NL2024917B1 - AC to DC converter for electrolysis - Google Patents

AC to DC converter for electrolysis Download PDF

Info

Publication number
NL2024917B1
NL2024917B1 NL2024917A NL2024917A NL2024917B1 NL 2024917 B1 NL2024917 B1 NL 2024917B1 NL 2024917 A NL2024917 A NL 2024917A NL 2024917 A NL2024917 A NL 2024917A NL 2024917 B1 NL2024917 B1 NL 2024917B1
Authority
NL
Netherlands
Prior art keywords
control unit
converter
electrolysis
output voltage
turbine generator
Prior art date
Application number
NL2024917A
Other languages
Dutch (nl)
Inventor
Hubertus Guliëlma Hendricus Groenemans Johannes
Eduard Cornelis Damen Michiel
Original Assignee
Hygro Tech Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hygro Tech Bv filed Critical Hygro Tech Bv
Priority to NL2024917A priority Critical patent/NL2024917B1/en
Priority to PCT/NL2021/050095 priority patent/WO2021162553A1/en
Priority to US17/799,423 priority patent/US20230140438A1/en
Priority to EP21705640.7A priority patent/EP4103764A1/en
Priority to AU2021220109A priority patent/AU2021220109A1/en
Priority to KR1020227031527A priority patent/KR20220153018A/en
Application granted granted Critical
Publication of NL2024917B1 publication Critical patent/NL2024917B1/en
Priority to CL2022002190A priority patent/CL2022002190A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/027Temperature
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/033Conductivity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

An AC/DC converting circuit for a turbine generator is provided. The converter comprises an active AC/DC converter having a controllable output voltage level having an input for receiving alternating current electrical power from a turbine generator and an output for providing direct current electrical power to an electrolysis system for electrolysis of water and a control unit. The control unit is arranged to receive data related to at least one of a state of the electrolysis system and the turbine generator, and adjust the output voltage based on the received data. By adjusting the output voltage of the AC/DC converter and with that, the input voltage to the electrolysis system, the relation between the output voltage of the AC/DC converter and the internal voltage over a membrane or other reaction medium within the electrolysis cell may be determined, so as to take impedance of the electrolysis cell into account.

