NL2024742B1 - Low-loss dielectric for high frequency cryogenic applications - Google Patents

Low-loss dielectric for high frequency cryogenic applications Download PDF

Info

Publication number
NL2024742B1
NL2024742B1 NL2024742A NL2024742A NL2024742B1 NL 2024742 B1 NL2024742 B1 NL 2024742B1 NL 2024742 A NL2024742 A NL 2024742A NL 2024742 A NL2024742 A NL 2024742A NL 2024742 B1 NL2024742 B1 NL 2024742B1
Authority
NL
Netherlands
Prior art keywords
lines
electromagnetic circuit
layer
superconducting material
electromagnetic
Prior art date
Application number
NL2024742A
Other languages
Dutch (nl)
Inventor
Endo Akira
Vollebregt Sten
Jan Anton Baselmans Jochem
Buijtendorp Bruno
Original Assignee
Univ Delft Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delft Tech filed Critical Univ Delft Tech
Priority to NL2024742A priority Critical patent/NL2024742B1/en
Priority to PCT/NL2021/050014 priority patent/WO2021150101A1/en
Application granted granted Critical
Publication of NL2024742B1 publication Critical patent/NL2024742B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N69/00Integrated devices, or assemblies of multiple devices, comprising at least one superconducting element covered by group H10N60/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Abstract

The present invention is in the field of an electromagnetic circuit which may be used as a detector or in 5 a quantum computer, which may be provided in an electronic device, and in a method of operating said electromagnetic circuit. Therein a low—loss dielectric is used for high frequency typically cryogenic applications.

