcium carbide may be micron-sized, (2) After sealing the reaction kettle tightly, injecting carbon dioxide from an injection port of the reaction kettle, and closing the injection port of the reaction kettle until the temperature and pressure of the reaction kettle reach and/or exceed supercritical state of carbon dioxide; (3) Opening an outlet connecting to an ultrasonic atomizer of the reaction kettle, emitting materials dissolved in supercritical carbon dioxide through the ultrasonic atomizer, and reducing pressure to condense nanoparticals; settling and collecting nanoparticals on a collector plate arranged below through gravitational differentiation.
Specifically, a mass ratio of the absolute alcohol to the ionic metal carbide in step (1) is 1:30.
Specifically, step (2) includes the following steps: injecting carbon dioxide from the injection port of the reaction kettle, pressurizing the carbon dioxide with a booster pump, allowing the pressure of the carbon dioxide injected to exceed a critical pressure of the carbon dioxide of 7 MPa, stopping carbon dioxide injection until boosting to 15 MPa, and closing the injection port of the reaction kettle, turning on a heater of the reaction kettle while injecting carbon dioxide, and adjusting the temperature above the critical pressure of CO: (e.g., 60°C); starting stirring with a balancing rotor placed in the reaction kettle to make the ionic metal carbide mutually soluble with supercritical carbon dioxide better until the pressure and temperature meet desirable requirements.
Specifically, step (3) includes the following steps: opening the outlet of the reaction kettle; at the outlet, instantaneously emitting ultrafine particles condensed during depressurization after dissolving aluminum carbide in supercritical carbon dioxide through the ultrasonic atomizer connected via a high pressure resistant pipeline; instantaneously evaporating excess ethanol in a high temperature oven, allowing oven temperature to rise to 90°C, emitting particles condensed from the supercritical carbon dioxide from the ultrasonic atomizer, and settling the particles on a particle collector plate; closing the outlet and stopping emitting after the pressure in the reaction kettle declines to the critical pressure of the carbon dioxide (7 MPa).
Example 5: The present invention provides a method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide. For example, the ionic metal carbide is sodium acetylide, sodium ethoxide 1s used as a drying agent additive and a molar ratio of sodium acetylide to sodium ethoxide is 1:1. The method includes the following steps: (1) Adding absolute alcohol, sodium acetylide, and sodium ethoxide into a high temperature/high pressure reaction kettle, where the calcium carbide may be micron-sized,; (2) After sealing the reaction kettle tightly, injecting carbon dioxide from an injection port of the reaction kettle, and closing the injection port of the reaction kettle until the temperature and pressure of the reaction kettle reach and/or exceed supercritical state of carbon dioxide; (3) Opening an outlet connecting to an ultrasonic atomizer of the reaction kettle, emitting materials dissolved in supercritical carbon dioxide through the ultrasonic atomizer, and reducing pressure to condense nanoparticals; settling and collecting nanoparticals on a collector plate arranged below through gravitational differentiation.
Specifically, a mass ratio of the absolute alcohol to the ionic metal carbide in step (1) is 1:30.
Specifically, step (2) includes the following steps: injecting carbon dioxide from the injection port of the reaction kettle, pressurizing the carbon dioxide with a booster pump, allowing the pressure of the carbon dioxide injected to exceed a critical pressure of the carbon dioxide of 7 MPa, stopping carbon dioxide injection until boosting to 15 MPa, and closing the injection port of the reaction kettle, turning on a heater of the reaction kettle while injecting carbon dioxide, and adjusting the temperature above the critical pressure of CO: (e.g., 60°C); starting stirring with a balancing rotor placed in the reaction kettle to make the ionic metal carbide mutually soluble with supercritical carbon dioxide better until the pressure and temperature meet desirable requirements.
Specifically, step (3) includes the following steps: opening the outlet of the reaction kettle; at the outlet, instantaneously emitting ultrafine particles condensed during depressurization after dissolving aluminum carbide in supercritical carbon dioxide through the ultrasonic atomizer connected via a high pressure resistant pipeline; instantaneously evaporating excess ethanol in a high temperature oven, allowing oven temperature to rise to 90°C, emitting particles condensed from the supereritical carbon dioxide from the ultrasonic atomizer, and settling the particles on a particle collector plate; closing the outlet and stopping emitting after the pressure in the reaction kettle declines to the critical pressure of the carbon dioxide (7 MPa).
The above descriptions are merely preferred examples of the present invention, and are not intended to limit the present invention. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Any modification, equivalent substitution and improvement without departing from the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (7)

