NL2025143B1 - Measuring device and method for a contactless analysis of a food product in a production line - Google Patents

Measuring device and method for a contactless analysis of a food product in a production line Download PDF

Info

Publication number
NL2025143B1
NL2025143B1 NL2025143A NL2025143A NL2025143B1 NL 2025143 B1 NL2025143 B1 NL 2025143B1 NL 2025143 A NL2025143 A NL 2025143A NL 2025143 A NL2025143 A NL 2025143A NL 2025143 B1 NL2025143 B1 NL 2025143B1
Authority
NL
Netherlands
Prior art keywords
food product
jet
product
temperature
nozzle
Prior art date
Application number
NL2025143A
Other languages
Dutch (nl)
Other versions
NL2025143A (en
Inventor
Kokkoti Maria
Quirinus Fredrik Verouden Franciscus
Original Assignee
Kaak Groep B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaak Groep B V filed Critical Kaak Groep B V
Priority to NL2025143A priority Critical patent/NL2025143B1/en
Priority to PCT/NL2021/050163 priority patent/WO2021187974A1/en
Priority to EP21713161.4A priority patent/EP4121741A1/en
Publication of NL2025143A publication Critical patent/NL2025143A/en
Application granted granted Critical
Publication of NL2025143B1 publication Critical patent/NL2025143B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/10Starch-containing substances, e.g. dough
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0265Handheld, portable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/0026Investigating specific flow properties of non-Newtonian fluids
    • G01N2011/004Stress relaxation time

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Manufacturing And Processing Devices For Dough (AREA)

Abstract

The invention relates to a device and a method for a contactless analysis of a product, in particular for the contactless analysis of a dough product. The device comprises a temperature sensor configured for contactless measuring a 5 temperature of the food product, and a nozzle configured for directing a jet of pressurized fluid to a position where, in use, the surface of said food product is at least temporarily positioned. The temperature sensor is configured for measuring the temperature of the food product at the position 10 on the surface of said food product where, in use, the jet of pressurized fluid is directed to.

