NL2026029B1 - Electrocardio noise removing method based on morphological component analysis and sparse representation - Google Patents

Electrocardio noise removing method based on morphological component analysis and sparse representation Download PDF

Info

Publication number
NL2026029B1
NL2026029B1 NL2026029A NL2026029A NL2026029B1 NL 2026029 B1 NL2026029 B1 NL 2026029B1 NL 2026029 A NL2026029 A NL 2026029A NL 2026029 A NL2026029 A NL 2026029A NL 2026029 B1 NL2026029 B1 NL 2026029B1
Authority
NL
Netherlands
Prior art keywords
data
electrocardio
resonance signal
formula
signals
Prior art date
Application number
NL2026029A
Other languages
Dutch (nl)
Inventor
Wang Yinglong
Shi Hao
Shu Minglei
Liu Ruixia
Liu Hui
Chen Chao
Original Assignee
Shandong Artificial Intelligence Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Artificial Intelligence Inst filed Critical Shandong Artificial Intelligence Inst
Application granted granted Critical
Publication of NL2026029B1 publication Critical patent/NL2026029B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/023Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Power Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

An electrocardio noise removing method based on morphological component analysis and sparse representation is provided, explanations are made through an ECG signal 5 repairing technology based on different components analysis and a sparse representation principle, and this method is not based on the amplitude and frequency spectrum generated by Fourier transform. The above method decomposes the signal to have different characteristic components, wherein one component consists of a plurality of simultaneously and continuously vibrated signals, and referred to as a high 10 resonance component. Another component consists of transient impact signals that do not have specific states and continuous time, and referred to as a low resonance component. Through, the electrocardio noise removing method based on morphological component analysis and sparse representation including morphological component analysis of signals, sparse representation and group sparse threshold 15 processing, so as to effectively remove interferences of noises at the same frequency band.