- 10 - NL2026222 Conclusies- 10 - NL2026222 Conclusions 1. Werkwijze voor het bereiden van een ultrafijn nanodeeltje dat gebruikt wordt in een dicht reservoir voor een droogmiddel dat 1onisch metaalcarbide bevat, waarbij de werkwijze de volgende stappen omvat: (1) het toevoegen van absolute alcohol en ionisch metaalcarbide in een reactieketel met hoge temperatuur en hoge druk; (2) na het strak afsluiten van de reactieketel, het injecteren van koolstofdioxide vanuit een injectiepoort van de reactieketel, en het afsluiten van de injectiepoort van de reactieketel tot de temperatuur en de druk van de reactieketel een superkritischekoolstofdioxidetoestand bereiken en/of overschrijden; (3) het openen van een uitlaat die in verbinding staat met een ultrasone verstuiver van de reactieketel, het door de ultrasone verstuiver sturen van materialen die in superkritisch koolstofdioxide opgelost zijn, en het verlagen van druk om nanodeeltjes te condenseren; het schikken en verzamelen van nanodeeltjes op een verzamelplaat die eronder gerangschikt is middels zwaartekrachtdifferentiatie.A method of preparing an ultra-fine nanoparticle to be used in a dense container for a desiccant containing ionic metal carbide, the method comprising the steps of: (1) adding absolute alcohol and ionic metal carbide in a high temperature reaction kettle and high pressure; (2) after tightly closing the reaction kettle, injecting carbon dioxide from an injection port of the reaction kettle, and closing the injection port of the reaction kettle until the temperature and pressure of the reaction kettle reach and / or exceed a supercritical carbon dioxide state; (3) opening an outlet communicating with an ultrasonic atomizer of the reaction kettle, sending materials dissolved in supercritical carbon dioxide through the ultrasonic atomizer, and lowering pressure to condense nanoparticles; arranging and collecting nanoparticles on a collection plate arranged beneath them by means of gravity differentiation. 2. Werkwijze voor het bereiden van een ultrafijn nanodeeltje dat gebruikt wordt in een dicht reservoir voor een droogmiddel dat ionisch metaalcarbide bevat volgens conclusie 1, waarbij een massaverhouding van de absolute alcohol tot het ionische metaalcarbide in stap (1) 1:30 is.A method of preparing an ultra-fine nanoparticle for use in a dense container for a desiccant containing ionic metal carbide according to claim 1, wherein a mass ratio of the absolute alcohol to the ionic metal carbide in step (1) is 1:30. 3. Werkwijze voor het bereiden van een ultrafijn nanodeeltje dat gebruikt wordt in een dicht reservoir voor een droogmiddel dat ionisch metaalcarbide bevat volgens conclusie 1, waarbij stap (1) verder een droogmiddelversneller omvat die gebruikt wordt in combinatie met het ionische metaalcarbide, en een molverhouding van de droogmiddelversneller tot het ionische metaalcarbide (1 — 2):(1—2)is.A method of preparing an ultra-fine nanoparticle to be used in a dense reservoir for a desiccant containing ionic metal carbide according to claim 1, wherein step (1) further comprises a desiccant accelerator used in combination with the ionic metal carbide, and a molar ratio from the desiccant accelerator to the ionic metal carbide (1 - 2) :( 1 - 2). 4. Werkwijze voor het bereiden van een ultrafijn nanodeeltje dat gebruikt wordt in een dicht reservoir voor een droogmiddel dat ionisch metaalcarbide bevat volgens conclusie 1, waarbij het ionische metaalcarbide aluminiumcarbide,The method of preparing an ultra-fine nanoparticle for use in a dense container for a desiccant containing ionic metal carbide according to claim 1, wherein the ionic metal carbide is aluminum carbide, -11- NL2026222 calciumcarbide, lithiumcarbide of natriumacetylide is.-11- NL2026222 is calcium carbide, lithium carbide or sodium acetylide. 