Description

No. P138228NL00 Measuring device and method for a contactless analysis of a food product in a production line
BACKGROUND Field of the Invention The invention relates to a measuring device which is configured for a contactless analysis of a food product in a production line, in particular for contactless medium analysis of food products, and more in particular for dough products. In addition, the invention relates to a method for a contactless analysis of a product in a production line.
Description of the Related Art US 2,147,024 describes a device for detecting the proofing condition of dough lumps, which are subjected to a proofing process in a proofing chamber. During the proofing process, the dough lumps experience an increase in volume. The device comprises an electrical switch which is provided on a framework which allows to adjust the position of the switch relative to a support surface for the dough lumps in the proofing chamber. The electrical switch is provided with a convex contact element which is adapted for engagement by dough raising there-below. When the dough has raised sufficiently to engage the contact element and deflect the electrical switch, the electrical switch actuates an alarm device signaling that the dough has raised to a desired height. A recent development of such a measuring device is described in PCT/NL2019/050601, which at the filing date of this Patent application, is not yet published. PCT/NL2019/050601 describes a device and a method for a contactless analysis of a dough product. The device comprises a distance sensor configured for measuring a distance between the device and the product, and a nozzle configured for directing a jet of pressurized fluid to a position on a surface of said product. The distance sensor is arranged for measuring the distance between the device and the position of the surface where the jet of pressurized fluid is directed to. Preferably, the distance sensor is at least partially arranged in the nozzle, preferably substantially in the center of said nozzle.
SUMMARY OF THE INVENTION An advantage of the device according to PCT/NL2019/050601 is that it allows to obtain detailed information about the visco-elastic properties of the dough. In addition, the device according to PCT/NL2019/050601 allows to measure the temperature of the surface of the dough at a location spaced apart from the position where the jet of pressurized fluid is directed to. It is an object of the present invention to provide a device and a method which allows to obtain additional information about the properties of the food product, in particular the dough product. According to a first aspect, the invention provides a device for performing an analysis of a food product, in particular a dough product, wherein said device comprising: a temperature sensor configured for contactless measuring a temperature of the food product, and a nozzle configured for directing a Jet of pressurized fluid to a position where, in use, the surface of said food product is at least temporarily positioned,
wherein the temperature sensor is configured for measuring the temperature of the food product at the position on the surface of said food product where, in use, the jet of pressurized fluid is directed to.
Accordingly, the device according to the present invention allows to direct a jet of pressurized fluid onto a position on the surface of a food product, in particular a dough product, and to measure the temperature at said position on the surface of the food product. The inventors have found that with such a device, it is possible to obtain a measure for the moisture content of the food product, in particular the moisture content at or near the position on the food product where the jet of pressurized fluid is directed to.
In case the food product, in particular the dough product, comprises an amount of moisture, this moisture will at least partially evaporate due to the blowing of the jet of pressurized fluid at the position on the surface of the food product. Due to the evaporation, the temperature at the position on the surface of the food product will drop, which decrease in temperature can be measured by the temperature sensor. By measuring this decrease in temperature due to the blowing of the jet of pressurized fluid at the position on the surface of the food product, a measure for the amount of moisture at said position can be established.
Accordingly, the device of the present invention allows to obtain additional information about the properties of the food product, in particular about the moisture content of the food product, at least at the position on the surface of the food product where the jet of pressurized fluid is directed to.
In an embodiment, the temperature sensor is configured for measuring the temperature of the food product before and/or after the jet of pressurized fluid impinges on the food product. In particular, by measuring the temperature at the position on the food product where the jet of pressurized fluid is directed to before and after the jet of pressurized fluid impinges on the food product, a temperature drop AT can be established, wherein the amount that the temperature drops provides a measure for the moisture content of food product at the position on the food product where the jet of pressurized fluid is directed to.
In an embodiment, the temperature sensor is configured for measuring the temperature or changes in the temperature of the food product during the time that the jet of pressurized fluid impinges on the food product. By monitoring the temperature of changes in the temperature during the time that the jet of pressurized fluid impinges on the food product, additional information can be obtained. In particular, it can be established whether or not all the non-bound moisture at the position on the food product where the Jet of pressurized fluid is directed to has been evaporated.
In an embodiment, the temperature sensor comprises a pyrometer. A Pyrometer or infrared thermometer is a type of remote-sensing thermometer for measuring the temperature of a surface, by detecting their infrared radiation flux.
In an embodiment, the temperature sensor is a first temperature sensor, and wherein the device comprises a second temperature sensor which is configured for measuring a temperature of the pressurized fluid. The rate of evaporation of moisture from the food product may also be dependent on the temperature of the pressurized fluid. By measuring the temperature of the pressurized fluid, the influence of the temperature of the pressurized fluid on the measurements results of the drop in temperature due to the blowing of the jet of pressurized fluid on the surface of the food product can at least partially be removed.
In an embodiment, device further comprises a control device which is configured to provide a temperature difference between a first temperature of the food product before the jet of pressurized fluid impinges on the food product and a second temperature of the food product during or after the jet of pressurized fluid impinges on the food product. This temperature difference provides a measure for the moisture content of food product at the position on the food product where the Jet of pressurized fluid is directed to.
In an embodiment, the device comprises a supply 5 tube for supplying said fluid to the nozzle, wherein said supply tube comprises a first branch for providing at least part of said fluid in the supply tube to the temperature sensor.
In an alternative embodiment, the device comprises a first supply tube for supplying said fluid to the nozzle, and a second supply tube for supplying a cleaning fluid to the temperature sensor.
