NL2025565A - 5G array antenne - Google Patents

5G array antenne Download PDF

Info

Publication number
NL2025565A
NL2025565A NL2025565A NL2025565A NL2025565A NL 2025565 A NL2025565 A NL 2025565A NL 2025565 A NL2025565 A NL 2025565A NL 2025565 A NL2025565 A NL 2025565A NL 2025565 A NL2025565 A NL 2025565A
Authority
NL
Netherlands
Prior art keywords
aforementioned
phase shifter
metal
filter
array
Prior art date
Application number
NL2025565A
Other languages
Dutch (nl)
Other versions
NL2025565B1 (en
Inventor
Wu Zehai
Wu Biqun
Su Zhenhua
Zhang Shao
Original Assignee
Guangdong Broadradio Communication Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Broadradio Communication Tech Co Ltd filed Critical Guangdong Broadradio Communication Tech Co Ltd
Publication of NL2025565A publication Critical patent/NL2025565A/en
Application granted granted Critical
Publication of NL2025565B1 publication Critical patent/NL2025565B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention relates to a 5th-Generation (5G) array antenna, which includes at least one subarray; each subarray is integrated with a radiation unit array, at least one power divider and a phase shifter; the radiation unit array includes a column of multiple radiation units; an output end of the power divider is electrically connected to at least two adjacent radiation units; the phase shifter includes two transmission lines, and each transmission line includes an input end and multiple output ends; and the radiation unit array, the power divider, and a strip transmission line and a metal wall of the phase shifter in the subarray are formed into an integral structure by injection, with a surface subjected to electroplating treatment after laser etching. According to the 5G array antenna in the technical solutions, a functional component uses a new structure that is machined and formed integrally, so the installation and welding of the component are simplified, the consistency of the 5G array antenna in production is improved, the cost is reduced, and the production efficiency is improved.