5. Werkwijze voor het bereiden van een ultrafijn nanodeeltje dat gebruikt wordt in een dicht reservoir voor een droogmiddel dat ionisch metaalcarbide bevat volgens conclusie 1, waarbij de droogmiddelversneller in stap (1) natriumethoxide IS.The method of preparing an ultra-fine nanoparticle for use in a dense container for a desiccant containing ionic metal carbide according to claim 1, wherein the desiccant accelerator in step (1) is sodium ethoxide. 6. Werkwijze voor het bereiden van een ultrafijn nanodeeltje dat gebruikt wordt in een dicht reservoir voor een droogmiddel dat ionisch metaalcarbide bevat volgens conclusie 1, waarbij stap (2) specifiek de volgende stappen omvat: het injecteren van koolstofdioxide vanuit de injectiepoort van de reactieketel, het onder druk zetten van koolstofdioxide met een versterkerpomp, het toelaten dat de druk van de koolstofdioxide die geïnjecteerd wordt een kritische druk van de koolstofdioxide van 7 MPa overschrijdt, het stoppen met koolstofdioxide-injectie tot het versterken tot 15 MPa, en het afsluiten van de injectiepoort van de reactieketel; het aanzetten van een verwarmer van de reactieketel tijdens het injecteren van koolstofdioxide, en het aanpassen van de temperatuur boven de kritische druk van de koolstofdioxide, dat wil zeggen tot 60°C; het beginnen te roeren met een balancerende rotor die in de reactieketel geplaatst is om materialen wederzijds beter oplosbaar te maken met superkritisch koolstofdioxide tot de druk en temperatuur gewenste voorwaarden bereiken.The method of preparing an ultrafine nanoparticle for use in a dense reservoir for a desiccant containing ionic metal carbide according to claim 1, wherein step (2) specifically comprises the steps of: injecting carbon dioxide from the injection port of the reaction kettle, pressurizing carbon dioxide with a booster pump, allowing the pressure of the carbon dioxide being injected to exceed a carbon dioxide critical pressure of 7 MPa, stopping carbon dioxide injection until boosting to 15 MPa, and shutting off the injection port of the reaction kettle; turning on a heater of the reaction kettle during the injection of carbon dioxide, and adjusting the temperature above the critical pressure of the carbon dioxide, i.e., up to 60 ° C; starting to stir with a balancing rotor placed in the reaction kettle to make materials more mutually soluble with supercritical carbon dioxide until the pressure and temperature reach desired conditions. 7. Werkwijze voor het bereiden van een ultrafijn nanodeeltje dat gebruikt wordt in een dicht reservoir voor een droogmiddel dat ionisch metaalcarbide bevat volgens conclusie 1, waarbij stap (3) specifiek de volgende stappen omvat: het verwarmen tot 90°C, het openen van de uitlaat van de reactieketel, waarbij de ultrasone verstuiver nanodeeltjes uitzendt die uit de superkritische koolstofdioxide gecondenseerd zijn; het schikken van de nanodeeltjes op een deeltjesverzamelplaat; het afsluiten van de uitlaat en het stoppen met uitzenden wanneer de druk daalt naar de kritische druk van de koolstofdioxide (7 MPa) in de reactieketel.A method of preparing an ultra-fine nanoparticle for use in a dense container for a desiccant containing ionic metal carbide according to claim 1, wherein step (3) specifically comprises the steps of: heating to 90 ° C, opening the reaction kettle outlet, the ultrasonic atomizer emitting nanoparticles condensed from the supercritical carbon dioxide; arranging the nanoparticles on a particle collection plate; shutting off the outlet and stopping emission when the pressure drops to the critical pressure of the carbon dioxide (7 MPa) in the reaction kettle.
NL2026222A 2019-08-06 2020-08-05 Method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide NL2026222B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910721766.1A CN110396396A (en) 2019-08-06 2019-08-06 A kind of includes the drying agent nanoscale ultramicro powder production method that ionic type metal carbide is applied to compact reservoir