The latter two embodiments are in particular advantageous in a dusty environment, because dust from said environment may accumulate on the sensing part of the temperature sensor, for example on the optics of the pyrometer. By providing at least part of the fluid or a cleaning fluid to the temperature sensor, the part of the fluid or cleaning fluid can be used for blowing dust away from the sensing part of the temperature sensor, and to clean the sensing part of the sensor.
In an embodiment, the nozzle comprises one or more jet vectoring members, preferably wherein the one or more jet vectoring members are arranged inside said nozzle. In an embodiment, the one or more jet vectoring members preferably comprises a series a separation walls which extend in a direction substantially parallel to a central axis of the jet or wherein the one or more jet vectoring members comprises a series of substantially parallel tubes which extend in a direction substantially parallel to a central axis of the jet. The vectoring members are arranged to provide a substantially parallel jet of pressurized air, at least in or near the measuring range. Such a substantially parallel jet of pressurized air, applies the same magnitude of force to the surface of the product, substantially independent of the distance between the device and the surface of the product, at least in said measuring range.
In an embodiment, said device further comprises: a distance sensor configured for contactless measuring a distance between the device and a surface of the food product,
wherein the jet of pressurized fluid is configured for providing a deformation of the surface of said food product,
wherein the distance sensor is arranged for measuring the distance between the device and the position on the surface of the food product where the jet of pressurized fluid is and/or has been directed to for monitoring a development and/or a decrease or removal of the deformation of the surface of said food product.
Accordingly, this embodiment combines the device according to the present invention with the device as described in PCT/NL2019/050601. Accordingly, the content of PCT/NL2019/050601 is incorporated herein by reference.
The device according to this embodiment allows to apply a force to the position on the surface of a product by directing a jet of pressurized fluid to said position on the surface.
The device according to this embodiment comprises a distance sensor for measuring the distance between the device and the position of the surface, in particular at the position of the surface where the jet of pressurized fluid is directed to.
Any deformation of the surface at said position where the jet of pressurized fluid is directed to can be measured by the distance sensor.
In addition or alternatively, the decrease or removal of the deformation of the surface at said position where the Jet of pressurized fluid had been directed to can be measured by the distance sensor.
Such a sensor is particularly advantageous for analyzing deformable products, such as dough products.
A dough is a visco-elastic material, which can be characterized by material parameters such as, Inter alia, a viscosity and elasticity.
This viscosity and elasticity is different for different types of dough and changes also during the production process due to the various treatments of the dough before the dough product is finally backed in an oven. In particular, the structure of the dough may change during the mixing, kneading and proofing of the dough.
Because of the viscosity and elasticity of dough, the surface of the dough will develop a local deformation when a force is applied to said surface of the dough, and this deformation will at least partially disappear when the force is removed from said surface of the dough. This development and/or removal of the deformation can be monitored by means of the distance sensor. In particular, from said development and/or removal of the deformation of the surface by the jet or pressurized fluid, a measure of material properties such as viscosity and elasticity, can be determined, for example by analyzing the data with a mathematical deformation model.
Accordingly, the device according to this embodiment allows to obtain both visco-elastic data and a measure for the moisture content of the food product, in particular a dough product.
In an embodiment, the distance sensor is configured for measuring the distance between the device and substantially a center of the position of the surface where the jet of pressurized fluid is directed to. This allows to measure the deformation of the surface of the product substantially in the center of the position where the jet of pressurized fluid applies a force to the surface of the product. In particular, when analyzing dough products, the deformation of the surface of said dough product is substantially only at the position of the surface where the jet of pressurized fluid impinges on the dough product.
In an embodiment, the distance sensor is at least partially arranged in the nozzle, preferably substantially in the center of said nozzle. In use, the distance sensor is at least partially arranged in the center of the Jet of pressurized fluid coming out of the nozzle. By arranging the distance sensor at least partially in the nozzle, the distance sensor can measure the distance between the device and the position where the jet of pressurized fluid impinges on the surface of the product, substantially independent from the distance between the product and the device. In an embodiment, the distance sensor comprises an illuminating beam source for projecting a light beam at least to the position on the surface of the product, and a light collecting unit for receiving light reflected from said surface of the product, wherein the light collecting unit is configured for providing a measure of the distance between the light collecting unit and the position on the surface of the product where the light beam impinges on said surface, preferably, wherein the light collecting unit comprises one or more lenses for projecting and/or imaging the light reflected from said surface of the product on a light sensor, preferably wherein the light sensor comprises a CCD sensor array, preferably wherein the illuminating beam source is configured for projecting the light beam along a central axis of the jet of pressurized fluid from the nozzle, preferably wherein the illuminating beam source comprises a light delivering member which is arranged in the nozzle. Accordingly, the device according to this embodiment comprises an optical distance sensor.
In an embodiment, the distance sensor comprises an ultrasonic sensor comprising at least a transmitter and a receiver, or a transceiver, preferably wherein at least the transmitter or the transceiver is at least partially arranged in the nozzle, preferably substantially in the center of said nozzle.
In an embodiment, the fluid comprises a gas, preferably wherein the fluid comprises air or nitrogen gas. In particular, when analyzing food products, such as dough products, a device for contactless analysis is advantageous, in particular to substantially prevent contamination of and/or damage to the products. In addition, the device is spaced apart from the product and is not in contact with the product, and therefor also contamination of the device is at least substantially prevented. When using the device of the present invention, only the jet of pressurized fluid comes in contact with the product. Accordingly, it is preferred to use clean pressurized fluid and/or the filter the pressurized fluid before it is directed to the product.