Description

i 5G array antenna Technical Field The present invention relates to the technical field of communications, and in particular to a 5th-Generation (5G) array antenna. Background In a 5G mobile communication system, an antenna at a base station side uses a large-scale antenna technology to improve a system capacity. A 5G large-scale array antenna has a good Three-Dimensional (3D) beam forming capability, and may implement deep coverage in horizontal and vertical directions, thus doubling the spectral resource efficiency, and forming dynamic targeted network coverage. To achieve this objective, the 5G large-scale antenna should have more radiation units (264) and more radio-frequency transceiving channels (264) compared with a conventional array antenna.
It is found by inventors in research that, for the 5G large-scale antenna in the conventional art, as mentioned by Ding Jinkai in CN109149128A and Liu Peitao in CN108808244A, each functional component included, such as a radiation unit array, a power-division calibration network, a filter and a metal isolation panel, is machined independently and then welded and assembled. Particularly, the radiation unit includes at least two elements such as a radiator and a feed sheet, and the elements need to be welded to a Printed Circuit Board (PCB) power-division network one by one in production and assembly process, thus being very time-consuming. A 5G system has a higher frequency band than a 4G system, so with an increase of the frequency, the required precision for consistence of performance on a size of a system component of the antenna is increased, and the machining and assembly difficulties of a conventional technology for a PCB oscillator and a pressure casting oscillator are increased to result in a higher production cost. Therefore, in order to accelerate the development of a new generation of mobile communication technology, it is necessary to develop an antenna structure with a high integration level, a simple structure and easy assembly.
Summary In view of this, it is necessary to provide an array antenna for the above problem. A functional component of the array antenna uses a new structure that is machined and formed integrally, so the installation and welding of the component are simplified, the consistency of the 5G array antenna in production is improved, the cost is reduced, and the production efficiency is improved.
A 5G array antenna includes at least one subarray; each subarray is integrated with a radiation unit array, at least one power divider, a phase shifter and/or at least one filter; the radiation unit array includes a column of multiple radiation units; and an output end of the power divider is electrically connected to at least two adjacent radiation units.
The phase shifter includes an input end and multiple output ends, and the filter includes an input end and an output end; the phase shifter includes a strip transmission line, a sliding medium, a metal wall and a metal cover plate, and the filter includes a transmission line, a metal wall and a metal cover plate; and in the subarray, the radiation unit array, the power divider, the strip transmission line and the metal wall of the phase shifter, and/or the transmission line and the metal wall of the filter are molded into an integral structure by injection, with a surface subjected to electroplating treatment after laser etching.
Each radiation unit includes a dual-polarized radiation oscillator, and the output end of the power divider is electrically connected to oscillators of two to three adjacent radiation units in a same polarization direction.
The subarray further includes a substrate, and the subarray is of an integral structure.
The subarray includes the phase shifter but not the filter.
The oscillator in the radiation unit and a microstrip transmission line of the power divider share the support substrate and a metal reflection surface, and are located on the metal reflection surface, the strip transmission line and the metal wall of the phase shifter are located under the metal reflection surface, and the output end of the phase shifter is electrically connected to an input end of the power divider.
The strip transmission line and the metal wall of the phase shifter, the oscillator in the radiation unit and the power divider are of an integral structure.
The metal cover plate of the phase shifter is formed into a sealed structure with the metal wall by welding or screw fastening, and the medium may move in the sealed structure of the phase shifter.
The subarray includes the filter but not the phase shifter.
The oscillator of the radiation unit and a circuit of the power divider are located on the metal reflection surface, the metal wall and the transmission line of the filter are located under the metal reflection surface, and the output end of the filter is electrically connected to the input end of the power filter.
The metal wall and the transmission line of the filter, the oscillator and the power divider are of an integral structure.
The subarray includes the phase shifter and the filter at the same time.
The radiation unit of the subarray and the circuit of the power divider are located on the metal reflection surface, the phase shifter and the filter are located under the metal reflection surface, the output end of the phase shifter is electrically connected to the input end of the power divider, and the input end of the filter is electrically connected to the input end of the phase shifter.
Each subarray is provided with twelve radiation units, and eight subarrays are provided.
The present invention combines with integral design and plastic selective electroplating technologies in a large-scale array antenna. A part of structures such as a microstrip transmission line of a power divider, a phase shifter and/or a filter may be integrally formed with a radiation unit array, and multiple subarrays are spliced into a large array. The present invention improves the production efficiency, may also reduce the cost of the large-scale antenna, is applied to a Massive Multiple Input Multiple Output (MIMO) antenna at a frequency band of a 5G system, and provides an economical and practical solution for large-scale deployment of a 5G mobile communication system.
Brief Description of the Drawings Fig. 1 is a schematic diagram of a radiation unit in a 5G array antenna according to the present invention.
Fig. 2 is a diagram of a radiating surface of a subarray in an embodiment of the present invention. Fig. 2a is a local schematic diagram of a radiation unit and a power divider. Fig. 2b is a principle diagram of a connection line between an oscillator of a radiation unit and a power divider.