Description

-1-
ELECTROCARDIO NOISE REMOVING METHOD BASED ON MORPHOLOGICAL COMPONENT ANALYSIS AND SPARSE
REPRESENTATION Technical Field The present invention belongs to the technical field of electrocardio signal processing, and particularly relates to an electrocardio noise removing method based on morphological component analysis and sparse representation.
Background The electrocardio signal is an important physiological activity signal of a human body, and a waveform of the signal is an important basis of estimating a patient's heart health condition. In the process of collecting ECG signals, due to an outside interference for an electronic environment and a potential change of a body surface, the collected initial signals will be mixed together with various forms of noises. Due to the influence of these noises, waveforms of the initial ECG signals will be blurred and even key features in the waveforms may be covered, and cannot be used. The ECG signals are nonlinear and unsteady signals, since the noise has a modulating function for amplitudes of useful frequencies of the signals, and noise interference components usually exist in the whole frequency range, the noises of the signals are often represented. Generally, a method based on frequency cannot effectively remove interferences of transient components of the noises at the same frequency band. Summary The present invention, in order to overcome the above defects in technology, provides an electrocardio noise removing method based on morphological component analysis and sparse representation of effectively removing noise inferences at the same frequency band according to differences of oscillation characteristics of the signals in conjunction with the morphological component analysis.
The technical solution adopted by the present invention for overcoming the technical problem thereof is:
-2- an electrocardio noise removing method based on morphological component analysis and sparse representation, including the following steps: a) loading electrocardio data .§' containing noises; b) performing resonant sparse decomposition on the electrocardio data to form a high resonance signal $ ‚ and a low resonance signal S, ;
c) performing different group sparse threshold processing on the high resonance signal S, and the low resonance signal S, , respectively, and separating signals x,” and x,” respectively after removing noises in the high resonance signal S, and the low resonance signal S, ; and d) overlapping the signals x,” and x," , to obtain electrocardio data in which the noises are reduced.
Further, steps of a computer loading the electrocardio data in step a) are: inputting the electrocardio data containing Gaussian white noises in a form of matrix §, the matrix S is data on line #2 of column 1, and extracting the whole data of the matrix S through Formula N=length (5), wherein N is a length of the loaded data.
Further, steps of the resonant sparse decomposition in step b) are as follows: b-1) §=5,+3,, wherein S, is a high resonance component consisting of a plurality of simultaneously and continuously vibrated signals, and 5, is a low resonance component consisting of multiple transient impact signals that do not have specific states and continuous time; b-2) separating the signals S, and §, from the electrocardio data §, constructing an over-complete dictionary P, of a high resonant signal component and an over- complete dictionary P, of a low resonant signal component by using a wavelet base function having different quality factors through a TWQT adjustable Q factor wavelet transform algorithm, and denoting the electrocardio data through Formula S=Pw, + P,w,, wherein w, is a transformation coefficient of .S, under the over- complete dictionary P,, and w, is a transformation coefficient of §,, under the over- complete dictionary B, ;
-3- - 2 Î b-3) through Formula J (w,,w,) = |S pw, — Pow, |, + 4 wi, +4 Iw, I : calculating an objective function .J(w,,w,) , wherein 4, and A, in the formula are regularization coefficients; and b-4) through Formulas S, =P, w; and S; =P, w, , calculating and obtaining the decomposed high resonance signal 5, and low resonance signal §,, wherein w, in the formula is a transformation matrix of a minimum high resonance component obtained when iterating the objective function /(W,, W, ) through a SALSA iteration algorithm, and w, is a transformation matrix of a minimum low resonance component obtained when iterating the objective function J (w,, w,) through the SALSA iteration algorithm. Further, steps of step c) are as follows: c-1) the high resonance signal §, being formed by useful electrocardio data X, in the high resonance signal and noise data Z, in the high resonance signal, the low resonance signal S, being formed by useful electrocardio data X; in the low resonance signal and noise data 2; in the low resonance signal, S, (0) =X, (I) + zi) ieN , and S, (1) = xX, (0) + z,(7) ie N | N being a length of the loaded data, and l being a data reference number; le P | c-2) through Formula X, Mg min F(x,) = s- | + A R(x) , x, 5 calculating a signal X, , wherein R(x) in the formula is a penalty function, 1/2