Description

Low-loss dielectric for high frequency cryogenic applications
FIELD OF THE INVENTION The present invention is in the field of an electromagnetic circuit, which may be used as a detector or in a guantum computer, which may be provided in an electronic device, and in a method of operating said electromagnetic circuit. Therein a low-loss dielectric is used for high frequency typically cryogenic applications.
BACKGROUND OF THE INVENTION The present invention is in the field of an electromagnetic circuit. An electromagnetic circuit may relate to lumped circuit elements, a transmission line, a resonator, a device, a system.
A resonator oscillates with increased amplitude at some resonant frequencies. The oscillations can be acoustic, electromagnetic, such as optical, or mechanical. Resonators may be used to generate waves of specific resonance frequencies. They may also be used to detect or filter specific arriving resonance frequencies. Resonators can therefore produce oscillations of very precise frequency, the resonance frequency, and higher order frequencies thereof. Resonators can be electromagnetic of nature, solid state, and combinations thereof, such as a cavity, and circuits, such as a circuit comprising an inductor and a capacitor.
There has been further research and development for obtaining millimeter and sub-millimeter wavelength resonators. It is an advantage to provide these on a chip, such that semi- conductor technology can be used to produce these resonators. Frequencies up to 1100 GHz can be obtained, with a relatively narrow bandwidth around resonance frequencies. On-chip filter bank spectrometers using superconducting resonators as narrow band-separation filters could be used as multi-object broadband spectrometers for millimeter or smaller wavelength telescopes for astronomy. Advantages thereof are a good sensitivity, a compact size, and flexibility. It is however difficult to obtain high quality factors Q with millimeter and submillimeter resonant filters.
— 2 _ Recently superconducting materials are used in resonators. For instance, US 6,626,995 recites use of magnesium diboride as a superconductivity thin film which can be applied to a rapid single flux quantum (RSFQ) circuit, and a method for making the same, using a template film is formed on top of the substrate, wherein the template has a hexagonal crystal structure. The superconducting thin film is formed on top of the template film.
So far performance of the prior art resonators is hampered by losses in the (superconducting) circuits.
The present invention therefore relates to an improved circuit, which solves one or more of the above problems and drawbacks of the prior art, providing reliable results, without jeopardizing functionality and advantages.
SUMMARY OF THE INVENTION It is an object of the invention to overcome one or more limitations of the prior art and provide an electromagnetic circuit that has low losses. The present invention relates to an electromagnetic circuit comprising a substrate 10, on the substrate a first layer 11 of superconducting material, on the superconducting material a dielectric layer 12, wherein the dielectric layer is a SiC layer, and on the dielectric layer a second layer 13 of superconducting material or part thereof, wherein the part may be one or more of a geometrical shaped flat object, such as a line, a disc, a square, a rectangle, a multigonal object, wherein the second layer of superconducting material may comprise at least one line, such as at least two lines, preferably 3-1000 lines, wherein lines may be parallel, and at least one coupling for operating the resonator, such as capacitive of inductive couplings. The layers and substrate may be considered as a sandwich structure. Suitable superconducting materials have at a given frequency, such as at a resonance frequency from 100-1000 GHz, a superconducting gap energy which is at least larger than the photon energy, preferably >1014% thereof, such as >1103 thereof. The layers may be provided directly on top of one and another, with at least one intermediate layer, and combinations thereof. The SiC layer has a low mechanical stress, especially if the layer
- 3 = is deposited by plasma enhanced chemical vapor deposition (PECVD). On the contrary, Si02 and SiN: layers showed relatively high losses being considered too high for the present application, and amorphous silicon are preferably also not been used, as high stresses in the layers were observed.
The stress in the present SiC is preferably < 100 MPa, more preferably < 50 MPa, such as < 10 MPa.
In a second aspect the present invention relates to an electronic device comprising an electromagnetic circuit according to the invention, wherein the electronic device is preferably selected from a resonator, a detector, such as an astronomical detector, a quantum computer, a transmission line, an electromagnetic capacitor, an electromagnetic filter, a chip, such as an integrated circuit, an amplifier, and combinations thereof.
In a third aspect the present invention relates to a method of operating an electromagnetic circuit according to the invention or an electronic device according to the invention, comprising providing the resonator or the device, cooling the electromagnetic circuit or the device to a temperature <200 K, and detecting a signal, such as an astronomical signal.
Advantages of the present description are detailed throughout the description.
DETAILED DESCRIPTION OF THE INVENTION In an exemplary embodiment of the present electromagnetic circuit the resonance frequency may be from 1 MHz to 1 THz, preferably from 1-800 GHz, preferably from 3-700 GHz, such as 100-600 GHz.