Description

P125977NL00 Title: AC to DC converter for electrolysis
TECHNICAL FIELD The various aspects and implementations thereof relate to conversion of mechanical energy to electrical energy for electrolysis.
BACKGROUND Whereas many advocate use of electrical energy to replace home use of natural gas and other fossil fuels, it has become apparent that at many locations, the current capacity of the electricity supply grid is all but sufficient to achieve this ideal of some. Yet, in may urban areas, also a supply grid for natural gas is available and this gas grid may be modified to be used for transportation of hydrogen. This allows for hydrogen to replace natural gas for supply of energy. This insight raises the need for efficient generation of hydrogen. In view of carbon based energy sources becoming scarcer, preferably non- carbon related energy generation for hydrogen generation is used. Popular non-carbon energy sources are solar and wind. An issue with these energy sources is that the output power and with that, output power may vary, as output voltage and output current may vary.
SUMMARY It is preferred to provide a direct current electrical power source arranged to provide a stable and appropriate voltage and current at the core of a hydrogen generator, for example over the membrane of a membrane water electrolysis system. To achieve this, the voltage at the (external) input of an electrolysis system - thus at the output of a DC power supply - may be kept constant, but this appears not to be sufficient for the preferred efficiency level of operation.
A first aspect provides an alternating current AC to direct current DC converting circuit for a turbine generator. The AC to DC converter comprises an active AC/DC converter having a controllable output voltage level having an input for receiving alternating current electrical power from a turbine generator and an output for providing direct current electrical power to an electrolysis system for electrolysis of water and a control unit. The control unit is arranged to receive data related to at least one of a state of the electrolysis system and the turbine generator, and adjust the output voltage based on the received data.
By adjusting the output voltage of the AC/DC converter and with that, the input voltage to the electrolysis system, the relation between the output voltage of the AC/DC converter and the internal voltage over a membrane or other reaction medium within the electrolysis cell may be determined.
Based on the determined internal voltage or obtained parameters related to the electrolysis module, an optimal voltage within the reactor may be determined as a reference voltage and based on that reference voltage and data related to at least one of a state of the electrolysis system and the turbine generator, an optimal output voltage of the AC/DC converter may be determined.
In various implementations, data may be obtained on gas pressure in the electrolysis system, like pressure of hydrogen, oxygen and/or steam may be obtained, impedance of the electrolysis may be obtained, internal temperature of a reactor in the electrolysis system may be obtained, torque on an axle of the turbine may be obtained, values of other parameters may be obtained or a combination thereof. Based on the values of these parameters and/or change of the values over time may be used to adjust the output voltage of the AC/DC converter.
In one implementation, the AC to DC converting circuit, further comprises an oscillator for generating an alternating current auxiliary signal of which the frequency is controlled by the control unit and a summation circuit for adding the alternating current signal to the output of the active AC DC converter. In this implementation, the control unit is arranged to determine the impedance of the electrolysis system and to control the oscillator frequency as a function of the determined impedance.
Implementations may be envisaged with a fixed frequency of the added alternating current signal or a frequency controlled by the control unit based on other parameters.
An imaginary part of the impedance of an electrolysis cell and a water electrolysis cell in particular may vary as a function of frequency. It is, for the electrolysis process and the circuitry around it, preferred to keep the amount of reactive power in the circuitry as small as possible - and hence to keep the imaginary part of the impedance as small as possible. Alternatively or additionally, the control unit may determine a reactive power demanded by or fed to the electrolysis module and control the frequency based on the determined reactive power in any way, including implementations discussed below.
In another implementation of the AC to DC converting circuit the control unit 1s arranged to determine whether the impedance of the electrolysis system has an inductive character or a capacitive character, control the oscillator to increase the frequency of the alternating current auxiliary signal if the impedance has a capacitive character; and control the oscillator to decrease the frequency of the alternating current auxiliary signal if the impedance has an inductive character. This embodiment allows for appropriate control of reactive power demanded and consumed by the electrolysis module.
In particular implementation, the active AC DC converter comprises an AC to DC converter subsystem for converting the alternating current electrical power from the turbine generator to internal direct current electrical power, a DC to DC converter having a controllable output voltage level controllable by the control unit and a DC to AC converter arranged to convert the internal direct current electrical power to output alternating current power at a level, phase and frequency matched to an external grid for providing the output alternating current power to the external grid.
A second aspect provides a power conversion system. The system comprises: a turbine generator and the alternating current AC to direct current DC converting circuit according to the first aspect of which the input is electrically coupled to an electrical output of the turbine generator.
An implementation of the second aspect further comprises an electrolysis system for electrolysis of water electrically coupled to the output of the active AC DC converter.