According to a second aspect, the present invention provides an assembly for processing of products, in particular for processing of food products, wherein the assembly comprising: a processing and/or conveying apparatus for said products, and a device for performing an analysis of a food product as described above, wherein the device is arranged for directing the jet of pressurized fluid to a position on a surface of one of said food products in the assembly, and for measuring the temperature at the position on the surface of said one of said food products.
According to a third aspect, the present invention provides a method for a contactless analysis of a food product, in particular a dough product, using a device for performing an analysis of a food product as described above, wherein said method comprising the steps of: contactless measuring a temperature at a position on the surface of the food product using the temperature sensor, directing a Jet of pressurized fluid to the position on the surface of the food product, wherein the jet of pressurized fluid is configured to at least assist in evaporation of moisture at said position on the surface of the food product, and wherein the temperature sensor measures a change in the temperature at the position on the surface of the food product.
In an embodiment, wherein said device further comprises a distance sensor configured for contactless measuring a distance between the device and a surface of the food product, wherein the jet of pressurized fluid is configured for providing a deformation of the surface of said food product, wherein the distance sensor is arranged for measuring the distance between the device and the position on the surface of the food product where the jet of pressurized fluid is and/or has been directed to for monitoring a development and/or a decrease or removal of the deformation of the surface of said food product, said method comprising the steps of: contactless measuring a distance between the device and a surface of the food product using the distance sensor, directing the jet of pressurized fluid to apply a force to the position on the surface of the food product, wherein the jet of pressurized fluid is configured to provide a deformation of the surface of said food product, and wherein the distance sensor measures the distance between the device and the surface of the food product at the position of the deformation of the surface of the food product due to the applied force and/or due to the removal of said applied force. The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applications.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be elucidated on the basis of an exemplary embodiment shown in the attached drawings, in which: Figure 1 shows a schematic side view of a first example of a device according to the present invention,
Figure 2 shows a schematic presentation of examples of measurements of the temperature at the position of the surface where the jet of pressurized fluid is directed to as a function of time, Figure 3 shows a schematic side view of a second example of a device according to the present invention, Figure 4 shows a schematic cross-section of the device of figure 3, and Figure 5 shows a schematic presentation of examples of measurements of the distance between the device and the position of the surface where the jet of pressurized fluid is directed to as a function of time.
DETAILED DESCRIPTION OF THE INVENTION Figure 1 shows a schematic side view of a first example of a device 1 for a contactless analysis of a food product 2, in particular a food product such as a lump of dough, according to the present invention. Said device 1 comprises a frame 23 which comprises a temperature sensor B, in particular an infrared temperature sensor, configured for measuring the temperature at a position 9 on the surface 7 of the food product 2Z a distance d between the device 1 and the food product 2. Furthermore, the frame 23 of the device 1 comprises a nozzle 4 configured for directing a jet 5 of pressurized fluid to a position 6 on a surface 7 of said food product 2. The temperature sensor 8 and the nozzle 4 are configured so that the position 9 where the temperature is measured on the food product 2 overlaps with the position 6 where the jet 5 of pressurized fluid impinges on the surface of the food product 2. The device 1 further comprises a supply tube 20 for supplying said fluid to the device. The supply tube 20 is connected to frame 23, which comprises internal channels to provide a fluid connection between the supply tube 20 and the nozzle 4 to provide said pressurized fluid to the nozzle
4. The pressurized fluid exits the nozzle 4 to provide the jet 5 of pressurized fluid towards the position 6 on the surface 7 of the food product 2. The device 1 further comprises a mounting member 25 for mounting the device 1 in an assembly for processing food products. Preferably the mounting member 25 is configured for mounting the device 1 to an assembly for processing products so that a measuring side 3 of the device 1 is facing a position in the assembly where, in use, the surface 7 of said food product 2 is at least temporarily positioned.
Figure 2 shows a schematic presentation of examples of measurements of the temperature at the position of the surface where the jet of pressurized fluid is directed to as a function of time, for example using the device of figure
1.
When the food product 2 is arranged at a measuring position with respect to the device 1, the temperature sensor 8 measures the temperature Tl of the food product 2.
At time tl the Jet of pressurized fluid 5 is activated, and the pressurize fluid blows on the surface 7 of the food product 2 at the position 6. Due to the blowing of the jet 5 on the surface 7, any non-bound moisture at the position 6 will start to evaporate and this evaporation will take away energy from the food product which results in a temperature decrease starting at time tl as indicated by point A in the graph of figure 2.
When the non-bound moisture at the position 6 has substantially be evaporated, the decrease in temperature due to the removal of energy from the food product due to evaporation stops, as schematically indicated by point B (or B’) in the graph of figure 2.
In case the food product 2 contains more moisture, the temperature will drop more as schematically indicated by point B’ in the graph of figure 2. Accordingly, the temperature difference between T2 (or T2') and Tl provides a measure for the amount of moisture at the position 6 at the surface 7 of the food product 2.
It is noted that when point B has been reached at time t2, the jet 5 is not jet stopped. The jet 5 continues to blow on the surface 7 of the food product 2 until time t3 in order to ensure that substantially all non-bound moisture has been evaporated. As schematically indicated in figure 2, in the time between t2 and t3, the temperature at the position 6 at the surface 7 of the food product 2 may decrease further due to a cooling effect of the fluid 5, as schematically indicated by point C {(C'} in the graph of figure 2.
Preferably the fluid 5 is configured such that the cooling effect of the fluid 5 is much less than the cooling effect due to the evaporation of the moisture. Accordingly, the temperature differences between T3 and T2 (or T3’ and TZ’) are negligible compared to the temperature difference between Tl and T2 (or Tl and T2’). Accordingly, by providing a jet of pressurized fluid during a certain time (t3-tl), the temperature difference T1-T3 (or T1-T3’) measured before and after the jet of pressurized fluid has blown onto the surface 7 of the food product 2 provides a measure of the moisture content of the position 6 on the surface 7 of the food product