Publications (2)

Publication Number Publication Date
NL2026222A true NL2026222A (en) 2021-02-16
NL2026222B1 NL2026222B1 (en) 2021-09-17

Family

ID=68327566

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026222A NL2026222B1 (en) 2019-08-06 2020-08-05 Method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide

Country Status (2)

Country Link
CN (1) CN110396396A (en)
NL (1) NL2026222B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201320A (en) * 2021-04-30 2021-08-03 西南石油大学 Preparation method of high-purity modified nano drying agent for compact gas reservoir

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080266A (en) * 2020-09-25 2020-12-15 西南石油大学 Compact reservoir composite drying agent for improving salt resistance and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620351B2 (en) * 2000-05-24 2003-09-16 Auburn University Method of forming nanoparticles and microparticles of controllable size using supercritical fluids with enhanced mass transfer
US6998051B2 (en) * 2002-07-03 2006-02-14 Ferro Corporation Particles from supercritical fluid extraction of emulsion
JP2007514529A (en) * 2003-12-19 2007-06-07 エスセーエフ テクノロジーズ アクティーゼルスカブ System for preparing microparticles and other substances
CN101541300A (en) * 2006-10-06 2009-09-23 新南创新私人有限公司 Particle formation
CN101264393B (en) * 2008-04-02 2011-02-09 东北林业大学 Water-soluble nano material supercritical carbon dioxide quick expanding preparing device
CN101357310B (en) * 2008-09-02 2011-09-21 浙江大学 Device for preparing particulates using supercritical fluid assistant spray and use thereof
CN101406818B (en) * 2008-11-12 2013-04-17 厦门大学 Method for acquiring ultrafine grains using supercritical carbon dioxide saturated solution
CN101444709B (en) * 2008-12-05 2010-06-02 厦门大学 Method for obtaining solid particles from water solution by utilizing supercritical carbon dioxide
CN101519545B (en) * 2009-04-01 2010-12-08 福建农林大学 Device for preparing powder coating by supercritical CO2 antisolvent precipitation and manufacturing process thereof
CN201394445Y (en) * 2009-05-13 2010-02-03 上海理工大学 Supercritical carbon dioxide spray nozzle used for preparing nanoscale drug particles
CN101780113A (en) * 2009-12-14 2010-07-21 中国计量科学研究院 Method and device for preparing nanoparticles of effective components of traditional Chinese medicine by supercritical technology
CN107459981B (en) * 2017-03-22 2019-10-01 西南石油大学 A kind of drying agent reducing compact reservoir water-blocking effect
CN108144324A (en) * 2017-12-26 2018-06-12 上海纳米技术及应用国家工程研究中心有限公司 Multi-functional overcritical particle preparation system
CN109306062A (en) * 2018-11-06 2019-02-05 无锡戈滤科环境科技有限公司 A kind of method that supercritical methanol technology prepares ultra-fine polymer particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201320A (en) * 2021-04-30 2021-08-03 西南石油大学 Preparation method of high-purity modified nano drying agent for compact gas reservoir

Also Published As

Publication number Publication date
CN110396396A (en) 2019-11-01
NL2026222B1 (en) 2021-09-17

Similar Documents

Publication Publication Date Title
NL2026222B1 (en) Method for preparing ultrafine nanopartical used in tight reservoir for drying agent containing ionic metal carbide
Jia et al. Destabilization of Mg–H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH 2
Zhang et al. Recent advances in carbon nanospheres: synthetic routes and applications
Lu et al. Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis
Xian et al. A Unique Nanoflake‐Shape Bimetallic Ti–Nb Oxide of Superior Catalytic Effect for Hydrogen Storage of MgH2
Clarke et al. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition
CN109999883A (en) A kind of nitrogen-doped carbon loads the preparation method of monatomic catalyst
CN105418071A (en) Synthetic method of high-purity ultrafine ZrC-SiC composite powders
Meier et al. Tape casting of nanocrystalline ceria gadolinia powder
CN104558461B (en) A kind of preparation method of nucleocapsid structure resol
Milne et al. Application of octanohydroxamic acid for liquid-liquid extraction of manganese oxides and fabrication of supercapacitor electrodes
CN108980622B (en) Nano composite pour point depressant, and preparation method and application thereof
CN103861657A (en) Preparation method of nano-silver loaded porous silicon dioxide
CN106904649A (en) A kind of in-situ control method of nano-cerium oxide form and crystal face
Guo et al. The size modulation of hollow mesoporous carbon spheres synthesized by a simplified hard template route
Yu et al. A highly active cocatalyst-free semiconductor photocatalyst for visible-light-driven hydrogen evolution: synergistic effect of surface defects and spatial bandgap engineering
WO2016112603A1 (en) Apparatus for preparing compounded dispersion of hydrophobic nanoparticles and surfactant and, use thereof
CN109095471A (en) A kind of preparation method of the WC cladding rare earth oxide non-bond cemented carbide with core-shell structure
CN109052371A (en) A kind of graphene oxide dispersing Nano carbon tubes solution and preparation method thereof
CN105435754B (en) A kind of preparation method of micropore high-ratio surface magnetic composite microsphere
CN103604282B (en) A kind of Apparatus for () and method therefor manufacturing waterless nano imvite
Lloreda-Jurado et al. Effect of processing parameters on the properties of freeze-cast Ni wick with gradient porosity
Wang et al. Macroscopic rods from assembled colloidal particles of hydrothermally carbonized glucose and their use as templates for silicon carbide and tricopper silicide
Singh et al. Synthesis of platinum nanoparticles on carbon aerogel by ambient pressure drying method
CN105129765A (en) Highly-ordered mesoporous carbon spheres and preparation method thereof