Fig. 3 is a schematic diagram of an integral structure for a radiation unit, a power divider, and a transmission line and a metal wall of a phase shifter. Fig. 4 is an overall structural diagram for a radiation unit, a power divider and a phase shifter. Fig. 5 is a schematic diagram of another integral structure for a radiation unit, a power divider, and a transmission line and a metal wall of a phase shifter. Fig. 6 is another overall structural diagram for a radiation unit, a power divider and a phase shifter. Fig. 7 is a schematic diagram of an integral structure for a radiation unit, a power divider, and a metal wall, a transmission line and a medium of a phase shifter. Fig. 8 is an overall diagram for a radiation unit, a power divider and a filter. Fig. 9 is a schematic diagram of an integral structure for a radiation unit, a power divider, a phase shifter and a filter. Fig. 10 is an overall structural schematic diagram of a radiation unit, a power divider, a phase shifter and a filter.
Detailed Description of the Embodiments In order to understand the above objectives, features and advantages of the present invention more clearly, the present invention is further described below in detail in combination with accompanying drawings and specific embodiments. It is to be noted that the described embodiments are only a part of embodiments of the present invention, instead of all the embodiments. All of the other embodiments, obtained by those of ordinary skill in the art based on the embodiments of the present invention without any inventive efforts, fall into the protection scope of the present invention. In an embodiment of the present invention, a 5G array antenna is provided, which includes at least one subarray; each subarray is integrated with a radiation unit array, at least one power divider and a phase shifter; the radiation unit array includes a column of multiple radiation units; an output end of the power divider is electrically connected to at least two adjacent radiation units; the phase shifter includes an input end and multiple output ends, and the output ends are electrically connected to an input end of the power divider; the phase shifter includes a strip transmission line, a sliding medium, a metal wall and a metal cover plate; and in the subarray, the radiation unit array, the power divider, and the strip transmission line and the metal wall of the phase shifter are formed once by injection, with a surface subjected to electroplating treatment after laser etching.
Embodiment 1 Referring to Fig. 1, the antenna array 1 in the embodiment includes 96 radiation units 201 on twelve rows and eight columns, the radiation units 201 in each subarray 5 11 are arranged linearly, and each radiation unit 201 includes two radiation oscillators that are orthogonal to each other and polarized at +45°. Eight subarrays are parallel to each other, and a first oscillator unit on each row is aligned to each other.
As shown in Fig. 2, each subarray includes four radiation unit groups 12, each radiation unit group includes three dual-polarized radiation units 201 and two 3-way power dividers 202, circuits and oscillators of the power dividers share a substrate 203 having a support action, the dual-polarized oscillators are located on the substrate, the circuits of the power dividers are located on an upper layer of the substrate, and a metal reflection surface is located on a bottom layer of the substrate.
In addition to the radiation units and the power dividers, in the embodiment of the present invention, a phase shifter assembly is also integrated with the subarray.
Further, a metal wall and a strip transmission line of the phase shifter are integrated with the metal reflection surface of the substrate for integral machining.
Portions of the phase shifter such as a sliding medium and a metal cover plate are assembled in a later period.
The medium portion may move in the subarray to implement adjustment of a lower inclination angle on a vertical plane of a radiation beam of the subarray.
The metal cover plate is fixed with the outermost metal wall to form a sealed structure.
Specifically, as shown in Fig. 3, the dual-polarized oscillator 201 is located on the substrate 203, and the metal reflection surface is located on the bottom layer of the substrate.
Three metal walls 204 perpendicular to the metal reflection surface is provided under the metal reflection surface.
A circuit of the strip transmission line 205 and a medium layer are provided between every two metal walls.
The three metal walls 204 and the two strip transmission lines are all perpendicularly connected to the metal reflection surface.
The phase shifter includes two independent power distribution phase-shift networks, each power distribution phase-shift network includes an input end and multiple output ends, and the number of the output ends is equal to the number of radiation unit groups in the subarray.
As shown in Fig. 3 and Fig. 4, the strip transmission line and the metal wall of the phase shifter, the oscillator and the power divider are of an integral structure, the oscillator is electrically connected to the output end of the power divider, and an input end of the power divider is electrically connected to an output end of the phase shifter via a probe or a via hole.
The integral structure is machined by injection and then etched with a laser.
Thereafter, with surface electroplating, the oscillator, a microstrip transmission line of the power divider, the metal reflection surface, the strip transmission line and the metal wall of the phase shifter and other metal portions are etched.
The complete subarray is as shown in Fig. 4. The movable medium 207 is located between the metal wall 204 and the transmission line 205 of the phase shifter; and after a cover plate 206 of the phase shifter is fixed with the metal wall 204, the complete sealed structure is formed.
Multiple subarrays may be spliced to form a large-scale array.
The embodiment of the present invention is applied to a Massive MIMO system with 16 radio-frequency channels.
The subarray structure integrated with the phase shifter, the oscillator and the power divider further has another form as shown in Fig. 5 and Fig. 6. One metal wall 204 is perpendicular to the metal reflection surface, and the other metal wall 204 is parallel to the reflection surface.
The circuit of the strip transmission line 205 of the phase shifter and the medium layer are located between the metal reflection surface and the parallel metal wall.
The movable sliding medium 207 is located between the metal reflection surface/metal wall and the transmission line.
The metal cover plate 206 of the phase shifter is perpendicular to the metal reflection surface and is fixed with the metal reflection surface to form a sealed structure.
Embodiment 2 The phase shifter in Embodiment 1 of the present invention may further be replaced” as a filter (it does not mean the simple replacement technically but means that the antenna structure may include the phase shifter or the filter, and may also include the phase shifter and the filter at the same time, and the embodiment only schematically describes the situation including the filter). Slightly different from the foregoing embodiment in structure, for the radiation unit group 12 that is connected by each power divider 202, the input end of the power divider is electrically connected to one filter, and specifically, may be connected via a metalized via through or a probe.