A R(x,)= >| Sn (f + f)| | ‚ Tef0,..N-B, and J&{0,.. K-1}, whereinj iel | jeJ is a coefficient index of the I” group, 4, is a regularization parameter, and 4,=0.1;
-4- 12 3) when K=1, R(x.) = Xo [xy (Of | = [x O+" (V = 2) + fr, (¥ =D), ief performing an iteration calculation for the function F (x,) using MM minimum optimization algorithm, and returning the data x, back until the function is converged; Ig ’ ¢-3) through Formula xX, =arg min {rs 5 35 vB | + A RX ‚ calculating a signal X 8 , wherein R(x) in the formula is a penalty function, 1/2 R(x,) = >| She | , I€{0,...,N-1}, and Je{0,... K-1}, wherein j ie] | jeJ is a coefficient index of the ! group, A, is a regularization parameter, and 4,=0.1; c-4) when K=3, u2 R(x;)= > > |x, (i + Nf | = |x, (0)] Ty EP (0)] + x, (D+ |x, (2)| +...
ial | jeJ , X(N =3)+x,(N=-2)+x,(N-1) performing an iteration calculation for the function F(x 5) using MM minimum optimization algorithm, and returning the data X 8 back until the function is converged. Further, the overlapped electrocardio data Sis calculated through Formula OS =x,"+x, in step d). Advantageous effects of the present invention are as follows: explanations are made through an ECG signal repairing technology based on different components analysis and a sparse representation principle, and this method is not based on the amplitude and frequency spectrum generated by Fourier transform. The above method decomposes the signal to have different characteristic components, wherein one component consists of a plurality of simultaneously and continuously vibrated signals, and referred to as a high resonance component. Another component consists of transient impact signals that do not have specific states and continuous time, and
-5- referred to as a low resonance component. Through, the electrocardio noise removing method based on morphological component analysis and sparse representation including morphological component analysis of signals, sparse representation and group sparse threshold processing, the traditional decomposition method of dividing signals by frequency is broken. According to differences of oscillation characteristics of signals, and in conjunction with the morphological component analysis method, the components having the same oscillation characteristic and different forms are distinguished, and different process of group sparse thresholds (OGS, Overlapping Group Shrinkage) are set respectively, so as to effectively remove interferences of noises at the same frequency band. Brief Description of the Drawings Fig. 11s a method flowchart of the present invention.
Detailed Description of the Embodiments The present invention is further explained in conjunction with Fig. 1 below. An electrocardio noise removing method based on morphological component analysis and sparse representation, includes the following steps: a) loading electrocardio data § containing noises; b) performing resonant sparse decomposition on the electrocardio data to form a high resonance signal 5, and a low resonance signal Sj ; c) performing different group sparse threshold processing on the high resonance signal S, and the low resonance signal §,,, respectively, and separating signals x,” and x,’ respectively after removing noises in the high resonance signal 5, and the low resonance signal S, ; and d) overlapping the signals x,” and x,” , to obtain electrocardio data in which the noises are reduced. Explanations are made through an ECG signal repairing technology based on different components analysis and a sparse representation principle, and this method is not based on the amplitude and frequency spectrum generated by Fourier transform. The above method decomposes the signal to have different characteristic components,