In another implementation of the power supply system, the electrolysis system comprises at least one electrolysis cell and at least one of a temperature sensor for sensing internal temperature of the electrolysis cell and a pressure sensor for sensing pressure of at least one gas in the electrolysis cell. In this implementation, the at least one of the temperature sensor and the pressure sensor is coupled to the control unit.
BRIEF DESCRIPTION OF THE DRAWINGS The various aspects and implementations thereof will now be discussed in further detail in conjunction with drawings. In the drawings: Figure 1: shows a power conversion system; Figure 2: shows an example of an active AC/DC converter; Figure 3: shows a schematic representation of phase/frequency of a water electrolysis cell; Figure 4: shows a flowchart; and Figure 5: shows a further power conversion system.
DETAILED DESCRIPTION Figure 1 discloses an energy conversion system 100. The energy conversion system 100 comprises a turbine generator 120 connected to a rotor 124 for converting mechanical energy of the rotor 124 rotating to 5 electrical energy. The rotor 124 may be arranged to be rotated by virtue of wind - streaming air - streaming water or another flowing medium. In another embodiment, the turbine generator may be driven by a combustion engine or another driving system. The turbine generator 120 may be further implemented as any available converter, like an alternator, a dynamo, other, or a combination thereof.
The energy conversion system 100 further comprises an alternating current to direct current converter 130 - also referred to as an AC/DC converter 130. The output of the AC/DC converter 130 is coupled to an electrolysis module 160 arranged for electrolysis of water - dihydrogen oxide - resulting in hydrogen and oxygen. The energy conversion system 100 comprises one or more electrolysis modules that are provided in parallel and/or in series to one another relative to the AC/DC converter 130.
The AC/DC converter 130 is an active AC/DC converter, which means that the output voltage of the AC/DC converter 130 may be adjusted between zero and a maximum voltage that 1s, among others, set by the voltage provided by the turbine generator 120.
Figure 2 shows an example of the active AC/DC converter 130. The AC/DC converter 130 comprises a full-bridge rectifier 230 provided by six IGBTs 232 as active electronic switches. Instead of IGBTS, also other electronic switches like MOSFETSs, other field effect transistors or other types of fully controllable - on and off - semiconductor switches may be used. Between an alternating current source - connected at the left of the scheme shown by Figure 2 - and the rectifier 230, a first pass filter 212 is provided by means of one inductance 222 per phase.
The first pass filter 212 is followed by a second pass filter 214 provided by three capacitances 224 in star configuration between the phases and optionally grounded at the centre of the star and a third filter 216 provided by three inductors. Alternatively, the three capacitances 224 are provided in delta configuration. The second pass filter 214 is followed by a third pass filter 216 provided by three further inductances 226; one per phase. The output of the third pass filter is connected to the rectifier bridge
230. At the output of the AC/DC converter 130, a low-pass filter 240 is provided by means of a further capacitance 242. Whereas the AC/DC converter 130 of Figure 2 is depicted for handling three phases, other types of AC/DC converters may be envisaged with one, two or more than three phases.
The energy conversion system 100 further comprises a control unit 110 for controlling operation of the energy conversion system 100 and the various elements thereof. The control unit 110 is coupled to a control memory 112. The control memory 112 is arranged to store computer executable code for programming the control unit 110 to enable the control unit 110 to control the power conversion system 100 or at least part thereof. The control memory 112 is further arranged to store reference data that allows the control unit 110 to interpret sensor data and use the interpreted sensor data or other sensor data to control the power conversion system and particular parts thereof.
The control unit 110 is connected to an IGBT driver 150 for controlling switching of the IGBT's 232 or other electronic switches of the AC/DC converter 130.
The control unit 110 is further connected to a turbine sensor 122 provided in the turbine generator 120 for receiving data on torque and rotational speed of the axis of the turbine generator 120. The torque may be measured as the actual torque on the rotor 124, but preferably, the torque on the rotor 124 is determined based on current and voltage received by or from the AC/DC converter 130 and data on the turbine generator 120 that may be stored in the control memory 112.
The control unit 110 is further connected to a pressure sensor 164 for monitoring pressure in the electrolysis module 160 and hydrogen pressure in particular, a temperature sensor 166 for monitoring temperature in the electrolysis module 160 and an impedance sensor 168 for measuring impedance of the electrolysis module 160. Additionally, the control unit 110 may receive data on a speed of wind acting on the rotor 124. The electrolysis module 160 comprises a cathode 180 connected to a negative side of the AC/DC converter 130 and an anode 170 connected to a positive side of the AC/DC converter 130. Water is provided to the anode 170 through an anode inlet 172 and hydrogen is provided by the cathode 180 as a result of operation via a cathode outlet 184. Between the anode 170 and the cathode 180, a membrane 162 is provided. At the anode side of the membrane 162, an anode reaction space 176 is provided and at a cathode side of the membrane 162, a cathode reaction space 186 is provided.
In the implementation shown by Figure 1, water is provided to the anode 170, as is common with membrane electrolysers. In another implementation, solid oxide electrolysers may be used, in which case water 1s provided to the cathode 180.