Each radiation unit group includes at least two filters that are respectively corresponding to two polarized radio-frequency channels.
A part of a structural schematic diagram may be referred to Fig. 7 and Fig. 8. Fig. 7 is a schematic diagram of an integral structure.
The radiation unit 201, the circuit of the power divider 202, the substrate 203, the metal reflection surface as well as the metal wall 209, the circuit of the transmission line 208 and the medium of the filter may all be formed integrally in a manner of overall injection molding, laser etching and electroplating. An outside and/or an inside of the metal wall of the filter may be electroplated as required. Fig. 8 is a structural diagram of a subarray. The metal cover plate 210 of the filter is connected to the metal wall 209 to form a sealed structure. The embodiment is applied to a Massive MIMO antenna having greater than or equal to 32 radio-frequency channels.
Embodiment 3 The embodiment is a combination of Embodiments 1 and 2, that is, the radiation units on each column of subarrays are electrically connected to the phase shifter via the power divider and then electrically connected to the filter. As shown in Fig. 9, the metal wall 204 and the strip transmission line 204 of the phase shifter, the metal wall 209 and the transmission line 208 of the filter, the antenna oscillator 201 and the power divider 202 are integrally formed by injection molding, laser etching and electroplating. The overall structure is as shown in Fig. 10. The sliding medium 207 and the metal cover plate 206 of the phase shifter, and the metal cover plate 210 of the filter are fixed in the later period. Therefore, the integration level of the formed subarray is further improved. The Massive MIMO antenna having 16 radio-frequency channel may further improve the consistency, improves the production efficiency and reduces the cost.
The present invention combines with integral design and plastic selective electroplating technologies in a large-scale array antenna. A power divider, a phase shifter or a filter may be integrally formed with a radiation unit array, so the present invention improves the production efficiency, may also reduce the cost of the large-scale antenna, is applied to an MIMO antenna at a frequency band of a 5G system, and provides an economical and practical solution for large-scale deployment of a 5G mobile communication system.
The above embodiments only describe several implementation manners of the present invention. The description is specific and detailed, but cannot be understood as a limit to a scope of the present invention accordingly. It should be pointed out that those of ordinary skill in the art may further make multiple changes and improvements without departing from a concept of the present invention and those also belong to the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subjected to the claims.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Een soort 5G array antenne, wordt gekenmerkt door: het bestaat uit ten minste één sub-array, elk van de sub-arrays integreert een stralingselementen-array, ten minste één vermogenssplitter, een faseverschuiver en / of ten minste één filter; De voorgenoemde stralingseenheidreeks omvat een rij van meerdere stralingseenheden; de voorgenoemde stroomverdeler is een microstriplijnstructuur en het circuit bevindt zich op de bovenste laag van een horizontaal geplaatst substraat en de onderste laag van het substraat is een metalen reflecterend oppervlak; de voorgenoemde stralingseenheidreeks is boven op het substraat bevestigd en deelt een metalen reflecterend oppervlak met de vermogenssplitser; het voorgenoemde uitgangseinde van de vermogensdeler is elektrisch verbonden met ten minste twee aangrenzende stralingseenheden; De voorgenoemde faseverschuiver omvat een ingangsterminal en een aantal uitgangsterminals, en het voorgenoemde filter omvat een ingangsterminal en een uitgangsterminal; de voorgenoemde faseverschuiver bestaat uit vier gedeelte: een strookvormige transmissielijn, een glijdend medium, een metalen wand en een metalen afdekplaat, en het voorgenoemde filter bestaat uit drie delen: een transmissielijn, een metalen wand en een metalen afdekplaat; de voorgenoemde stralingseenheid-array in de sub-array, het voorgenoemde substraat, de voorgenoemde strookvormige transmissielijn en de voorgenoemde metalen wand van de faseverschuiver en / of de voorgenoemde transmissielijn en de voorgenoemde metalen wand van het filter vormen een geïntegreerde structuur.A kind of 5G array antenna, characterized by: it consists of at least one sub-array, each of the sub-arrays integrates a radiating element array, at least one power splitter, a phase shifter and / or at least one filter; The aforementioned radiation unit array comprises a row of multiple radiation units; the aforementioned power divider is a microstrip line structure and the circuit is located on the top layer of a horizontally placed substrate and the bottom layer of the substrate is a metal reflective surface; the aforementioned radiation unit array is mounted on top of the substrate and shares a metal reflective surface with the power splitter; the aforementioned output end of the power divider is electrically connected to at least two adjacent radiating units; The aforementioned phase shifter includes an input terminal and a plurality of output terminals, and the aforementioned filter includes an input terminal and an output terminal; the aforementioned phase shifter is composed of four parts: a strip-shaped transmission line, a sliding medium, a metal wall and a metal cover plate, and the aforementioned filter is composed of three parts: a transmission line, a metal wall and a metal cover plate; the aforementioned radiation unit array in the sub-array, the aforementioned substrate, the aforementioned stripe transmission line and the aforementioned metal wall of the phase shifter and / or the aforementioned transmission line and the aforementioned metal wall of the filter form an integrated structure. 2. Een 5G array antenne volgens conclusie 1, wordt gekenmerkt door: de voorgenoemde geïntegreerde structuur kan worden gevormd door spuitgieten in één keer en gegalvaniseerd na laser graveren, en de metalen wanden van de stralingseenheid, de vermogenssplitser, de faseverschuiver en de strooktransmissielijn en / of de metalen wanden van het filter en het metalen deel van de transmissielijn kan daardoor worden gevormd.A 5G array antenna according to claim 1, characterized by: the aforementioned integrated structure can be formed by injection molding in one go and galvanized after laser engraving, and the metal walls of the radiating unit, the power splitter, the phase shifter and the stripe transmission line and / or the metal walls of the filter and the metal part of the transmission line can be formed thereby. 