-6- wherein one component consists of a plurality of simultaneously and continuously vibrated signals, and referred to as a high resonance component. Another component consists of transient impact signals that do not have specific states and continuous time, and referred to as a low resonance component. Through, the electrocardio noise removing method based on morphological component analysis and sparse representation including morphological component analysis of signals, sparse representation and group sparse threshold processing, the traditional decomposition method of dividing signals by frequency is broken. According to differences of oscillation characteristics of signals, and in conjunction with the morphological component analysis method, the components having the same oscillation characteristic and different forms are distinguished, and different process of group sparse thresholds (OGS, Overlapping Group Shrinkage) are set respectively, so as to effectively remove interferences of noises at the same frequency band.
Preferably, steps of a computer loading the electrocardio data in step a) are: inputting the electrocardio data containing Gaussian white noises in a form of matrix S, the matrix § is data on line 7 of column 1, and extracting the whole data of the matrix § through Formula N=length (5), wherein N is a length of the loaded data. Preferably, steps of the resonant sparse decomposition in step b) are as follows: b-1) S=S,+S,, wherein S, is a high resonance component consisting of a plurality of simultaneously and continuously vibrated signals, and $, is a low resonance component consisting of multiple transient impact signals that do not have specific states and continuous time; b-2) separating the signals S, and S, from the electrocardio data §, constructing an over-complete dictionary P, of a high resonant signal component and an over- complete dictionary P, of a low resonant signal component by using a wavelet base function having different quality factors through a TWQT adjustable Q factor wavelet transform algorithm, and denoting the electrocardio data through Formula S=Pw, +P,w,, wherein w, is a transformation coefficient of §, under the over- complete dictionary P,, and w, is a transformation coefficient of §, under the over- complete dictionary P,;
-7- - 2 Î b-3) through Formula J (w,,w,) = |S pw, — Pow, |, + 4 wi, +4 Iw, I. calculating an objective function / (3, Ww, ) , wherein A; and A: in the formula are regularization coefficients, the smaller value of ./ (3, ,) indicates that the decomposed result is sparse, and the minimized value 1s related to A; and Az; and b-4) through Formulas S, =P, w, and S; =P, w, | calculating and obtaining the decomposed high resonance signal 5, and low resonance signal 5, , wherein w, In the formula is a transformation matrix of a minimum high resonance component obtained when iterating the objective function /(w,, w,) through a SALSA iteration algorithm, and w, is a transformation matrix of a minimum low resonance component obtained when iterating the objective function J (w,, w,) through the SALSA iteration algorithm.
Preferably, steps of step c) are as follows: c-1) the high resonance signal §, being formed by useful electrocardio data X; in the high resonance signal and noise data Zz, in the high resonance signal, the low resonance signal 5, being formed by useful electrocardio data Xg in the low resonance signal and noise data Z; in the low resonance signal, Ss (i) =X, (1) + z‚() ie N and SD) = x, (1) + z, (i) ie N , N being a length of the loaded data, and [ being a data reference number; He F c-2) through Formula xX, arg min F(x) = Hs | + AR) , x. 2 ) calculating a signal X, , wherein R(x) in the formula is a penalty function, 1/2 : CAR R(x,)= >| Se + | | ‚ 1€{0,....N-1}, and Je{0,...,K-1}, wherein ief | jet
-8- J 1s a coefficient index of the I group, A, is a regularization parameter, and 4,=0.1 2 1/2 c-3) when K=1, R(x,)= >| ] = |x, (0)| +, (N- 2) + |x, (N _ 1) iel performing an iteration calculation for the function FV (x,) using MM minimum optimization algorithm, and returning the data x, back until the function is converged; I | c-3) through Formula Xp Ig min F(x) 7 2h ) * Ap R(x) , xg 2 calculating a signal X 2 , wherein R(x,) in the formula is a penalty function, 1/2
IN R(x,)= >| Shee | ‚ Tef0,..N-B, and J{0,...,K-1}, wherein j iel | jel is a coefficient index of the {™ group, A, is a regularization parameter, and 24=0.1; c-4) when K=3, 172 NT: : R(x) = | ZG + Ml | =|x, (0) Fy x, (0) + lr, (1)+ x, 2) +o. iel | jel ‚ NAN =3)+x,(N —2)+x;(N-]) performing an iteration calculation for the function F(x 2) using MM minimum optimization algorithm, and returning the data X 3 back until the function is converged. Preferably, the overlapped electrocardio data § is calculated through Formula § =x +x,” in step d).