In an exemplary embodiment of the present electromagnetic circuit the second layer of superconducting metal may comprise 1-100 lines, preferably 10-64 lines, such as 24-48 lines, wherein lines may be parallel to one and another or not.
In an exemplary embodiment of the present electromagnetic circuit one or at least two first lines may have an equal first length, and wherein one or at least two second lines have an equal second length, wherein the first length is different from the second length (see e.g. fig. 27). Therewith
- 4 - two different resonators, with each a resonance frequency, can be provided, such as on one device.
In an exemplary embodiment of the present electromagnetic circuit a length of lines may be equal to a 1/2* a resonance frequency.
In an exemplary embodiment of the present electromagnetic circuit two lines may be connected by a bridge of second layer superconducting material and wherein a length of the two connected lines may be equal to a 1/4 * a resonance frequency.
In an exemplary embodiment of the present electromagnetic circuit two or more resonators may be provided, such as two or more resonators with a different frequency.
In an exemplary embodiment of the present electromagnetic circuit the dielectric layer may be deposited by PECVD.
In an exemplary embodiment of the present electromagnetic circuit the dielectric layer may have a low stress of < 10 MPa.
In an exemplary embodiment of the present electromagnetic circuit the substrate may be selected from a semiconductor material, such as silicon, from dielectric materials, such as sapphire, glass, silicon oxide, and silicon nitride, and may be preferably provided as a wafer.
In an exemplary embodiment of the present electromagnetic circuit it may comprise at least two couplings for connecting to an outside world.
In an exemplary embodiment of the present electromagnetic circuit a thickness of the dielectric layer may be from 1- 50000 nm, preferably from 10-5000 nm, more preferably 30-1000 nm, even more preferably 50-350 nm, such as 100-200 nm.
In an exemplary embodiment of the present electromagnetic circuit a thickness of the first layer of superconducting metal may be from 5-1000 nm, preferably 10-500 nm, such as 100-300 nm.
In an exemplary embodiment of the present electromagnetic circuit a thickness of the second layer of superconducting metal may be from 5-1000 nm, preferably 10-500 nm, such as 100-300 nm.
In an exemplary embodiment of the present electromagnetic circuit a width of the lines each individually may be from 1-
— 5 = 10 um, such as 2-5 um.
In an exemplary embodiment of the present electromagnetic circuit a length of the lines each individually may be from
0.1-10 mm.
In an exemplary embodiment of the present electromagnetic circuit between at least two lines no solid material is present, i.e. the space in between is left open, or is etched away, or a combination thereof. Depending on further processing a gas, such as air, or virtually no gas, such as vacuum, may be present in between lines.
In an exemplary embodiment of the present electromagnetic circuit a first space in between two adjacent first lines may be 1-100 um.
In an exemplary embodiment of the present electromagnetic circuit a second space in between two adjacent second lines may be 10-500 um (see e.g. fig. 2c).
In an exemplary embodiment of the present electromagnetic circuit the lines each individually may be capacitively coupled to a signal line (see e.g. fig. 2b).
In an exemplary embodiment of the present electromagnetic circuit the superconducting material may be selected from NbTiN, NbSnN, Nb, NbN, Ta, Al, and combinations thereof.
In an exemplary embodiment the present electronic device may comprise at least two channels, preferably 3-100000 channels, such as 5-1000 channels, a readout line, and a wave filter.
In an exemplary embodiment of the present method the cooling of the electromagnetic circuit or the device may be to a temperature <10 K, such as < 4 K.
The invention will hereafter be further elucidated through the following examples which are exemplary and explanatory of nature and are not intended to be considered limiting of the invention. To the person skilled in the art it may be clear that many variants, being obvious or not, may be conceivable falling within the scope of protection, defined by the present claims.
SUMMARY OF THE FIGURES Figs. la-b, 2a-j and 3 show details of the present
- 6 — invention.
DETAILED DESCRIPTION OF FIGURES The figures are detailed throughout the description, and specifically in the experimental section below. In the figures: 100 resonator substrate 11 first superconducting layer 10 12 dielectric layer 13 second superconducting layer 14 parallel resonator lines Figure la shows a stack of layers suited for the present invention, comprising a substrate 10, a first superconducting layer 11, a dielectric SiC layer 12, and a second superconducting layer 13 comprising parallel lines 14. Fig. 1b shows alternative shapes of the second superconducting layer 14, wherein the left most may be considered as a partial coverage of the SiC layer 12 FIG. 2 shows results of prior work of some of the present inventors, published in Applied Physics letters 103, 032601 (2013), doi: 10-1063/1.4813816, which document and its contents are incorporated by reference. In fig. 2a 3-port network model of a single submillimeter wave filter is shown. ASM and AMW indicate the submillimeter wave and microwave wavelengths, respectively, which are reduced by the dielectric medium and also by the kinetic inductance of the superconductor. Fig. 2b shows a Network model of a single channel, which is a combination of a submillimeter wave filter and a microwave resonator (MKID). The channel is capacitively coupled to the signal line on the filter end and to the readout line on the MKID end. Fig. 2c shows a Micrograph of a small area on the filter bank chip. The image captures the antenna and 5 channels of the filter bank nearest to the antenna. Fig. 2d shows a Double-slot antenna etched into the NbTiN ground plane. The horizontal line is the signal MSL which is connected to the filter bank. Fig. 2e shows a Submillimeter wave MSL filter, shaped like the character U. Figs. 2f-2g show Sections of the MSL-MKID. Figs. 2h-2i show