2. Figure 3 schematically shows a second example of a device according to the invention, which combines the present invention with the sensor device as described in PCT/NL2019/050601. Figure 4 shows a schematical cross-section of figure 3. De device 17, the distance sensor 12 comprises an illuminating beam source 10 for projecting a light beam 11 at least to the position 6 on the surface 7 of the product
2. In this embodiment, the illumination beam source 10 comprises a light emitter 18, for example a lamp, LED or Laser, which emits a light beam. The light beam passes substantially centrally through the nozzle 4 via light delivering member 19, such as a tube or waveguide, and exits said light delivering member 19 at or near the output of the nozzle 4. Accordingly, the illuminating beam source 10 is configured for projecting the light beam 11 along a central axis 16 of the Jet 5 of pressurized fluid from the nozzle 4. In addition, the distance sensor 12 comprises a light collecting unit 12 for receiving light reflected from said surface 7 of the product 2. The light collecting unit 12 is configured for providing a measure of the distance d° between the light collecting unit 12 and the position 6 on the surface 7 of the product 2 where the light beam 11 impinges on said surface 7. In particular, the light collecting unit 12 comprises one or more lenses 13 for projecting and/or imaging a detection area 14 on said surface 7 of the product 2 on a light sensor 17 inside said light collecting unit 12. Preferably this light sensor 17 comprises a CCD sensor array.
A schematically shown in figure 4, the one or more lenses 13 are configured such that an optical axis 15 of the one or more lenses 13 is arranged at a sharp angle o to an optical axis 16 of the light beam 11. In particular, the optical axis 15 is arranged to intersect the light beam 11 at a distance and spaced apart from the device 1. Accordingly, the position 6 of the light spot in the image on the light sensor 17 will move over the light sensor 17 as a function of the distance d between the device 1 and the surface 7 of the product 2.
The device 1 is provided with a first branch for providing at least part of said fluid from the supply tube 20, via a first fluid output 21 to the light collecting unit 3’, in particular to the lens 13. The pressurized fluid from the first fluid output 21 is arranged to blow away any dust from the lens 13, and substantially prevents contamination and/or the clogging up of the lens 13.
The device 1 is further provided with a second branch for providing at least part of said fluid from the supply tube 20, via a second fluid output 22 to the temperature sensor 8. The pressurized fluid from the second fluid output 22 1s arranged to blow away any dust from the temperature sensor 8, and substantially prevents contamination and/or the clogging up of the temperature sensor 8. It is noted that the first fluid output 21 and/or the second fluid output 22 may also be connected to a dedicated second supply tube (not shown) for providing a dedicated cleaning fluid. An advantage of such a dedicated second supply tube is, that the delivery of cleaning fluid can be independent of the delivery of fluid through the nozzle
4.
The device 1 further comprises a mounting member 24 for holding the temperature sensor 8 of the device 1 such that the temperature sensor 8 is arranged for measuring the temperature of the food product 2 at the position 6 on the surface 7 of said food product 2 where, in use, the jet 5 of pressurized fluid is directed to.
Furthermore, the device 1 is provided with a connector 25 for mounting the device 1 to a frame of an assembly for processing products.
When performing a measurement, the food product 2 is preferably temporarily held at a fixed position with respect to the device 1. This may be done by temporarily moving the device 1 substantially synchronous with the food product 2 or by temporarily stopping the food product 2 at the location of the device 1.
In order to perform a measurement, the distance sensor 12 measures the distance between the device 1’ and the surface 7 of the food product 2. Subsequently a jet 5 of pressurized fluid, in particular pressurized air, is activated to apply a force to an area 6 on the food product
2. Due to said force, the surface of the food product 2 will be slightly compressed in said area 6, which results in an increase in the distance between the surface of the food product 2 and the distance sensor 12. Figure 5 schematically shows the development of the compression in the area 6 of the food product 2 as a function of time. At time Tl the jet 5 of pressurized air is activated, and the graphs a, b, c show the development of a depression in the food product 2 as a function of time. At time TZ the jet 5 of pressurized air is stopped, and the graphs a, b, c show the decrease or removal of the depression in the food product 2 as a function of time. Accordingly, the jet 5 of pressurized air acts on the food product 2 during a time interval AT of approximately 2 seconds (in this particular example). The distance sensor 12 measures the development of the deformation of the surface 7 of the product 2 due to the applied force by the jet 5 and/or the removal of the deformation of the surface 7 of the product 2 after the removal of said applied force.
The various graphs a, b, c represent example measurements on different types oft dough; in particular doughs with a different viscosity and/or elasticity. From these graphs a, b, c, and in particular from one or more measurement points of said graphs a, b, c, a measure for the viscosity and/or elasticity of the individual dough types can be determined.
In particular, by measuring the decrease or removal of the deformation of the surface of the food product 2 after the deformation of the surface by the jet 5, is highly suitable to perform the measurement on a moving food product, using a nozzle for directing the jet of fluid onto the moving food product at a fixed position along a food production line, and to measure the decrease or removal of the deformation of the surface of the food product downstream of the fixed position of the nozzle.
At the same time that the temperature sensor 8 determines a difference in temperature of the food product 2 before the jet 5 impinges on the food product 2 and after the jet 5 has blown into the food product 2. From this temperature difference a measure for the moisture content of the food product 2 at the position 6 at the surface can be established is discussed above.
It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention.
From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the scope of the present invention.
In summary, the invention relates to a device and a method for a contactless analysis of a product, in particular for the contactless analysis of a dough product.
The device comprises a temperature sensor configured for contactless measuring a temperature of the food product, and a nozzle configured for directing a jet of pressurized fluid to a position where, in use, the surface of said food product is at least temporarily positioned.
The temperature sensor is configured for measuring the temperature of the food product at the position on the surface of said food product where, in use, the jet of pressurized fluid is directed to.