Claims (5)

-9- NL2026029 Conclusies-9- NL2026029 Conclusions 1. Elektrocardio ruisverwijderingswerkwijze op basis van morfologische componentanalyse en schaarse representatie (“sparse representation”), gekenmerkt door de volgende stappen: a) het laden van elektrocardiodata S die ruis bevat; b) het uitvoeren van resonante schaarse decompositie op de elektrocardiodata van een hogeresonantiesignaal Ss naar een lageresonantiesignaal Sp, c) het uitvoeren van verschillende groep schaarse drempelwaardeverwerking op het hogeresonantiesignaal Ss en het lageresonantiesignaal Sp respectievelijk, en het scheiden van, respectievelijk, signalen x, en x; na het verwijderen van ruis in het hogeresonantiesignaal Ssen het lageresonantiesignaal Sz, en d) het overlappen van de signalen x, en xp, om elektrocardiodata te verkrijgen waarbij de ruis verminderd is.Electrocardio noise removal method based on morphological component analysis and sparse representation, characterized by the following steps: a) loading electrocardiodata S containing noise; b) performing resonant sparse decomposition on the electrocardio data from a high resonance signal Ss to a low resonance signal Sp, c) performing various group sparse threshold processing on the high resonance signal Ss and the low resonance signal Sp, respectively, and separating signals x, and, respectively, X; after removing noise in the high resonance signal Ssen, the low resonance signal Sz, and d) overlapping the signals x, and xp, to obtain electrocardio data with reduced noise. 2. Elektrocardio ruisverwijderingswerkwijze op basis van de morfologische componentanalyse en schaarse representatie volgens conclusie 1, met het kenmerk dat de stappen van een computer die de elektrocardiodata laadt in stap a) het volgende zijn: het invoeren van de elektrocardiodata die Gaussiaanse witte ruis in een vorm van matrix S bevat, waarbij de matrix S data op lijn n van kolom 1 is, en het onttrekken van de gehele data van de matrix S door Formule N =lengte (5), waarbij N een lengte van de geladen data is.Electrocardio noise removal method based on the morphological component analysis and sparse representation according to claim 1, characterized in that the steps of a computer loading the electrocardio data in step a) are as follows: inputting the electrocardio data representing Gaussian white noise in a form of matrix S, wherein the matrix S is data on line n of column 1, and extracting the entire data from the matrix S by Formula N = length (5), where N is a length of the loaded data. 3. Elektrocardio ruisverwijderingswerkwijze op basis van de morfologische componentanalyse en schaarse representatie volgens conclusie 1, met het kenmerk dat de stappen van de resonante schaarse decompositie in stap b) het volgende zijn: b-1) § = S, + Sg, waarbij S, een hogeresonantiecomponent is dat een veelvoud aan gelijktijdig en continu vibrerende signalen omvat, en Sg en lageresonantiecomponent is dat een veelvoud aan meerdere vergankelijke impactsignalen omvat die geen specifieke toestanden hebben en continue tijd, b-2) het scheiden van de signalen S, en Sp van de elektrocardiodata S, het construeren van een overvol woordenboek P; van een hogeresonantiesignaalcomponent en een overvol woordenboek P2 van een lageresonantiesignaalcomponent door eenElectrocardio noise removal method based on the morphological component analysis and sparse representation according to claim 1, characterized in that the steps of the resonant sparse decomposition in step b) are: b-1) § = S, + Sg, where S, is a high resonance component comprising a plurality of simultaneously and continuously vibrating signals, and Sg is a low resonance component comprising a plurality of multiple transient impact signals having no specific states and continuous time, b-2) separating the signals S, and Sp from the electrocardiodata S, constructing a crowded dictionary P; of a high resonance signal component and an overcrowded dictionary P2 of a low resonance signal component by a - 10 - NL2026029 wavelet basis functie te gebruiken die verschillende kwaliteitsfactoren heeft door een TWQT-aanpasbare Q-factor wavelet transformatie-algoritme, en het aanduiden van de elektrocardiodata door Formule § = P,w; +P,w,, waarbij wi een transformatiecoéfficiént van S, onder het overvolle woordenboek Pi is, en w, een transformatiecoéfficiént van Sg onder het overvolle woordenboek P: is; b-3) het, door Formule J(w‚w2) =||S — Paw — P2w;|{2 + Aillwilk + Azllwall,, berekenen van een doelfunctie J(w;, wa), waarbij A,en A, in de formule regularisatiecoëfficiënten zijn; en b-4) het, door Formules SBP, en sB=p, w, , berekenen en verkrijgen van het gedecompositioneerd hogeresonantiesignaal S$; en lageresonantiesignaal Sp, waarbij xk w in de formule een transformatiematrix van een minimale hogeresonantiecomponent 1 is die verkregen wordt indien de doelfunctie J(w,, w,) geitereerd wordt door een +k SALSA iteratie-algoritme, en waarbij wy in de formule een transformatiematrix van een minimale lageresonantiecomponent is die verkregen wordt indien de doelfunctie J(wy,w,) geitereerd wordt door een SALSA-iteratie-algoritme.