- 7 = Microwave coupler of the MKID for reading out the response. Fig. 27 shows a Block diagram of the experimental setup. Fig. 3 shows an example of a resonator.
EXPERIMENTS The present SiC layer was deposited using SiC PECVD. With respect to the SiC PECVD deposition the following parameters were used. The stress may be tuned using the gas ratios and LF/HF power ratio: Substrate temperature: 400 °C; RF high-frequency (13.56 MHz) power: 450 W; RF low-frequency (240 kHz) power: 150 W; SiH4 flow: 25 sccm; CH4 flow: 411 sccm Pressure: 0.27 kPa (2 Torr) Deposition rate: 10 nm/sec. For 250 nm a time of 26 sec was used. For the sake of searching the following section is added reflecting embodiments of the present invention and which represents a translation of the subsequent section.
1. Electromagnetic circuit comprising a substrate (10), on the substrate a first layer (11) of superconducting material, on the superconducting material a dielectric layer (12), wherein the dielectric layer is a SiC layer, and on the dielectric layer a second layer (13) of superconducting material or part thereof, wherein the second layer of superconducting material preferably comprises at least one line, more preferably two lines (14), preferably 3-100000 lines, and at least one coupling for operating the electromagnetic circuit.
2. Electromagnetic circuit according to embodiment 1, wherein the lines form a resonator with a resonance frequency from 1 MHz to 1 THz, preferably from 1-800 GHz, preferably from 3-700 GHz, such as 100-600 GHz.
3. Electromagnetic circuit according to any of embodiments 1-2, wherein the second layer of superconducting material comprises 5-100 lines, and/or
- 8 - wherein at least two first lines have an equal first length, and wherein at least two second lines have an equal second length, wherein the first length is different from the second length, and/or wherein a length of lines is equal to a 1/2* a resonance frequency, and/or wherein two lines are connected by a bridge of second layer superconducting material and wherein a length of the two connected lines is equal to a 1/4 * a resonance frequency, and/or wherein two or more resonators are provided, such as two or more resonators with a different frequency.
4. Electromagnetic circuit according to any of embodiments 1-3, wherein the dielectric layer is deposited by PECVD, and/or wherein the dielectric layer has a low stress of < 10 MPa.
5. Electromagnetic circuit according to any of embodiments 1-4, wherein the substrate is selected from a semiconductor material, such as silicon, from dielectric materials, such as sapphire, glass, silicon oxide, and silicon nitride, and is preferably provided as a wafer.
6. Electromagnetic circuit according to any of embodiments 1-5, wherein the electromagnetic circuit comprises at least two contacts for connecting to an outside world.
7. Electromagnetic circuit according to any of embodiments 1-5, wherein a thickness of the dielectric layer is from 10-50000 nm, and/or, wherein a thickness of the first layer of superconducting material 1s from 5-1000 nm, such as 100-300 nm, and/or wherein a thickness of the second layer of superconducting material is from 5-1000 nm, and/or wherein between at least two lines no solid material is present.
8. Electromagnetic circuit according to any of embodiments 3-7, wherein a width of the lines each individually is from 1-10 um, such as 2-5 pm, and/or wherein a length of the lines each individually is from 0.1-10 mm, and/or wherein a first space in between two adjacent first parallel
- 9 — lines is 1-100 pm, and/or wherein a first space in between two adjacent first parallel lines is 1-100 um, wherein a second space in between two adjacent second parallel lines is 10-500 pum, and/or wherein the lines each individually are capacitively coupled to a signal line.
9. Electromagnetic circuit according to any of embodiments 1-8, wherein the superconducting material is selected from NbTiN, NbSnN, Nb, NbN, Ta, Al, and combinations thereof.
10. Electronic device comprising an electromagnetic circuit according to any of embodiments 1-9, wherein the electronic device is preferably selected from a resonator, a detector, such as an astronomical detector, a quantum computer, a transmission line, an electromagnetic capacitor, an electromagnetic filter, a chip, and combinations thereof.
11. Electronic device according to embodiment 10, comprising at least two channels, such as 3-100000 channels, a readout line, and a wave filter.
12. Method of operating an electromagnetic circuit according to any of embodiments 1-9 or an electronic device of embodiments 10 or 11, comprising providing the electromagnetic circuit or the device, cooling the electromagnetic circuit or the device to a temperature <200 K, and detecting a signal, such as an astronomical signal.
13. Method according to embodiment 12, comprising cooling the electromagnetic circuit or the device to a temperature <10 K, such as < 4 K.