3. Een 5G array antenne volgens conclusie 1, wordt gekenmerkt door: elk van de stralingselementen bevat een dubbel gepolariseerd antenne element en het uitgangseinde van de vermogensverdeler is elektrisch verbonden met de antenne elementen van twee tot drie stralingselementen in dezelfde polarisatierichting.A 5G array antenna according to claim 1, characterized by: each of the radiating elements includes a dual polarized antenna element and the output end of the power divider is electrically connected to the antenna elements of two to three radiating elements in the same polarization direction. 4. Een 5G array antenne volgens conclusie 3, wordt gekenmerkt door: de voorgenoemde subarray bevat een faseverschuiver maar geen filter; De lijn tussen het voorgenoemde antenne element en de voorgenoemde stroomverdeler bevindt zich boven het voorgenoemde metalen reflectievlak, de voorgenoemde stripvormige transmissielijn, metalen wand, medium en metalen afdekking van de faseverschuiver bevinden zich onder het metalen reflectievlak, de voorgenoemde faseverschuiver omvat twee onafhankelijke striptransmissielijnen, elke striptransmissielijn heeft een inputterminal en meerdere outputterminals, en de outputterminal is elektrisch verbonden met de inputterminal van de vermogenssplitter.A 5G array antenna according to claim 3, characterized by: the aforementioned sub-array includes a phase shifter but no filter; The line between the aforementioned antenna element and the aforementioned power divider is above the aforementioned metal reflection plane, the aforementioned stripe-shaped transmission line, metal wall, medium and metal cover of the phase shifter are below the metal reflection plane, the aforementioned phase shifter includes two independent strip transmission lines, each strip transmission line has an input terminal and multiple output terminals, and the output terminal is electrically connected to the input terminal of the power splitter. 5. Een 5G array antenne volgens conclusie 4, wordt gekenmerkt door: de voorgenoemde strookvormige transmissielijn van de faseverschuiver, de metalen wand, het antenne-element en de vermogenssplitser hebben een geïntegreerde structuur en de faseverschuiver, het antenne-element en de vermogenssplitser delen samen een metalen reflectievlak.A 5G array antenna according to claim 4, characterized by: the aforesaid strip-shaped transmission line of the phase shifter, the metal wall, the antenna element and the power splitter have an integrated structure and the phase shifter, the antenna element and the power splitter share together. a metal reflection surface. 6. Een 5G array antenne volgens conclusie 5, wordt gekenmerkt door: de metalen afdekplaat van de voorgenoemde faseverschuiver vormt een gesloten structuur met de metalen wand door lassen of schroeven, en het glijdende medium kan in het midden van de gesloten structuur van de faseverschuiver bewegen.A 5G array antenna according to claim 5, characterized by: the metal cover plate of the aforementioned phase shifter forms a closed structure with the metal wall by welding or screwing, and the sliding medium can move in the center of the closed structure of the phase shifter . 7. Een 5G array antenne volgens conclusie 3, wordt gekenmerkt door: de voorgenoemde subarray bevat een filter maar geen faseverschuiver; De lijn tussen het voorgenoemde antenne element en de vermogenssplitter bevindt zich boven het metalen reflectievlak, de metalen filterwand en de transmissielijn bevinden zich onder het metalen reflectievlak en het uitgangseinde van het filter is elektrisch verbonden met het ingangsuiteinde van de vermogenssplitter.A 5G array antenna according to claim 3, characterized by: the aforementioned sub-array includes a filter but no phase shifter; The line between the aforementioned antenna element and the power splitter is above the metal reflection face, the metal filter wall and the transmission line are below the metal reflection face, and the output end of the filter is electrically connected to the input end of the power splitter. 8. Een 5G array antenne volgens conclusie 7, wordt gekenmerkt door: de voorgenoemde metalen wand van het filter, de transmissielijn, het antenne-element en de vermogenssplitter hebben een geïntegreerde structuur en het filter, het antenne-element en de vermogenssplitter delen samen een metalen reflectievlak.A 5G array antenna according to claim 7, characterized by: the aforementioned metal wall of the filter, the transmission line, the antenna element and the power splitter have an integrated structure and the filter, the antenna element and the power splitter together share a metal reflection surface. 9. Een 5G array antenne volgens conclusie 3, wordt gekenmerkt door: de voorgenoemde subarray bevat zowel een faseverschuiver als een filter; De lijnen van het voorgenoemde antenne element en de vermogenssplitter van de subarray bevinden zich boven het metalen reflectievlak, de faseverschuiver en het filter bevinden zich onder het metalen reflectievlak, het uitgangsuiteinde van de faseverschuiver is elektrisch verbonden met het ingangsuiteinde van de vermogenssplitter en de ingangsterminal is elektrisch verbonden met de ingangsterminal van de faseverschuiver; de bandvormige transmissielijn van de voorgenoemde faseverschuiver, de transmissielijn van de metalen wand en het filter, de metalen wand, de antenne oscillator en de vermogensverdeler hebben een geïntegreerde structuur en bovendien de faseverschuiver, het filter, de antenne oscillator en de vermogensverdeler samen een metalen reflectievlak delen.A 5G array antenna according to claim 3, characterized by: the aforementioned sub-array includes both a phase shifter and a filter; The lines of the aforementioned antenna element and the power splitter of the sub-array are above the metal reflection face, the phase shifter and the filter are below the metal reflection face, the output end of the phase shifter is electrically connected to the input end of the power splitter, and the input terminal is electrically connected to the input terminal of the phase shifter; the band-shaped transmission line of the aforementioned phase shifter, the transmission line of the metal wall and filter, the metal wall, the antenna oscillator and the power divider have an integrated structure, and in addition, the phase shifter, the filter, the antenna oscillator and the power divider together form a metal reflection face share. 10. Een 5G array antenne volgens conclusie 1, wordt gekenmerkt door: het aantal stralingseenheden van de voorgenoemde subarray is 12 en het aantal van de voorgenoemde subarray is 8.A 5G array antenna according to claim 1, characterized by: the number of radiation units of the aforementioned subarray is 12 and the number of the aforementioned subarray is 8.
NL2025565A 2019-09-03 2020-05-12 5G array antenne NL2025565B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910828591.4A CN110600891A (en) 2019-09-03 2019-09-03 5G array antenna