- 10 - use NL2026029 wavelet base function that has different quality factors by a TWQT-adjustable Q-factor wavelet transformation algorithm, and designate the electrocardiodata by Formula § = P, w; + P, w, where wi is a transform coefficient of S, under the overcrowded dictionary Pi, and w, is a transform coefficient of Sg under the overcrowded dictionary P:; b-3) calculating, by Formula J (w‚w2) = || S - Paw - P2w; | {2 + Aillwilk + Azllwall ,, a target function J (w ;, wa), where A, and A, are regularization coefficients in the formula; and b-4), by Formulas SBP, and sB = p, w, calculating and obtaining the decompositioned high resonance signal S $; and low resonance signal Sp, where xk w in the formula is a transformation matrix of a minimum high resonance component 1 that is obtained when the target function J (w ,, w,) is iterated by a + k SALSA iteration algorithm, and where wy in the formula is a transformation matrix of a minimum low resonance component that is obtained if the target function J (wy, w,) is iterated by a SALSA iteration algorithm. 4. Elektrocardio ruisverwijderingswerkwijze op basis van de morfologische componentanalyse en schaarse representatie volgens conclusie 1, met het kenmerk dat de stappen van stap c) het volgende zijn: c-1) het hogeresonantiesignaal S, dat gevormd wordt van nuttige elektrocardiodata x; 1n het hogeresonantiesignaal en ruisdata z, in het hogeresonantiesignaal, het lageresonantiesignaal $; dat gevormd wordt van nuttige elektrocardiodata xp in het lageresonantiesignaal en ruisdata Zg in het lageresonantiesignaal, Syiy=x,0+z,00) ieN. Sz) =x) +z, (7) IEN waarbij N een lengte van de geladen data is, en i een data referentienummer is; : fo Ue Fo... | x, =arg min 1“ (r= Sax) + ARC) c-2) het, door Formule / © : J berekenen van een signaal x,*, waarbij R(x,) in de formule een straffunctie is,Electrocardio noise removal method based on the morphological component analysis and sparse representation according to claim 1, characterized in that the steps of step c) are: c-1) the high resonance signal S, which is formed from electrocardio useful data x; 1n the high resonance signal and noise data z, in the high resonance signal, the low resonance signal $; formed from electrocardio useful data xp in the low resonance signal and noise data Zg in the low resonance signal, Syiy = x, 0 + z, 00) ieN. Sz) = x) + z, (7) IEN where N is a length of the loaded data, and i is a data reference number; : fo Ue Fo ... | x, = arg minus 1 “(r = Sax) + ARC) c-2) calculating, by Formula / ©: J, a signal x, *, where R (x,) in the formula is a penalty function, -11- NL2026029 1/2 R= Zhe) ,1€{0,..,N—1}, en J €{0,...,K — 1}, waarbij j een el | jeJ coéfficiéntindex van de i“®groep is, A4een regularisatieparameter is, en 1, = 0,1; 1/2 c-3) het, indien K = 1, R(x,)= Xe] | =x, (0) +L |x (N= 2) + |x, (NV -D), ie! uitvoeren van een iteratieberekening voor de functie F(x4) met behulp van MM- minimum-optimalisatiealgoritme, en het retourneren van de data x," terug totdat de functie geconvergeerd is: , ooo ro Xp =arg mi Fl) =3 Ss Xp) + AR) c-3) het, door Formule - u : I berekenen van een signaal Xp’, waarbij R(xg) in de formule een straffunctie is, 12 Rs) = Stee | ,1€{0,..,N—1}, en J €{0,..,K —1}, waarbij j een ief | jeJ coéfficiéntindex van de i“®groep is, Ageen regularisatieparameter is, en Ap = 0,1; c-4) het, indien K=3, 1/2 R(x;) = |Z (i+ pf | = 5500) + Ja (0) +e, (D+ x, 2) +L ief | jet » JX, (N=3)+x,(N=-2) + x,(N-1) uitvoeren van een iteratieberekening voor de functie F(xg) met behulp van MM- minimum-optimalisatiealgoritme, en het retoumeren van de data xz" terug totdat de functie geconvergeerd is.-11- NL2026029 1/2 R = Zhe), 1 € {0, .., N — 1}, and J € {0, ..., K - 1}, where j one cubit | your J coefficient index of the group, A4 is a regularization parameter, and 1 = 0.1; 1/2 c-3) it, if K = 1, R (x 1) = Xe] | = x, (0) + L | x (N = 2) + | x, (NV -D), ie! performing an iteration calculation for the function F (x4) using MM minimum optimization algorithm, and returning the data x, "back until the function is converged:, ooo ro Xp = arg mi Fl) = 3 Ss Xp) + AR) c-3) calculating, by Formula - u: I, a signal Xp ', where R (xg) in the formula is a penalty function, 12 Rs) = Stee |, 1 € {0, .., N —1}, and J {0, .., K — 1}, where j is an ief | je J coefficient index of the group, A is a regularization parameter, and Ap = 0.1; c-4) it, if K = 3, 1/2 R (x;) = | Z (i + pf | = 5500) + Yes (0) + e, (D + x, 2) + L ief | jet »JX, (N = 3) + x, (N = -2) + x, (N-1) perform an iteration calculation for the function F (xg) using MM minimum optimization algorithm, and return the data xz "back until the function converged is. 5. Elektrocardio ruisverwijderingswerkwijze op basis van de morfologische componentanalyse en schaarse representatie volgens conclusie 1, met het kenmerk dat de overlappende elektrocardio data S’ berekend wordt door Formule S = x4* + x5" in stapd).Electrocardio noise removal method based on the morphological component analysis and sparse representation according to claim 1, characterized in that the overlapping electrocardio data S "is calculated by Formula S = x4 * + x5" in step d).
NL2026029A 2020-04-29 2020-07-09 Electrocardio noise removing method based on morphological component analysis and sparse representation NL2026029B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010360012.0A CN111513679B (en) 2020-04-29 2020-04-29 Electrocardio noise removing method based on morphological component analysis and sparse representation