Claims (13)

- 10 = CONCLUSIES- 10 = CONCLUSIONS 1. Elektromagnetische circuit omvattende een substraat (10), op het substraat (10), een eerste laag (11) supergeleidend materiaal, op het supergeleidende materiaal, een diëlektrische laag (12), waarbij de diëlektrische laag een SiC-laag is, en op de diëlektrische laag een tweede laag (13) supergeleidend materiaal of een deel daarvan, waarbij de tweede laag supergeleidend materiaal bij voorkeur ten minste éen lijn omvat, bij voorkeur twee lijnen (14), bij voorkeur 3-100000 lijnen, en ten minste een koppeling voor in werking stellen van het elektromagnetische circuit.An electromagnetic circuit comprising a substrate (10), on the substrate (10), a first layer (11) of superconducting material, on the superconducting material, a dielectric layer (12), the dielectric layer being a SiC layer, and on the dielectric layer a second layer (13) of superconducting material or a part thereof, the second layer of superconducting material preferably comprising at least one line, preferably two lines (14), preferably 3-100000 lines, and at least one clutch for activating the electromagnetic circuit. 2. Elektromagnetisch circuit volgens conclusie 1, waarin de lijnen een resonator vormen met een resonantiefrequentie van 1 MHz tot 1 THz, bij voorkeur van 1- 800 GHz, bij voorkeur van 3-700 GHz, zoals 100-600 GHz.An electromagnetic circuit according to claim 1, wherein the lines form a resonator with a resonance frequency of 1 MHz to 1 THz, preferably 1-800 GHz, preferably 3-700 GHz, such as 100-600 GHz. 3. Elektromagnetisch circuit volgens een van de conclusies 1-2, waarbij de tweede laag supergeleidend materiaal 5-100 lijnen omvat, en/of waarin ten minste twee eerste onderling lijnen een gelijke eerste lengte hebben en waarin ten minste twee tweede lijnen een gelijke tweede lengte hebben, waarin de eerste lengte verschillend is van de tweede lengte, en/of waarin een lengte van lijnen gelijk is aan een 1/2%* resonantiefrequentie, en/of waarin twee lijnen met elkaar verbonden zijn door een brug van tweede laag supergeleidend materiaal en waarin een lengte van de twee onderling verbonden lijnen gelijk is aan een 1/4 * resonantiefrequentie, en/of waarin twee of meer resonatoren zijn opgenomen, zoals twee of meer resonatoren met een verschillende frequentie.An electromagnetic circuit according to any one of claims 1-2, wherein the second layer of superconducting material comprises 5-100 lines, and/or wherein at least two mutually first lines have an equal first length and wherein at least two second lines have an equal second have a length, wherein the first length is different from the second length, and/or wherein a length of lines is equal to a 1/2%* resonant frequency, and/or wherein two lines are connected by a bridge of second layer superconducting material and wherein a length of the two interconnected lines is equal to a 1/4 * resonant frequency, and/or incorporating two or more resonators, such as two or more resonators of different frequency. 4. Elektromagnetische circuits volgens een van de conclusies 1-3, waarbij de diëlektrische laag is afgezet door PECVD, en/of waarin de diëlektrische laag een lage trekspanning van < 10 MPa heeft.Electromagnetic circuits according to any one of claims 1 to 3, wherein the dielectric layer is deposited by PECVD, and/or wherein the dielectric layer has a low tensile stress of < 10 MPa. 5. Elektromagnetisch circuit volgens een van de5. Electromagnetic circuit according to one of the - 11 - conclusies 1-4, waarbij het substraat is gekozen uit een halfgeleidermateriaal, zoals silicium, uit diëlektrische materialen, zoals saffier, glas, siliciumoxide, en siliciumnitride, en bij voorkeur als wafer is verschaft.- claims 1-4, wherein the substrate is selected from a semiconductor material, such as silicon, from dielectric materials, such as sapphire, glass, silicon oxide, and silicon nitride, and is preferably provided as a wafer. 6. Elektromagnetisch circuit volgens een van de conclusies 1-5, waarbij het elektromagnetisch circuit ten minste twee koppelingen voor aansluiting op een buitenwereld omvat.An electromagnetic circuit according to any one of claims 1-5, wherein the electromagnetic circuit comprises at least two couplings for connection to an outside world. 