In operation, the rotor 124 rotates by virtue of wind, water or another external force and drives the turbine generator 120 which, in turn provided electrical energy by means of an alternating current. The alternating current is transformed to direct current electrical power by means of the AC/DC converter 130 and provided to the electrolysis module 160 for generating hydrogen.
The power conversion system 100 further comprises an alternating current signal source 140 connected to the output of the AC/DC converter by a summation circuit comprising a first summation element 146 and a second summation element 144. In another embodiment, only one summation element is provided. The alternating current signal source 140 is connected to the control unit 110 and the control unit 110 is arranged to control frequency and amplitude of an alternating current power signal to be added to the output of the AC/DC converter 130.
The alternating current signal source 140 comprises a reactive power monitor 142 for measuring reactive power provided by the alternating current signal source 140 or for measuring a phase difference between current and voltage of the alternating current power signal provided by the alternating current signal source 140.
At lower frequencies, the electrolysis module 160 has an capacitive character and at higher frequencies, the electrolysis module 160 has a inductive character. In both cases, the electrolysis module 160 consumes reactive power. This consumption of reactive power is undesired, as it may result in high currents that require robuster design of the power conversion system 100.
Figure 3 schematically shows a phase-frequency characteristic of the electrolysis module 160: at frequencies below fu, the phase shift is negative and at frequencies below fi, the phase shift is positive. The reactive power monitor 142 is arranged to monitor, over the operating frequencies of the alternating current signal source 140, what operating frequency matches fo best, i.e. at what frequency the phase shift is lowest. With this information, the control unit 110 is arranged to operate the alternating current signal source 140 at a frequency at which the phase shift is as small as possible. Otherwise state, the alternating current signal source 140 preferably operates at a frequency at which the imaginary part of the impedance of the electrolysis module 160 is as low as possible. Alternatively or additionally, this control functionality is provided within the alternating current signal source 140.
The frequency of fo preferably lies between 5 102 Hz and 2 103 Hz, more preferably between 7.5102 Hz and 1.5 103 Hz and even more preferably between 9 102 Hz and 1.1 10% Hz. In other embodiments, the frequency of fo may lie lower, between 5-10! Hz and 1.5 102 Hz, preferably between 8-10! Hz and 1.2 ‘102 Hz and more preferably between 9 10: Hz and
1.1102 Hz. In further embodiments, fo lies in same ranges around 2-102 Hz, 3102 Hz, 4-102 Hz, 4-102 Hz, 5 102 Hz, 6 102 Hz, 7 102 Hz, 8 102 Hz, 9 102 Hz, depending on the design of the electrolyser cells of the electrolysis module 160, The amplitude of the signal provided by the alternating current signal source 140 is preferably a tenth of the value of the signal provided by the AC/DC converter 130 in terms of voltage.
The operation of the power conversion system 100 will be discussed below in further detail in conjunction with a flowchart 400 shown by Figure 4. The various parts of the flowchart 400 are briefly summarised below: 402 initialise system 404 obtain impedance of the electrolysis module; 406 adjust output voltage 408 adjust frequency 410 obtain temperature of the electrolysis module 412 adjust output voltage; 414 obtain hydrogen pressure in the electrolysis module; 416 adjust output voltage; 418 obtain torque of the turbine generator axis; 420 adjust output voltage; 422 switch electrolyser connections; 424 end procedure (return to start) The procedure starts in a terminator 402 in which various parts of the power conversation system 100 are initialised. In step 404, the impedance of the electrolysis module 160 is obtained. This impedance may be obtained by means of the reactive power monitor 142 or the impedance sensor 168. Alternatively or additionally, the impedance or at least the resistance - real part of the impedance - of the electrolysis module 160 is obtained using data on the lifetime of the electrolysis module 160.
The lifetime data may be monitored by means of the control unit 110, using for example an internal clock. Reference data like a table stored in the control memory 112 on a relation between age and internal resistance of the electrolysis module 160 may be looked up to determine the actual internal resistance.
The internal resistance of the electrolysis module 160 increase with lifetime, which means that in order to keep the voltage across the membrane 162 at substantially the same level that is required for the electrolysis, the external voltage is to be mcreased. This external voltage is determined by the output voltage of the AC/DC converter 130. In step 406, the output voltage of the AC/DC converter 130 is adjust to compensate for any increase of internal resistance of the electrolysis module 160.
In step 408, the frequency of the alternating current signal source 140 is adjusted as discussed above, to arrive at an imaginary part of the operating impedance of the electrolysis module 160 that is as small as possible.
In step 410, temperature of the electrolysis module 160 is obtained, preferably by means of the temperature sensor 166. Based on the obtain data, optionally using reference data stored in the control memory 112, the AC/DC converter 130 is controlled to adjust the output voltage accordingly in step 412. If the temperature has increased compared to a previous period, the output is increased and if the temperature has decreased compared to a previous period, the output voltage is decreased.
In step 414, pressure of hydrogen in the electrolysis module 160 is obtained. This pressure may obtained at the output 174, in the anode reaction space 176 near the membrane, at another location of a combination thereof.
Additionally or alternatively, pressures of other gases - oxygen, steam - in the electrolysis module 160 may obtained.