Publications (1)

Publication Number Publication Date
NL2026029B1 true NL2026029B1 (en) 2021-05-04

Family

ID=71903850

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026029A NL2026029B1 (en) 2020-04-29 2020-07-09 Electrocardio noise removing method based on morphological component analysis and sparse representation

Country Status (2)

Country Link
CN (1) CN111513679B (en)
NL (1) NL2026029B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850489A (en) * 1994-08-05 1996-02-20 Nissan Motor Co Ltd Sound absorbing structure
CN105700020A (en) * 2016-03-23 2016-06-22 中国石油天然气集团公司 Random noise suppression method and apparatus for seismic data
CN108805059B (en) * 2018-05-29 2020-04-21 东华大学 Sparse regularization filtering and self-adaptive sparse decomposition gearbox fault diagnosis method
CN110598593B (en) * 2019-08-29 2022-03-25 东南大学 Planetary gearbox fault diagnosis method based on resonance sparse decomposition and FastICA algorithm

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ESCODA O D ET AL: "Ventricular and Atrial Activity Estimation Through Sparse Ecg Signal Decompositions", ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2006. ICASSP 2006 PROCEEDINGS . 2006 IEEE INTERNATIONAL CONFERENCE ON TOULOUSE, FRANCE 14-19 MAY 2006, PISCATAWAY, NJ, USA,IEEE, PISCATAWAY, NJ, USA, vol. 2, 14 May 2006 (2006-05-14), pages II - 1060, XP010930959, ISBN: 978-1-4244-0469-8, DOI: 10.1109/ICASSP.2006.1660529 *
IVAN W SELESNICK ED - CHUA TAT-SENG ET AL: "Resonance-based signal decomposition: A new sparsity-enabled signal analysis method", SIGNAL PROCESSING, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, vol. 91, no. 12, 29 October 2010 (2010-10-29), pages 2793 - 2809, XP028255721, ISSN: 0165-1684, [retrieved on 20101124], DOI: 10.1016/J.SIGPRO.2010.10.018 *
PO-YU CHEN ET AL: "Overlapping Group Shrinkage/Thresholding and Denoising", 7 September 2012 (2012-09-07), XP055765500, Retrieved from the Internet <URL:https://eeweb.engineering.nyu.edu/iselesni/ogs/OGS_Sep07_2012.pdf> [retrieved on 20210115] *

Also Published As

Publication number Publication date
CN111513679A (en) 2020-08-11
CN111513679B (en) 2021-06-01

Similar Documents

Publication Publication Date Title
Chatterjee et al. Review of noise removal techniques in ECG signals
CN108714026B (en) Fine-grained electrocardiosignal classification method based on deep convolutional neural network and online decision fusion
Jain et al. Riemann Liouvelle fractional integral based empirical mode decomposition for ECG denoising
Güler et al. Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction
CN102247143B (en) Integratable fast algorithm for denoising electrocardiosignal and identifying QRS waves
Mohebbian et al. Single channel high noise level ECG deconvolution using optimized blind adaptive filtering and fixed-point convolution kernel compensation
Zhang et al. An integrated EMD adaptive threshold denoising method for reduction of noise in ECG
Kumar et al. Design of high-performance ECG detector for implantable cardiac pacemaker systems using biorthogonal wavelet transform
CN107361762A (en) ECG baseline drift bearing calibration based on variation mode decomposition
Malghan et al. Grasshopper optimization algorithm based improved variational mode decomposition technique for muscle artifact removal in ECG using dynamic time warping
NL2026029B1 (en) Electrocardio noise removing method based on morphological component analysis and sparse representation
Chaitanya et al. Electrocardiogram signal filtering using circulant singular spectrum analysis and cascaded Savitzky-Golay filter
CN106236075B (en) A kind of noise-reduction method applied to portable electrocardiograph institute thought-read electrograph
Prajapati et al. Two stage step-size scaler adaptive filter design for ECG denoising
Bhogeshwar et al. To verify and compare denoising of ECG signal using various denoising algorithms of IIR and FIR filters
Golgowski et al. Anomaly detection in ECG using wavelet transformation
Gaamouri et al. Denoising ECG signals by using extended Kalman filter to train multi-layer perceptron neural network
Shi A review of noise removal techniques in ECG signals
CN111956209A (en) Electrocardiosignal R wave identification method based on EWT and structural feature extraction
Raheja et al. Wavelet and Savitzky–Golay Filter-Based Denoising of Electrocardiogram Signal: An Improved Approach
CN110269608A (en) A kind of method, apparatus and readable storage medium storing program for executing removing signal interference
Ubeyli et al. Statistics over Lyapunov exponents for feature extraction: electroencephalographic changes detection case
Azzouz et al. The Effectiveness of Optimal Discrete Wavelet Transform Parameters Obtained Using the Genetic Algorithm for ECG Signal Denoising.
Banu et al. Hybrid Feature Extraction and Infinite Feature Selection based Diagnosis for Cardiovascular Disease Related to Smoking Habit.
Manimegalai et al. Comparison on denoising of electro cardiogram signal using deep learning techniques

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230801