7. Elektromagnetisch circuit volgens een van de conclusies 1-5, waarbij de dikte van de diëlektrische laag 10- 50000 nm is, en/of, waarin de dikte van de eerste laag supergeleidend materiaal 5- 1000 nm is, zoals 100-300 nm, en/of waarin de dikte van de tweede laag supergeleidend materiaal 5- 1000 nm is, en/of waarbij tussen ten minste twee lijnen geen vast materiaal aanwezig is.An electromagnetic circuit according to any one of claims 1-5, wherein the thickness of the dielectric layer is 10-50000 nm, and/or, wherein the thickness of the first layer of superconducting material is 5-1000 nm, such as 100-300 nm and/or wherein the thickness of the second layer of superconducting material is 5-1000 nm, and/or wherein no solid material is present between at least two lines. 8. Elektromagnetisch circuit volgens een van de conclusies 3-7, waarbij de breedte van de lijnen elk afzonderlijk 1-10 pm is, zoals 2-5 um, en/of waarin een lengte van de lijnen elk afzonderlijk 0,1-10 mm is, en/of waarin een eerste ruimte tussen twee aangrenzende eerste parallelle lijnen 1-100 pm is, en/of waarin een eerste ruimte tussen twee aangrenzende eerste parallelle lijnen 1-100 um is, waarin een tweede ruimte tussen twee aangrenzende tweede parallelle lijnen 10-500 um bedraagt, en/of waarin de lijnen elk afzonderlijk capacitief aan een signaallijn zijn gekoppeld.An electromagnetic circuit according to any one of claims 3-7, wherein the width of the lines is each individually 1-10 µm, such as 2-5 µm, and/or wherein a length of the lines is each individually 0.1-10 mm and/or wherein a first space between two adjacent first parallel lines is 1-100 µm, and/or wherein a first space between two adjacent first parallel lines is 1-100 µm, wherein a second space between two adjacent second parallel lines 10-500 µm, and/or wherein the lines are each individually capacitively coupled to a signal line. 9. Elektromagnetisch circuit volgens een van de conclusies 1-8, waarbij het supergeleidende materiaal is gekozen uit NbTiN, NbSnN, NbSnN, Nb, NbN, Ta, Al, en combinaties daarvan.An electromagnetic circuit according to any one of claims 1-8, wherein the superconducting material is selected from NbTiN, NbSnN, NbSnN, Nb, NbN, Ta, Al, and combinations thereof. 10. Elektronische apparaat omvattend een elektromagnetisch circuit volgens een van de conclusies 1-9, waarbij de elektronische inrichting bij voorkeur is gekozen uit een resonator, een detector, zoals een astronomische detector, een kwantumcomputer, een transmissielijn, eenAn electronic device comprising an electromagnetic circuit according to any one of claims 1-9, wherein the electronic device is preferably selected from a resonator, a detector such as an astronomical detector, a quantum computer, a transmission line, a - 12 — elektromagnetische condensator, een elektromagnetische filter, een chip, en combinaties daarvan.- 12 — electromagnetic capacitor, an electromagnetic filter, a chip, and combinations thereof. 11. Elektronisch apparaat volgens conclusie 10, omvattende ten minste twee kanalen, zoals 3-100000 kanalen, een uitleeslijn en een golffilter.An electronic device according to claim 10, comprising at least two channels, such as 3-100000 channels, a readout line and a wave filter. 12. Werkwijze van gebruik van een elektromagnetisch circuit volgens een van de conclusies 1-9 of een elektronisch apparaat volgens conclusies 10 of 11, omvattend het verschaffen van het elektromagnetische circuit of het apparaat, het koelen van het elektromagnetische circuit of het apparaat tot een temperatuur <200 K, en het detecteren van een signaal, zoals een astronomisch signaal.A method of using an electromagnetic circuit according to any one of claims 1-9 or an electronic device according to claims 10 or 11, comprising providing the electromagnetic circuit or the device, cooling the electromagnetic circuit or the device to a temperature <200 K, and detecting a signal, such as an astronomical signal. 13. Werkwijze volgens conclusie 12, omvattend het koelen van het elektromagnetische circuit of het apparaat tot een temperatuur <10 K, zoals <4 K.The method of claim 12, comprising cooling the electromagnetic circuit or device to a temperature <10 K, such as <4 K.
NL2024742A 2020-01-23 2020-01-23 Low-loss dielectric for high frequency cryogenic applications NL2024742B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2024742A NL2024742B1 (en) 2020-01-23 2020-01-23 Low-loss dielectric for high frequency cryogenic applications
PCT/NL2021/050014 WO2021150101A1 (en) 2020-01-23 2021-01-13 Low-loss dielectric for high frequency cryogenic applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2024742A NL2024742B1 (en) 2020-01-23 2020-01-23 Low-loss dielectric for high frequency cryogenic applications