Based on the obtain data, optionally using reference data stored in the control memory 112, the AC/DC converter 130 is controlled to adjust the output voltage accordingly in step 416. If the pressure has increased compared to a previous period, the output voltage is increased and if the pressure has decreased compared to a previous period, the output voltage is decreased.
In step 414, pressure of oxygen in the electrolysis module 160 is obtained.
This pressure may obtained at the output 174, in the anode reaction space 176 near the membrane, at another location of a combination thereof.
Additionally or alternatively, pressures of other gases in the electrolysis module 160 may obtained.
Based on the obtain data, optionally using reference data stored in the control memory 112, the AC/DC converter 130 is controlled to adjust the output voltage accordingly in step 416. If the pressure has increased compared to a previous period, the output is increased and if the pressure has decreased compared to a previous period, the output voltage is decreased.
In step 418, torque on the turbine generator axis is obtained.
Based on the obtained data, optionally using reference data stored in the control memory 112, the AC/DC converter 130 is controlled to adjust the output voltage accordingly in step 420. The output voltage is controlled such that the voltage over the membrane 162 is kept or set at a preferred level.
As an increased torque may lead to increased current through the system, there will be an increased voltage of an internal resistance of the electrolysis module, resulting in a lower voltage over the membrane 162. To keep the voltage over the membrane 162 at the appropriate level, the output voltage of the AC/DC converter 130 may be increased in step 422 if the torque on the turbine generator axis increases.
The torque of the rotor 124 of the turbine generator 120 depends on the current and voltage taken up and provided by the AC/DC converter
130, thus the total power in the end consumed by the electrolysis module
160. For the turbine generator 120, based on parameters of the turbine itself, as well as the rotor 124 and, optionally, of other components of the system 100, also a maximum rotational speed of the rotor 124 and/or a preferred range of rotational speed may be set. Based on a given speed of the wind and system parameters, this maximum speed and/or speed range may be translated to a desired torque or desired torque range, for a particular value of the speed of the wind.
Based on this determined torque or torque range, in turn, a power may be determined to be taken from the AC/DC converter; power is the product of torque and angular speed.
The electrolysis module 160 may comprise one or more electrolysis cells, provided in series with or parallel to the AC/DC converter 130 or a combination thereof. Such configuration has influence of the voltage to be provided to the electrolysis module 160. Furthermore, electrolysis cells may be changed and different electrolysis cells may have different internal impedances or may require different voltages across their membranes. To address this, the control memory 112 may have stored in it a reference voltage that is to be applied across the membrane 162 and using data obtained by the various sensors, a desired output voltage of the AC/DC converter 130 is determined by the control unit 110.
In order to match power that needs to be taken from the turbine generator for a desired torque thereof and to be consumed by the electrolysis module 160, the AC/DC converter 130 and the switching of the various electrolysis cells in the electrolysis module 160 may be switched such that each electrolysis cell has the appropriate voltage applied across the membrane 162 of each cell. The various electrolysis cells may be switched in step 422 from serial to parallel configuration and some cells may be switch on or off to ensure an appropriate voltage across each of the membranes of the electrolysis cells and the appropriate power to be taken up by the electrolysis module 160.
In terminator 424, the adjustment procedure ends. Preferably, the procedure as depicted by the flowchart 400 is carried out again, optionally after passing through a waiting loop.
Figure 5 depicts a further power conversion system 500. The further power conversion system 500 comprises the same elements as the power conversion system 100. These elements are referenced by means of the same reference numerals, arranged to provide the same functionality as discussed above and not discussed in further detail again in conjunction with Figure 5.
In the embodiment according to Figure 5, the AC/DC converter 130 may be implemented using a passive rectifying module. To the output of the AC/DC converter 130, a direct current to direct current converter 196 - DC/DC converter - may be connected. The DC/DC converter 196 may be controlled, by the control unit 110, to provide an output voltage at a particular level, suitable for providing an appropriate voltage to the electrolysis system 160.
To the output of the AC/DC converter 130, also a direct current to alternating current converter 192 - DC/AC converter - is provided. The DC/AC converter 196 may be controlled by the control unit 110 or by another control unit (not shown). The output of the DC/AC converter 196 may be connected to a large area or local power grid 190, optionally via a bandpass filter 194 or other filter to remove any low or high frequency components - for example other than 50 Hz or 400 Hz (for aviation purposes) - from the signal generated by the DC/AC converter 192.
The further power conversion system 500 allows power generated by the turbine generator 120 to be distributed to the electrolysis module 160 and/or the power grid 190 and determine a ratio between both, depending on power supplied by the turbine generator 120 and the demand by the power grid 190. If the demand by the power grid 190 is low, most power generated by the turbine generator 120 may be provided to the electrolysis system 160.
In yet further embodiments, another power supply module, for example fuel cell or a fuel cell system comprising multiple fuel cells, a solar power plant, another turbine generator, other, or a combination thereof, may be added to the further power conversion system 500 to provide additional electrical power to the further power conversion system 500 to be distributed.