Publications (2)

Publication Number Publication Date
NL2025565A true NL2025565A (en) 2021-01-11
NL2025565B1 NL2025565B1 (en) 2021-01-14

Family

ID=68857081

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2025565A NL2025565B1 (en) 2019-09-03 2020-05-12 5G array antenne

Country Status (2)

Country Link
CN (1) CN110600891A (en)
NL (1) NL2025565B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363735A (en) * 2021-05-25 2021-09-07 武汉虹信科技发展有限责任公司 5G large-scale array electrically-controlled antenna

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063996A (en) * 2019-12-31 2020-04-24 华南理工大学 Antenna module and 5G antenna
CN111613868A (en) * 2020-05-25 2020-09-01 瑞声精密制造科技(常州)有限公司 Antenna module
WO2022120856A1 (en) * 2020-12-11 2022-06-16 华为技术有限公司 Base station antenna and base station device
CN113540759B (en) * 2021-06-21 2022-06-07 中兴通讯股份有限公司 Antenna module, radio frequency device and base station
CN114284723A (en) * 2021-12-28 2022-04-05 武汉凡谷电子技术股份有限公司 Antenna module
CN117559116A (en) * 2022-08-05 2024-02-13 华为技术有限公司 Antenna device and communication apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170149120A1 (en) * 2009-08-31 2017-05-25 Commscope Technologies Llc Modular type cellular antenna assembly
WO2017165512A1 (en) * 2016-03-24 2017-09-28 Commscope Technologies Llc Modular base station antennas
WO2017192819A1 (en) * 2016-05-06 2017-11-09 Commscope Technologies Llc Monolithic radiating elements and feedboard assemblies for base station antennas formed via laser direct structuring and other selective metallization techniques
US20170358865A1 (en) * 2014-11-11 2017-12-14 Zi-Meng Li Baffle board for base station antenna and base station antenna array structure
CN108808244A (en) 2018-06-27 2018-11-13 张建锋 A kind of communication apparatus
CN109149128A (en) 2018-09-05 2019-01-04 武汉虹信通信技术有限责任公司 A kind of 5G large scale array antenna
WO2019056905A1 (en) * 2017-09-19 2019-03-28 华为技术有限公司 Feed network of base station antenna, base station antenna and base station