Publications (1)

Publication Number Publication Date
NL2024742B1 true NL2024742B1 (en) 2021-09-09

Family

ID=69630589

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024742A NL2024742B1 (en) 2020-01-23 2020-01-23 Low-loss dielectric for high frequency cryogenic applications

Country Status (2)

Country Link
NL (1) NL2024742B1 (en)
WO (1) WO2021150101A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626995B2 (en) 2001-06-01 2003-09-30 Electronics And Telecommunications Research Institute Superconductor incorporating therein superconductivity epitaxial thin film and manufacturing method thereof
JP2008071908A (en) * 2006-09-13 2008-03-27 Nippon Telegr & Teleph Corp <Ntt> Superconductive photodetector
US9653398B1 (en) * 2015-12-08 2017-05-16 Northrop Grumman Systems Corporation Non-oxide based dielectrics for superconductor devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626995B2 (en) 2001-06-01 2003-09-30 Electronics And Telecommunications Research Institute Superconductor incorporating therein superconductivity epitaxial thin film and manufacturing method thereof
JP2008071908A (en) * 2006-09-13 2008-03-27 Nippon Telegr & Teleph Corp <Ntt> Superconductive photodetector
US9653398B1 (en) * 2015-12-08 2017-05-16 Northrop Grumman Systems Corporation Non-oxide based dielectrics for superconductor devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. ENDO ET AL: "On-chip filter bank spectroscopy at 600-700 GHz using NbTiN superconducting resonators", APPLIED PHYSICS LETTERS, vol. 103, no. 3, 15 July 2013 (2013-07-15), US, pages 032601, XP055735610, ISSN: 0003-6951, DOI: 10.1063/1.4813816 *
CUNNANE D ET AL: "Characterization of MgB2 Superconducting Hot Electron Bolometers", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, IEEE SERVICE CENTER, LOS ALAMITOS, CA, US, vol. 25, no. 3, 30 June 2015 (2015-06-30), pages 1 - 6, XP011568154, ISSN: 1051-8223, [retrieved on 20141215], DOI: 10.1109/TASC.2014.2369353 *
CUNNANE DANIEL ET AL: "Penetration depth of MgB measured using Josephson junctions and SQUIDs", APPLIED PHYSICS LETTERS, A I P PUBLISHING LLC, US, vol. 102, no. 7, 18 February 2013 (2013-02-18), pages 72603 - 72603, XP012170133, ISSN: 0003-6951, [retrieved on 20130221], DOI: 10.1063/1.4793194 *

Also Published As

Publication number Publication date
WO2021150101A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US9531055B2 (en) Removal of spurious microwave modes via flip-chip crossover
CA1323913C (en) Broadband microstrip to coplanar waveguide transition by anisotropic etching of gallium arsenide
AU2020324398B2 (en) Parametric amplifier for qubits
Ito et al. A 60-GHz-band planar dielectric waveguide filter for flip-chip modules
WO2023226598A1 (en) Reading circuit, reading method and quantum computer
Alonso-del Pino et al. Micromachining for advanced terahertz: Interconnects and packaging techniques at terahertz frequencies
Patel et al. Fabrication of MKIDS for the MicroSpec Spectrometer
NL2024742B1 (en) Low-loss dielectric for high frequency cryogenic applications
CN112086505A (en) Full-hollow air bridge diode suitable for terahertz monolithic integration
Tan et al. A 220 GHz finline mixer with ultra-wide instantaneous bandwidth
Li et al. Terahertz monolithic integrated waveguide transmission lines based on wide bandgap semiconductor materials
Brown et al. Fabrication of an absorber-coupled MKID detector and readout for sub-millimeter and far-infrared astronomy
Konstantinidis et al. GaAs-membrane-supported millimeter-wave filters
Bunea et al. 28 GHz CRLH antenna on silicon substrate
Okuyama et al. Wireless inter-chip signal transmission by electromagnetic coupling of open-ring resonators
Li et al. Design of wideband bandpass filters using Si-BCB technology for millimeter-wave applications
Asayama et al. A fixed-tuned W-band waveguide SIS mixer with 4.0-7.5 GHz IF
Muller et al. Dielectric and semiconductor membranes as support for microwave circuits
RU2810691C1 (en) Method for manufacturing monolithic microwave integrated circuit
Mueller et al. 10-um thin GaAs membrane manufactured by nonselective etching
Ke et al. A V-band low insertion loss GaAs bandpass chip filter using CMRC technology
JP5282862B2 (en) SIS element, SIS mixer, element for superconducting integrated circuit, and method for manufacturing SIS element
Song Package Technologies for THz Devices
Zhang et al. Theory and application of compact microstrip PBG cell for wide stop-band filter
TWI474551B (en) Bandpass filter using thin film microstrip line

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230201