Claims (13)

ConclusiesConclusions 1. Wisselstroom AC naar gelijkstroom DC conversiecircuit voor een turbine generator, omvattende: een actieve AC/DC omzetter met een bestuurbaar wtgangsspanningsniveau met een Ingang voor ontvangen van wisselstroom elektrisch vermogen van een turbine generator en een uitgang voor leveren van gelijkstroom elektrisch vermogen aan een elektrolysesysteem voor elektrolyse van water; een besturingseenheid ingericht om: - gegevens te ontvangen gerelateerd aan ten minste een van een staat van het elektrolysesysteem en de turbine generator; en - de uitgangsspanning aan te passen op basis van de ontvangen gegevens.An alternating current AC to direct current DC conversion circuit for a turbine generator, comprising: an active AC/DC converter having a controllable input voltage level having an input for receiving alternating current electrical power from a turbine generator and an output for supplying direct current electrical power to an electrolysis system for electrolysis of water; a control unit arranged to: - receive data related to at least one of a state of the electrolysis system and the turbine generator; and - adjust the output voltage based on the received data. 2. AC naar DC conversiecircuit volgens conclusie 1, verder omvattende: - een oscillator voor genereren van een wisselstroomhulpsignaal waarvan de frequentie wordt bestuur door de besturingseenheid; en - een sommatiecircuit om het wisselspanningssignaal op te tellen bij de uitgang van de actieve AC/DC omzetter; waarbij de besturingseenheid is ingericht om de impedantie van het elektrolysesysteem te bepalen en de oscillatorfrequentie te besturen als een functie van de bepaalde impedantie.The AC to DC conversion circuit of claim 1, further comprising: - an oscillator for generating an AC auxiliary signal whose frequency is controlled by the control unit; and - a summing circuit for adding the AC voltage signal to the output of the active AC/DC converter; wherein the control unit is arranged to determine the impedance of the electrolysis system and to control the oscillator frequency as a function of the determined impedance. 3. AC naar DC conversiecircuit volgens conclusie 2, waarbij de besturingseenheid is ingericht om: - te bepalen of de impedantie van het elektrolysesysteem een inductief of een capacitief karakter heeft; - de oscillator te besturen om de frequentie van het wisselstroomhulpsignaal te verlagen als de impedantie een inductief karakter heeft; enAC to DC conversion circuit according to claim 2, wherein the control unit is arranged to: - determine whether the impedance of the electrolysis system has an inductive or a capacitive character; - control the oscillator to decrease the frequency of the alternating current auxiliary signal if the impedance has an inductive character; and - de oscillator te besturen om de frequentie van het wisselstroomhulpsignaal te verhogen als de impedantie een capacitief karakter heeft.- control the oscillator to increase the frequency of the AC auxiliary signal if the impedance has a capacitive character. 4. AC naar DC conversiecircuit volgens een van de voorgaande conclusies, waarbij de besturingseenheid is ingericht om gegevens met betrekking tot gasdruk in het elektrolysesysteem te ontvangen en om de uitgangsspanning te verhogen als de gasdruk toeneemt in verloop van tijd en om de uitgangsspanning te verlagen als de gasdruk afneemt in verloop van tijd.An AC to DC conversion circuit according to any one of the preceding claims, wherein the control unit is arranged to receive data related to gas pressure in the electrolysis system and to increase the output voltage as the gas pressure increases over time and to decrease the output voltage as the gas pressure decreases over time. 5. AC naar DC conversiecircuit volgens een van de voorgaande conclusies, waarbij de besturingseenheid is ingericht om gegeven te verkrijgen met betrekking tot interne impedantie van het elektrolysesysteem en de besturingseenheid is ingericht om de uitgangsspanning te verhogen als de interne impedantie van het elektrolysesysteem toeneemt.An AC to DC conversion circuit according to any one of the preceding claims, wherein the control unit is arranged to obtain data regarding internal impedance of the electrolysis system and the control unit is arranged to increase the output voltage as the internal impedance of the electrolysis system increases. 6, AC naar DC conversiecircuit volgens conclusie 3, waarbij de besturingseenheid is ingericht om: - operationele leeftijd van het elektrolysesysteem te verkrijgen; - gegevens te verkrijgen met betrekking tot een relatie tussen interne impedantie van het elektrolyse systeem; en - de interne impedantie van het elektrolysesysteem te bepalen op basis van de ontvangen gegevens.An AC to DC conversion circuit according to claim 3, wherein the control unit is arranged to: - obtain operational age of the electrolysis system; - obtain data regarding a relationship between internal impedance of the electrolysis system; and - determine the internal impedance of the electrolysis system based on the received data. 7. AC naar DC conversiecircuit volgens een van de voorgaande conclusies, waarbij de besturingseenheid is ingericht om gegevens te verkrijgen met betrekking tot interne temperatuur van het elektrolysesysteem en de besturingseenheid is ingericht om de uitgangsspanning te verhogen als de interne temperatuur van het elektrolysesysteem toeneemt.An AC to DC conversion circuit according to any one of the preceding claims, wherein the control unit is arranged to obtain data regarding internal temperature of the electrolysis system and the control unit is arranged to increase the output voltage as the internal temperature of the electrolysis system increases. 