Claims (18)

CONCLUSIESCONCLUSIONS 1. Inrichting Voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, waarbij de inrichting omvat: een temperatuursensor die geconfigureerd is voor het contactloos meten van een temperatuur van het voedingsproduct, en een spuitmond die geconfigureerd is voor het richten van een straal van een gas onder druk naar een positie waar, in gebruik, het oppervlak van het genoemde voedingsproduct ten minste tijdelijk geplaatst is, waarbij de temperatuursensor geconfigureerd is voor het meten van de temperatuur van het voedingsproduct op de positie op het oppervlak van het genoemde voedingsproduct waar, in gebruik, de straal van gas onder druk naar toe is gericht, waarbij de inrichting geconfigureerd is voor het verkrijgen van een maat voor een gehalte van ongebonden vocht van het voedingsproduct bij de genoemde positie op basis van een afname van de temperatuur op de positie op het oppervlak van het voedingsproduct waar de straal van het gas onder druk op is gericht.An apparatus for determining the moisture content of a food product, in particular a dough product, the apparatus comprising: a temperature sensor configured for non-contact measuring of a temperature of the food product, and a nozzle configured for directing a jet of a pressurized gas to a position where, in use, the surface of said food product is placed at least temporarily, the temperature sensor being configured to measure the temperature of the food product at the position on the surface of said food product towards which, in use, the jet of pressurized gas is directed, the device being configured to obtain a measure of an unbound moisture content of the food product at said position based on a decrease in temperature at the position on the surface of the food product where the jet of the pressurized gas o p is directed. 2. Inrichting voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens conclusie 1, waarbij de temperatuursensor is geconfigureerd voor het meten van de temperatuur van het voedingsproduct voordat en/of nadat de straal van gas onder druk op het voedingsproduct treft.Apparatus for determining the moisture content of a food product, in particular a dough product, according to claim 1, wherein the temperature sensor is configured to measure the temperature of the food product before and/or after the jet of pressurized gas on the food product. 3. Inrichting voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens conclusie 1 of 2, waarbij de temperatuursensor en de spuitmond geconfigureerd zijn zodat de positie waar de temperatuur gemeten wordt op het voedselproduct en de positie waar de straal van gas onder druk op het oppervlak van het voedingsproduct treft, samenvallen, bij voorkeur waarbij de temperatuursensor is geconfigureerd voor het meten van de temperatuur of veranderingen van de temperatuur van het voedingsproduct gedurende de tijd dat de straal van gas onder druk op het voedingsproduct treft.Apparatus for determining the moisture content of a food product, in particular a dough product, according to claim 1 or 2, wherein the temperature sensor and the nozzle are configured such that the position where the temperature is measured on the food product and the position where the jet is of pressurized gas impinging on the surface of the food product, preferably wherein the temperature sensor is configured to measure the temperature or changes in temperature of the food product during the time the jet of pressurized gas impinges on the food product. 4. Inrichting voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens conclusie 1, 2 of 3, waarbij de temperatuursensor een pyrometer omvat.Device for determining the moisture content of a food product, in particular a dough product, according to claim 1, 2 or 3, wherein the temperature sensor comprises a pyrometer. 5. Inrichting voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens één van de conclusies 1 - 4, waarbij de temperatuursensor een eerste temperatuursensor is, en waarbij de inrichting een tweede temperatuursensor omvat die geconfigureerd is voor het meten van een temperatuur van het gas onder druk.Apparatus for determining the moisture content of a food product, in particular a dough product, according to any one of claims 1 to 4, wherein the temperature sensor is a first temperature sensor, and wherein the apparatus comprises a second temperature sensor configured to measure of a temperature of the gas under pressure. 6. Inrichting voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens één van de conclusies 1 - 5, waarbij de inrichting verder een besturingsinrichting omvat die geconfigureerd is voor het verschaffen van een temperatuurverschil tussen een eerste temperatuur van het voedingsproduct voordat de straal van gas onder druk op het voedingsproduct treft en een tweede temperatuur van het voedingsproduct gedurende of nadat de straal van gas onder druk op het voedingsproduct treft.Apparatus for determining the moisture content of a food product, in particular a dough product, according to any one of claims 1 to 5, wherein the apparatus further comprises a control device configured to provide a temperature difference between a first temperature of the food product before the jet of pressurized gas impinges on the food product and a second temperature of the food product during or after the jet of pressurized gas impinges on the food product. 7. Inrichting voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens één van de conclusies 1 - 6, waarbij de inrichting een toevoerbuis voor het toevoeren van het gas aan de spuitmond omvat, waarbij de toevoerbuis een eerste aftakking omvat voor het verschaffen van ten minste een deel van het gas in de toevoerbuis naar de temperatuursensor.Device for determining the moisture content of a food product, in particular a dough product, according to any one of claims 1-6, wherein the device comprises a supply tube for supplying the gas to the nozzle, the supply tube having a first branch including for providing at least a portion of the gas in the supply tube to the temperature sensor. 8. Inrichting Voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens één van de conclusies 1 - 6, waarbij de inrichting een eerste toevoerbuis voor het toevoeren van het gas naar de spuitmond omvat, en een tweede toevoerbuis voor het toevoeren van een schoonmaakgas naar de temperatuur- sensor.Device for determining the moisture content of a food product, in particular a dough product, according to any one of claims 1-6, wherein the device comprises a first supply tube for supplying the gas to the nozzle, and a second supply tube for supplying a cleaning gas to the temperature sensor. 9. Inrichting Voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens één van de conclusies 1 - 8, waarbij de spuitmond één of meer straal-stuur-organen omvat, bij voorkeur waarbij de één of meer straal-stuur-organen binnen de spuitmond geplaatst zijn.Apparatus for determining the moisture content of a food product, in particular a dough product, according to any one of claims 1-8, wherein the nozzle comprises one or more jet controls, preferably wherein the one or more jet controls controls are located within the nozzle. 10. Inrichting voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens conclusie 9, waarbij de één of meer straal-stuur-organen bij voorkeur een reeks van scheidingswanden omvatten die zich in een richting in hoofdzaak parallel aan een centrale as van de straal uitstrekken of waarbij de één of meer straal-stuur-organen een reeks van in hoofdzaak parallel buizen omvatten die zich in een richting in hoofdzaak parallel aan een centrale as van de straal uitstrekken.Apparatus for determining the moisture content of a food product, in particular a dough product, according to claim 9, wherein the one or more jet control members preferably comprise a series of partition walls extending in a direction substantially parallel to a central axis of the jet or wherein the one or more jet controllers comprise a series of substantially parallel tubes extending in a direction substantially parallel to a central axis of the jet. 11. Inrichting Voor het bepalen van het vochtgehalte van een voedingsproduct, in het bijzonder een deegproduct, volgens één van de conclusies 1 - 10, waarbij de inrichting verder omvat: een afstandssensor die geconfigureerd is voor het contactloos meten van een afstand tussen de inrichting en een oppervlak van het voedingsproduct, waarbij de straal van gas onder druk geconfigureerd is voor het verschaffen van een deformatie van het oppervlak van het voedingsproduct, waarbij de afstandssensor is ingericht voor het meten van de afstand tussen de inrichting en de positie op het oppervlak van het voedingsproduct waar de straal van het gas onder druk naar toe is en/of was gericht voor het observeren van een ontwikkeling en/of een vermindering of weggaan van de deformatie van het oppervlak van het genoemde voedingsproductApparatus for determining the moisture content of a food product, in particular a dough product, according to any one of claims 1 to 10, wherein the apparatus further comprises: a distance sensor configured for non-contact measurement of a distance between the device and a surface of the food product, wherein the jet of pressurized gas is configured to provide a deformation of the surface of the food product, the distance sensor being adapted to measure the distance between the device and the position on the surface of the food product food product to which the jet of the pressurized gas is directed and/or was directed to observe a development and/or a reduction or disappearance of the deformation of the surface of said food product 12. Inrichting volgens conclusie 11, waarbij de afstandssensor ten minste ten dele in de spuitmond is geplaatst, bij voorkeur in hoofdzaak in het midden van de spuitmond.A device according to claim 11, wherein the distance sensor is placed at least partly in the nozzle, preferably substantially in the center of the nozzle. 