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082327B (en) * 2010-11-25 2014-07-16 广东通宇通讯股份有限公司 Integrated phase shifter feeding network
AU2016434050B2 (en) * 2016-12-27 2019-10-17 Tongyu Communication Inc. Radiating integrated antenna unit and multi-array antenna of same
CN109841963B (en) * 2017-11-28 2021-06-15 华为技术有限公司 Feed system, antenna system and base station
CN109494489B (en) * 2018-12-06 2023-09-29 京信通信技术(广州)有限公司 Filtering integrated base station antenna
CN210468133U (en) * 2019-09-03 2020-05-05 广东博纬通信科技有限公司 5G array antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170149120A1 (en) * 2009-08-31 2017-05-25 Commscope Technologies Llc Modular type cellular antenna assembly
US20170358865A1 (en) * 2014-11-11 2017-12-14 Zi-Meng Li Baffle board for base station antenna and base station antenna array structure
WO2017165512A1 (en) * 2016-03-24 2017-09-28 Commscope Technologies Llc Modular base station antennas
WO2017192819A1 (en) * 2016-05-06 2017-11-09 Commscope Technologies Llc Monolithic radiating elements and feedboard assemblies for base station antennas formed via laser direct structuring and other selective metallization techniques
WO2019056905A1 (en) * 2017-09-19 2019-03-28 华为技术有限公司 Feed network of base station antenna, base station antenna and base station
CN108808244A (en) 2018-06-27 2018-11-13 张建锋 A kind of communication apparatus
CN109149128A (en) 2018-09-05 2019-01-04 武汉虹信通信技术有限责任公司 A kind of 5G large scale array antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363735A (en) * 2021-05-25 2021-09-07 武汉虹信科技发展有限责任公司 5G large-scale array electrically-controlled antenna

Also Published As

Publication number Publication date
CN110600891A (en) 2019-12-20
NL2025565B1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
NL2025565B1 (en) 5G array antenne
US8558746B2 (en) Flat panel array antenna
CN107785665B (en) Mixed structure dual-frequency dual-beam three-column phased array antenna
US20110175780A1 (en) Flat scanning antenna
US10944173B2 (en) Antenna array and arrangement comprising an antenna array and a network node
KR20010042251A (en) Antenna array with several vertically superposed primary radiator modules
CN112332111B (en) Double circular polarization expandable active subarray
JPH06196927A (en) Beam tilt antenna
EP4055714A1 (en) Electronically steerable antenna array
US2692336A (en) Aperture antenna
CN210468133U (en) 5G array antenna
CN108767447B (en) 5G low-profile Micro MIMO antenna
CN101707289A (en) Multiple-wave beam antenna
KR20220141821A (en) Variable Modular Antenna Unit
CN113851853A (en) Transmission type programmable super surface for millimeter wave beam scanning
CN109687128B (en) CTS flat panel array antenna based on SIW technology
Calà et al. Development of a Ka-band non-regular multibeam coverage antenna
CN110571533A (en) power distribution network of MIMO antenna
CN115732906A (en) Antenna element and antenna array
Vosoogh et al. High efficiency 2× 2 cavity-backed slot sub-array for 60 GHz planar array antenna based on gap technology
CN217009553U (en) Dual-beam antenna and electronic equipment
Dave et al. Development of high aperture efficiency fabry-perot cavity antenna system
CN108767498B (en) Multisystem base station antenna capable of controlling wave beam width
CN206774680U (en) A kind of array antenna graing lobe optimization device and array antenna
CN113506985B (en) Millimeter wave substrate integrated waveguide horn one-dimensional three-dimensional layout scanning phased array