8. AC naar DC conversiecircuit volgens een van de voorgaande conclusies, waarbij de besturingseenheid is ingericht om gegevens te verkrijgen met betrekking tot het koppel op een aandrijfas van de turbine generator en de besturingseenheid is ingericht om de uitgangsspanning te verhogen als het koppel toeneemt.An AC to DC conversion circuit according to any one of the preceding claims, wherein the control unit is arranged to obtain data relating to the torque on a drive shaft of the turbine generator and the control unit is arranged to increase the output voltage as the torque increases. 9. AC naar DC conversiecircuit volgens een van de voorgaande conclusies, waarbij de besturingseenheid is ingericht om een referentiespanning te verkrijgen en de besturingseenheid is ingericht om de uitgangsspanning te besturen op basis van de referentiespanning.An AC to DC conversion circuit according to any one of the preceding claims, wherein the control unit is arranged to obtain a reference voltage and the control unit is arranged to control the output voltage based on the reference voltage. 10. AC naar DC conversiecircuit volgens een van de voorgaande conclusies, waarbij de actieve AC naar DC omzetter omvat: - een AC naar DC omzetter subsysteem voor omzetten van het wisselstroom elektrische vermogen van de turbine generator om te zetten naar een intern gelijkstroom elektrisch vermogen; - een DC naar DC omzetter met een bestuurbaar uitgangsspanningsniveau bestuurbaar door de besturingseenheid; en - een DC naar AC omzetter ingericht om het interne gelijkstroom elektrisch vermogen om te zetten naar een uitgangswisselstroomvermogen op een niveau, fase en frequentie passend bij een extern netwerk voor leveren van uitgangswisselstroomvermogen aan het externe netwerk.An AC to DC conversion circuit according to any one of the preceding claims, wherein the active AC to DC converter comprises: - an AC to DC converter subsystem for converting the alternating current electrical power of the turbine generator into an internal direct current electrical power; - a DC to DC converter with a controllable output voltage level controllable by the control unit; and - a DC to AC converter configured to convert the internal DC electrical power to an output AC power at a level, phase and frequency appropriate to an external network for supplying AC output power to the external network. 11. Vermogensvoorzieningssysteem omvattende: - een turbine generator; en - een wisselstroom AC naar gelijkstroom conversiecircuit volgens een van de voorgaande conclusies waarvan de ingang elektrisch gekoppeld is aan een elektrische utgang van de turbine generator.11. Power supply system comprising: - a turbine generator; and - an alternating current AC to direct current conversion circuit according to any of the preceding claims, the input of which is electrically coupled to an electrical output of the turbine generator. 12. Vermogensvoorzieningssysteem volgens conclusie 11, verder omvattende een elektrolysesysteem voor elektrolyse van water elektrische gekoppeld aan de uitgang van de actieve AC DC omzetter.The power supply system of claim 11, further comprising an electrolysis system for electrolysis of water electrically coupled to the output of the active AC DC converter. 13. Vermogensvoorzieningssysteem volgens conclusie 12, waarbij het elektrolysesysteem ten minste een elektrolysecel omvat en ten minste een van: - Een temperatuursensor voor voelen van een interne temperatuur van de elektrolysecel; en - Een druksensor voor voelen van een druk van ten minste een gas in de elektrolysecel; Waarbij de ten minste een van de temperatuursensor en de druksensor is gekoppeld aan de besturingseenheid.The power supply system of claim 12, wherein the electrolytic system comprises at least one electrolytic cell and at least one of: - a temperature sensor for sensing an internal temperature of the electrolytic cell; and - a pressure sensor for sensing a pressure of at least one gas in the electrolytic cell; Where the at least one of the temperature sensor and the pressure sensor is coupled to the control unit.
NL2024917A 2020-02-14 2020-02-14 AC to DC converter for electrolysis NL2024917B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
NL2024917A NL2024917B1 (en) 2020-02-14 2020-02-14 AC to DC converter for electrolysis
PCT/NL2021/050095 WO2021162553A1 (en) 2020-02-14 2021-02-12 Ac to dc converter for electrolysis
US17/799,423 US20230140438A1 (en) 2020-02-14 2021-02-12 Ac to dc converter for electrolysis
EP21705640.7A EP4103764A1 (en) 2020-02-14 2021-02-12 Ac to dc converter for electrolysis
AU2021220109A AU2021220109A1 (en) 2020-02-14 2021-02-12 AC to DC converter for electrolysis
KR1020227031527A KR20220153018A (en) 2020-02-14 2021-02-12 AC-DC converter for electrolysis
CL2022002190A CL2022002190A1 (en) 2020-02-14 2022-08-12 ac to dc converter for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2024917A NL2024917B1 (en) 2020-02-14 2020-02-14 AC to DC converter for electrolysis