13. Inrichting volgens conclusie 11 of 12, waarbij de afstandssensor omvat: een bron voor een verlichtingsbundel voor het projecteren van een lichtbundel ten minste naar de positie op het oppervlak van het product, en een licht-opvang-eenheid voor het ontvangen van licht dat van het oppervlak van het product gereflecteerd is, waarbij de licht-opvang-eenheid geconfigureerd is voor het verschaffen van een maat van de afstand tussen de licht- opvang-eenheid en de positie op het oppervlak van het product waar de lichtbundel op het oppervlak valt, bij voorkeur waarbij de licht-opvang-eenheid één of meer lenzen omvat voor het projecteren en/of afbeelden van het van het oppervlak van het product gereflecteerde licht op een lichtsensor, bij voorkeur waarbij de lichtsensor een CCD matrixsensor omvat, bij voorkeur waarbij de bron voor een verlichtingsbundel geconfigureerd is voor het projecteren van een lichtbundel langs een centrale as van de straal van gas onder druk vanuit de spuitmond,The apparatus of claim 11 or 12, wherein the distance sensor comprises: an illumination beam source for projecting a light beam at least to the position on the surface of the product, and a light receiving unit for receiving light emitted reflected from the surface of the product, the light receiving unit being configured to provide a measure of the distance between the light receiving unit and the position on the surface of the product where the light beam impinges on the surface preferably wherein the light collecting unit comprises one or more lenses for projecting and/or imaging the light reflected from the surface of the product onto a light sensor, preferably wherein the light sensor comprises a CCD matrix sensor, preferably wherein the illumination beam source is configured to project a light beam along a central axis of the jet of pressurized gas from the nozzle, bij voorkeur waarbij de bron voor een verlichtingsbundel een licht-aflever-orgaan omvat dat in de spuitmond geplaatst is.preferably wherein the source of an illumination beam comprises a light delivery means disposed in the nozzle. 14. Inrichting volgens conclusie 11 of 12, waarbij de afstandssensor een ultrasone sensor omvat, die ten minste een zender en een ontvanger omvat, of een zendontvangapparaat, Bij voorkeur waarbij ten minste de zender of het zendontvangapparaat ten minste ten dele in de spuitmond zijn geplaatst, bij voorkeur in hoofdzaak in het midden van de spuitmond.Apparatus according to claim 11 or 12, wherein the remote sensor comprises an ultrasonic sensor comprising at least a transmitter and a receiver, or a transceiver device, Preferably wherein at least the transmitter or transceiver device is at least partially placed in the nozzle , preferably substantially in the center of the nozzle. 15. Inrichting volgens één van de conclusies 1 - 14, waarbij het gas lucht omvat15. Device as claimed in any of the claims 1-14, wherein the gas comprises air 16. Samenstel voor het verwerken van producten, in het bijzonder voor het verwerken van voedingsproducten, waarbij het samenstel omvat: een verwerkings- en/of transportinrichting voor de producten, en een inrichting voor het bepalen van het vochtgehalte van een voedingsproduct volgens één van de conclusies 1 - 15, waarbij de inrichting is ingericht voor het richten van de straal van gas onder druk naar een positie op een oppervlak van één van de voedingsproducten in het samenstel, en voor het meten van de temperatuur op de positie op het oppervlak van het genoemde één van de voedingsproducten.16. Assembly for processing products, in particular for processing food products, wherein the assembly comprises: a processing and/or transport device for the products, and a device for determining the moisture content of a food product according to one of the Claims 1-15, wherein the device is adapted to direct the jet of pressurized gas to a position on a surface of one of the food products in the assembly, and to measure the temperature at the position on the surface of the mentioned one of the food products. 17. Werkwijze voor een contactloze analyse van een voedingsproduct, in het bijzonder een deegproduct, gebruik makend van een inrichting voor het bepalen van het vochtgehalte van een voedingsproduct volgens één van de conclusies 1 - 15, waarbij de werkwijze de stappen omvat van: het contactloos meten van een temperatuur bij een positie op het oppervlak van een voedingsproduct gebruik makend van de temperatuursensor, het richten van een straal van gas onder druk naar de positie op het oppervlak van het voedingsproduct, waarbij de straal van gas onder druk geconfigureerd is om ten minste een verdampen van vocht op de genoemde positie op het oppervlak van het voedingsproduct te ondersteunen, en waarbij de temperatuursensor een verandering in de temperatuur op de positie op het oppervlak van het voedingsproduct meet.A method for a contactless analysis of a food product, in particular a dough product, using a device for determining the moisture content of a food product according to any one of claims 1-15, wherein the method comprises the steps of: measuring a temperature at a position on the surface of a food product using the temperature sensor, directing a jet of pressurized gas to the position on the surface of the food product, wherein the jet of pressurized gas is configured to be at least to support an evaporation of moisture at said position on the surface of the food product, and wherein the temperature sensor measures a change in temperature at the position on the surface of the food product. 18. Werkwijze voor een contactloze analyse van een product, in het bijzonder een deegproduct, gebruik makend van een inrichting voor het bepalen van het vochtgehalte van een voedingsproduct volgens één van de conclusies 1 - 15, indien afhankelijk van conclusie 11, waarbij de werkwijze de stappen omvat van: het contactloos meten van een afstand tussen de inrichting en een oppervlak van het voedingsproduct gebruik makend van de afstandssensor, het richten van een straal van gas onder druk voor het uitoefenen van een kracht op de positie op het oppervlak van het voedingsproduct, waarbij de straal van het gas onder druk geconfigureerd is voor het verschaffen van een deformatie van het oppervlak van het genoemde voedingsproduct, en waarbij de standssensor de afstand tussen de inrichting en het oppervlak van het voedingsproduct op de positie van de deformatie van het oppervlak van het voedingsproduct door de uitgeoefende kracht en/of door het verwijderen van de uitgeoefende kracht meet.A method for a contactless analysis of a product, in particular a dough product, using a device for determining the moisture content of a food product according to any one of claims 1 to 15, when dependent on claim 11, wherein the method comprises the includes steps of: non-contact measuring a distance between the device and a surface of the food product using the distance sensor, directing a jet of pressurized gas to apply a force to the position on the surface of the food product, wherein the jet of the pressurized gas is configured to provide a deformation of the surface of said food product, and wherein the position sensor measures the distance between the device and the surface of the food product at the position of the deformation of the surface of the food product by the applied force and/or by removing the applied force. -0-70-0-0-0-0-0-0--0-70-0-0-0-0-0-0-
NL2025143A 2020-03-16 2020-03-16 Measuring device and method for a contactless analysis of a food product in a production line NL2025143B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2025143A NL2025143B1 (en) 2020-03-16 2020-03-16 Measuring device and method for a contactless analysis of a food product in a production line
PCT/NL2021/050163 WO2021187974A1 (en) 2020-03-16 2021-03-10 Device and method for the contactless measurement of the moisture content of a food product
EP21713161.4A EP4121741A1 (en) 2020-03-16 2021-03-10 Device and method for the contactless measurement of the moisture content of a food product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2025143A NL2025143B1 (en) 2020-03-16 2020-03-16 Measuring device and method for a contactless analysis of a food product in a production line