Publications (1)

Publication Number Publication Date
NL2024917B1 true NL2024917B1 (en) 2021-09-15

Family

ID=70005679

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024917A NL2024917B1 (en) 2020-02-14 2020-02-14 AC to DC converter for electrolysis

Country Status (1)

Country Link
NL (1) NL2024917B1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BINTZ STEFFEN ET AL: "Load Emulation for Electrolysis Rectifiers", 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS (PEDS), IEEE, 9 July 2019 (2019-07-09), pages 1 - 7, XP033719305, DOI: 10.1109/PEDS44367.2019.8998887 *
BINTZ STEFFEN ET AL: "Parallel-Serial-Rectifier for Power-to-Hydrogen Applications", 2019 21ST EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE '19 ECCE EUROPE), EPE ASSOCIATION, 3 September 2019 (2019-09-03), XP033665765, DOI: 10.23919/EPE.2019.8915526 *
DE BATTISTA H ET AL: "Power conditioning for a wind-hydrogen energy system", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 155, no. 2, 21 April 2006 (2006-04-21), pages 478 - 486, XP027937651, ISSN: 0378-7753, [retrieved on 20060421] *

Similar Documents

Publication Publication Date Title
US20230140438A1 (en) Ac to dc converter for electrolysis
Ahmed et al. Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation
Thanaa et al. Energy flow and management of a hybrid wind/PV/fuel cell generation system
JP4087701B2 (en) Isolated network and how to operate an isolated network
AU2005327536B2 (en) Vanadium redox battery energy storage and power generation system incorporating and optimizing diesel engine generators
US7265456B2 (en) Power generation system incorporating a vanadium redox battery and a direct current wind turbine generator
Gyawali et al. Integrating fuel cell/electrolyzer/ultracapacitor system into a stand-alone microhydro plant
US8958218B2 (en) System and method for power conversion for renewable energy sources
KR20040097138A (en) Separate network and method for operating a separate network
Eskander et al. Energy flow and management of a hybrid wind/PV/fuel cell generation system
NL2024917B1 (en) AC to DC converter for electrolysis
Okonkwo et al. MPPT control of an interleaved boost converter for a polymer electrolyte membrane fuel cell applications
NL2024916B1 (en) AC to DC converter for electrolysis
CN114678568B (en) Modeling method for proton exchange membrane fuel cell
Jayalakshmi Study of hybrid photovoltaic/fuel cell system for stand-alone applications
Azzeddine et al. Fuel cell grid connected system with active power generation and reactive power compensation features
JP5135064B2 (en) Hybrid power supply and power unit using the same
Oussama et al. Intelligent Energy Management Strategy For Multi-Sources Isolated DC-Microgrid
Kirubakaran et al. A two-stage power electronic interface for fuel cell-based power supply system
Reddy et al. Hybrid DC-DC Converter with Artificial Intelligence based MPPT Algorithm for FC-EV
Pathak et al. An Electronic Load Controller for Micro Hydro System
ЭНЕРГОСНАБЖЕНИЯ APPLICATION OF A SQUIRREL-CAGE ASYNCHRONOUS GENERATOR IN WIND POWER TURBINES FOR AUTONOMOUS POWER SUPPLY TO CONSUMERS IN JIZZAKH REGION
Abdalfatah et al. Hybrid Wind/FC System Design and Simulation
Xiong et al. A Multi-Mode Self-Optimization Electrolysis Converting Strategy for Improving Efficiency of Alkaline Water Electrolyzers
Rambabu et al. Design Of MPPT Based Hybrid Wind And Fuel-Cell Energy System

Legal Events

Date Code Title Description
HC Change of name(s) of proprietor(s)

Owner name: HYGRO TECHNOLOGY B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: HYGRO TECHNOLOGY BV

Effective date: 20220822