Publications (2)

Publication Number Publication Date
NL2025143A NL2025143A (en) 2021-10-20
NL2025143B1 true NL2025143B1 (en) 2021-10-27

Family

ID=75108755

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2025143A NL2025143B1 (en) 2020-03-16 2020-03-16 Measuring device and method for a contactless analysis of a food product in a production line

Country Status (3)

Country Link
EP (1) EP4121741A1 (en)
NL (1) NL2025143B1 (en)
WO (1) WO2021187974A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2147024A (en) 1939-02-14 Bread raising cabinet
US5816704A (en) * 1996-06-04 1998-10-06 Decagon Devices, Inc. Water activity and dew point temperature measuring apparatus and method
GB2359630A (en) * 2000-02-26 2001-08-29 Frank Thompson Measurement of moisture content using microwave radiation
US20100255159A1 (en) * 2009-04-03 2010-10-07 Frito-Lay North America, Inc. Method and System for Making a Consistent Dough Sheet
CN203249886U (en) * 2013-05-21 2013-10-23 上海海洋大学 Detection device for water activity of food
EP3027050B1 (en) * 2013-07-05 2022-09-28 John Bean Technologies Corporation Continuous low temperature food pasteurization and sous vide approach cooking system and method
NL2021642B1 (en) * 2018-09-14 2020-05-06 Kaak Groep B V Measuring device and method for a contactless analysis of a product in a production line
CN109187669A (en) * 2018-09-25 2019-01-11 北京工商大学 Flour based on dielectric method or the like detecting instrument for moisture content and measuring method

Also Published As

Publication number Publication date
WO2021187974A1 (en) 2021-09-23
EP4121741A1 (en) 2023-01-25
NL2025143A (en) 2021-10-20

Similar Documents

Publication Publication Date Title
US11927583B2 (en) Measuring device and method for a contactless analysis of a food product in a production line
JP5271908B2 (en) Inspection system, blow molding system, method of inspecting plastic containers, and method of manufacturing plastic containers
JP6205377B2 (en) Contact angle measuring device
US7354538B2 (en) Container manufacturing inspection and control system
WO2018010289A1 (en) Terahertz monitoring system and monitoring method for aluminum-plastic blister packaged drugs
NL2025143B1 (en) Measuring device and method for a contactless analysis of a food product in a production line
JP2000014642A (en) Noncontact tonometer
JP4520704B2 (en) Device for applying fluid to a substrate
JP2760826B2 (en) Method and apparatus for controlling color of object
EP4445118A1 (en) Apparatus for illuminating matter
KR20210077428A (en) Noncontact-type eye pressure measuring device
US20100165103A1 (en) Camera Monitoring Systems And Methods For Electromagnetic Dryer Applicators
JP2001123338A (en) Device installed to card
US6469789B1 (en) On-line color measurement system for cooled product
EP4151984A1 (en) Improved control apparatus for a spraying plant
JP3848564B2 (en) Water depth measuring device, water depth control device and vehicle braking test device for wet braking test of car
JP2024520218A (en) Color monitoring device for roasted products, roasting device, and method for roasting roasted products
JPH07222721A (en) Non-contact type ophthalmotonometer